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1. Extraction of Fermi velocity and quasiparticle lifetime from ARPES data

The Fermi velocity and binding energy dependence of the carriers can be directly extracted

from the ARPES data. The momentum distribution curves (MDCs) at each binding energy are

fitted using a Lorentzian with a constant background. Firstly, the dispersion of the band can

then be fitted linearly to determine the Fermi velocity to vF = (9.50 ± 0.08) × 105 ms−1 (see

quadratically with a constant offset. The linewidth is inversely proportional to the quasiparticle

lifetime, thus showing how the latter decreases as one goes away from the Fermi level (see

have a certain lifetime between scattering events dictated by the concentration of impurities and

defects. As one goes to higher binding energies, the phase space for electron-electron scattering

increases ∝ E2
b and the lifetime decreases. We propose this as the reason why, experimentally,

Fermi velocity and quasiparticle lifetime from ARPES. (A) The linear dispersion
of graphene (black circles) is fitted linearly (red line) to extract the Fermi velocity. (B) The
extracted binding energy dependent linewidth (black circles) is fitted quadratically (red line)
to illustrate the decreasing carrier lifetime at higher binding energies. The blue dashed line
indicates a constant offset due to impurity scattering.
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Fig. S1.

fig. S1A). Secondly, the width of the Lorentzians as a function of binding energy can be fitted

fig. S1B). This is a manifestation of a simple Fermi liquid model. Electrons at the Fermi level



our LLs are only clearly resolved in the upper part of the cone closer to the Fermi level. When

the scattering rate at some binding energy exceeds a critical value above which coherent circular

orbits cannot be established, the LL quantization in the ARPES measurement disappears. We

note that such asymmetric behaviour has been reported before in scanning probe measurements,

and was attributed to a shorter vertical extension of wave functions at lower energies (11) and

to a reduced quasiparticle lifetime away from the Fermi level as well (27).

2. Evolution of LLs with magnetic field strength

In fig. S2, we present the spectral function obtained for M = 0 and increasing pseudomag-

netic fields B = 0, 41, 82 and 164T to highlight how Landau levels evolve from a Dirac cone

when B = 0 to completely flat bands when lB � λ. This is analogous to keeping B fixed

and increasing the size of the flake, but the latter method is strongly constrained by numerical

resources. Here lB = 4.0, 2.8 and 2.0 nm at B = 41, 82 and 164T respectively, whereas

λ ∼ 30 nm.

Evolution of LLs for increasing uniform pseudomagnetic fields. Calculated
spectral function in our triangular flake for fields B = 0, 41, 82 and 164T (from left to right).
Fig. S2.



3. Effect of uniform mass term on LL spectrum

Here we briefly discuss the effect of a Semenoff mass (35)M on pseudo-LLs and show

that a uniform Semenoff mass cannot explain the observed spectrum. Starting from the linear

dispersing bands in the Dirac cone without any magnetic fields, a mass term opens a gap at the

Dirac point. The size of the gap is equal to twice the size of the mass term M . Experimentally,

the existence of an inversion-breaking potential – responsible for such a mass term – has been

proposed previously in the graphene on SiC sample system (17). It manifests in our ARPES

cuts through the Dirac point by extending the linear dispersions of the lower and upper cones,

for both sides with respect to the K point (fig. S3A), in that these extrapolations do not meet in a

single point, but are offset from each other. To accurately determine the size of the gap, we fit

two Lorentzians with a constant background to momentum distribution curves (MDCs) in the

Determination of the mass term. (A) ARPES cut through the Dirac cone. Orange
circles indicate the positions of the fitted Lorentzians. The red line and the dashed red line
indicate linear fits through the orange circles for the upper and lower cone respectively. The cut
is symmetri ed around the K point in the momentum direction to remove polarisation effects.
(B) The same data as in (A), but fitted to a hyperbola instead. (C) Results for the gap size
from the hyperbola fits for different ARPES slices along ky. The curve shows the expected
half-hyperbola and the gap size of ∼0.25 eV is given by the minimum.

Fig. S3.
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Sketch of pseudo-LLs with Semenoff mass. Depending on the sign of the mass
termM , the zeroth LL (LL0) gets shifted to the upper or lower part of the cone. The spectrum is
identical for valleysK andK ′, because pseudomagnetic fields preserve time-reversal symmetry.
Higher LLs only get pushed away slightly from the Dirac point.

upper and lower cones. The energy range of the fit is selected to avoid the prominent LLs. A

hyperbola is then fitted to the bands (fig. S3B) to determine top and bottom of the two bands,

and in turn the gap size. The procedure is repeated for several cuts through the Dirac cone along

the ky direction. The results are summari ed in fig. S3c and the mass term is equal to half of

the minimal gap size (∼0.25 eV). This is comparable to the ∼0.26 eV gap observed in the same

sample system by Zhou et al. (17).

Next, we describe the effects of a mass term on a Dirac dispersion including magnetic fields.

In this case the zeroth LL (LL0), which normally resides at the Dirac point, is gapped out and

shifts by an energy equal to the mass term. Note that Eqn. 2 is not properly defined for n = 0

understand whether LL0 is shifted to +M or−M (in valleys K and K ′), we have to distinguish

between real magnetic fields, which break time-reversal symmetry, and pseudomagnetic fields,

which preserve time-reversal symmetry. For real magnetic fields ( ), LL0 has opposite energy

±M at K and K ′. For pseudomagnetic fields, in order to preserve time-reversal symmetry, the

spectrum must be identical in both valleys, and the energy of LL0 is determined by the sign of

M , so for n = 0 we simply get ELL0 = EDP ±M . This is illustrated in fig. S4 for different

Fig. S4.
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Calculation of pseudo-LLs with Semenoff mass. Calculated spectral function
in our triangular flake with a uniform pseudomagnetic field B = 41T and Semenoff masses
M = 0, M = −135meV, M = +135meV, and averaged in the interval M ∈ [−135, 135]meV
(from left to right). The position of the Landau levels (LL) for the different cases is indicated,
as well as the much weaker LL0 from the area surrounding the strained flake (red arrows in (B)
and (C)).

signs of the mass term, where LL0 either shifts to the top of the lower cone (M < 0) or the

bottom of the upper cone (M > 0).

Our numerical simulations clearly show this behaviour (fig. S5), but there is one additional

caveat. The total pseudomagnetic flux must be vanishing in our flake by construction, as we

require the strain to relax at the edges of the flake. This requirement generates a region near

the boundaries of the strained area with a pseudomagnetic field of the reversed sign. This re-

gion hosts a LL0 at an energy inverted with respect to the LL0 coming from inside the strained

area. This is visible in our calculations as weaker and more broadened (in momentum) lev-

els, indicated by red arrows in figs. S5B and S5C. Note that experimentally a similar scenario

is natural on our graphene on SiC samples as well. The strain inside the nanoprisms needs

to relax away from the feature, thus creating an area with an inversed pseudomagnetic field.

Fig. 5. S



Model fit with constant mass term. Fit of the observed LLs to Eqn. 2. Note the
shifted indices for the LLs in this scenario. It places the Dirac point at a binding energy of
390 meV with M = 150meV, compared to 450 meV obtained from the fit to Eqn. 1 without a
mass term.

To check if a uniform mass term of about the determined size can explain our findings, we fit

the observed LLs to Eqn. 2 (see fig. S6). While this model produces a qualitatively good fit with

M = 150meV, it places the Dirac point at a binding energy of 390meV, which is inconsistent

with the experimental observations (compared to 450meV obtained from the fit to Eqn. 1 with-

out a mass term). Hence, in order to explain the absence of a sharp LL0 in the ARPES data, we

instead postulate that the mass term M varies slowly with respect to the magnetic length lB, as

discussed in the main text. This variation can take place either from nanoprism to nanoprism, or

within a given nanoprism, if it is tied to the length scale of the uniform pseudomagnetic field λ.

In this scenario, we can approximate the effect of the slowly-varying mass termM by averaging

over the spectral function obtained with different fixed M (such as those shown in figs. S5B

and S5C). This mechanism completely smears out LL0, while only slightly broadening the other

levels (see fig. S5D).

Fig. 6. S



4. Additional ARPES data

ARPES data for two additional samples complementary to the data in Fig. 2 is shown in

metrized and the LLs are still clearly visible in the energy cuts. While the APRES data in the

ARPES data on two additional samples. (A) ARPES cut along the direction
indicated by the red line in the schematic BZ in the top right corner. Data were taken at 6 K
with mostly unpolarized light. (B) Energy cut through the Dirac point of the data in (A) with
LLs marked with arrows. (C) ARPES cut along the direction indicated by the red line in the
schematic BZ in the top right corner. Data were taken at 6 K with p-polarized light. (D) Energy
cut through the Dirac point of the data in (C) with LLs marked with arrows. Both data sets are
unsymmetrized.

Fig. S7. 

fig. S7 with LLs indicated in the cuts along the energy axis. The data have not been sym-



main text (Fig. 2A) were acquired with s-polarized light, the data in fig. S7A were taken with

mostly unpolarized light, and the data in fig. S7C were taken with p-polarized light. The differ-

ent light polarizations change the ARPES intensity distribution due to matrix element effects,

but do not alter the position of the observed LLs in the energy cuts. For unpolarized light an

almost symmetric intensity distribution for both branches of the Dirac cone can be observed,

even without additional symmetrization (see fig. S7A).

5. Nanoprism distribution and step edge

Looking at the height distribution of the pixels in the AFM image in Fig. 1B (Top), we can

determine the depths of the nanoprisms as well as estimate the coverage of the nanoprisms on

the sample (fig. S8). The difference in the position of the two fitted Gaussians leads to a depth

of the nanoprisms of (2.7 ± 0.7) Å. The integrated fraction curve indicates that about 5% to

10% of the total area is covered with nanoprisms.

AFM height distribution. Height distribution for the AFM image in Fig. 1B (Top).
Two Gaussians (red) can be fitted to the data to extract the depths of the nanoprisms. The
integrated fraction curve is shown in yellow.

Fig. S8.

  



Graphene layer coverage. (A) STM image taken across the edge of a nanoprism
(Vsample = 30mV, Itun. = 10 pA). The graphene grows smoothly over the step without inter-
ruption. (B) AFM adhesion image taken in the same region as shown in Fig. 1A in the main
text. The image shows no contrast between the nanoprisms and the surrounding terraces (black
box), thus clearly indicating that the nanoprisms are covered by monolayer graphene.

The STM image taken across the edge of a nanoprism in fig. S9A shows how the graphene

grows smoothly over the step without interruption. This assures that the strain inside the

nanoprism can build up and is not relieved along grain boundaries. Adhesion measurements

(see Methods section) unambiguously distinguish between coverages by zero-, mono-, and bi-

layer graphene (51,52). The AFM adhesion image in ig. S9B (taken in the same region as in

Fig. 1A) shows no contrast between the nanoprisms and the surrounding terraces, thus clearly

indicating that the nanoprisms are covered by monolayer graphene.

Fig. S9.
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