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Supplementary Materials 

Section S1. ML methods and machine language expressions of molecule 

 

Fig. S1. Introduction to different ML algorithms. Schematic diagram of the working 

principles for (A) artificial neural network, (B) support vector machine and (C) random forest. 

(D) The structure of the BPNN used in this work. 

 

The basic structure of a multi-layered ANN is shown in fig. S1A. Nodes in one layer are 

connected with the adjacent layers, and data in ANN flow from one layer to the next (in 

feedforward approaches). The input of a node is the weighted sum of the output of nodes in 

the preceding layer. After the operation of an activation function, the node will produce an 

output. The algorithm of back propagation is applied in ANN to optimize the weights, so that 

the relationship between the input and output can be learned. One difference between BPNN 

and DNN is the activation function. Activation functions used in BPNN typically consist of 

the logsig function , tansig function  or linear purelin 

function . However, all these functions suffer from the problem that gradient may 

vanish, which will cause an error during training. Meanwhile, this matter limits the model 



going deeper. DNN use the ReLU function  as their activation functions 

due to its capacity for producing quick convergence. Thus, the number of layers of a DNN 

can be large, rendering the model a powerful data-processing tool. Notably, a special structure 

of convolutional neural networks is used in deep learning (25), which is specialized in image 

input.  

SVM (26) can analyze data for classification based on statistical learning theory. In most 

cases, real-world data is nonlinear, which can cause problems for separating data by 

hyperplanes. In kernel SVM (as shown in fig. S1B) data can mapped onto a higher 

dimensional space called a feature space, so that they can be divided by a hyperplane to 

achieve the correct classification. A kernel function, which expresses the inner product 

between any two data points (known as feature vector) in the feature space, is the key in 

SVM, because it implicitly defines the map between low and high dimensional space. 

Calculation of kernel function is based on data in the low dimensional space, but the final 

result is displayed in the high dimensional space. Thus, complex calculations directly in 

high-dimensional space can be avoided and nonlinear data can be processed by kernel SVM. 

RF (28) is a machine learning method based on decision trees. fig. S1C shows the working 

principle of RF. Bootstrap aggregating (46) is the key idea in RF. When training a model, 

each tree randomly chooses multiple samples from training set to form a new subset, and then 

randomly chooses multiple features from the input to make a decision. Through voting, an 

output is produced from hundreds of decision trees to provide the best answer. 

In this work, BPNN, DNN, SVM and RF were implemented in Matlab (27, 29), while deep 

learning was implemented in caffe (48). Our best-performing BPNN contain four layers in 

total (two hidden layers). The number of neurons in the four layers are n, 20, 100 and 2 

respectively, where n is the length of the input. The corresponding activation functions of four 



layers are purelin, tansig, purelin and logsig (as shown in fig. S1D). We obtain a DNN with 

two hidden layers through structural design and performance optimization. They have 50 and 

1 neurons, respectively. The activation functions in the hidden layers are ReLU. A fine-tuned 

GoogLeNet (19, 49) is included to establish the deep learning model. We optimized the 

number of decision trees and other parameters to find the most accurate RF and SVM 

approaches. 

Table S1. Details of PaDEL descriptors. 

Descriptor Dimension of descriptors Type and amount of descriptors 

PaDEL 

1D Constitutional descriptors (120) 

2D 

Autocorrelation descriptors (346) 

Basak descriptors (42) 

BCUT descriptors (6) 

Burden descriptors (96) 

Connectivity descriptors (56) 

E-state descriptors (489) 

Kappa descriptors (3) 

Molecular property descriptors (15) 

Quantum chemical descriptors (6) 

Topological descriptors (265) 

3D 

CPSA descriptors (29) 

RDF descriptors (210) 

Geometrical descriptors (21) 

WHIM descriptors (91) 

3D Autocorrelation descriptors (80) 

Available from: http://www.scbdd.com/padel_desc/descriptors/ 



Table S2. Details of RDKIt descriptors. 

Descriptor Dimension of descriptors Type and amount of descriptors 

RDKIt 

1D Constitutional descriptors (106) 

2D 

Connectivity descriptors (12) 

MOE-type descriptors (58) 

Molecular property descriptors (5) 

Topological descriptors (15) 

Available from: http://www.scbdd.com/rdk_desc/descriptors/ 

 

Table S3. Complete MACCS fingerprint of P3HT and PTB7. 

Donor material MACCS fingerprint 

P3HT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0

 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1

 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 

PTB7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0



 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0

 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1

 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0

 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 

 

 

 

Section S2. Process of experiment and proof of the reliability of the ML model 

2.1 New molecules 

All reagents or materials are were used as received from commercial sources, unless 

otherwise stated. The new donor materials D1-D10 are synthesized using standard synthetic 

procedures and the materials were fully characterized with 
1
H NMR, 

13
C NMR, and 

high-resolution mass spectrometry. An example synthesis route can be found in our recently 

published paper (22). The detailed synthesis of the other 9 materials will be described in 

following papers. Generally, the 10 new materials are divided into three groups with changes 

or modifications on the end groups (A), π links, core (D), and alkyl chains. In each of the 

groups, the characteristics making the donors different from BTR or published structures are 

highlighted in red.  



 

Fig. S2. Chemical structures of the 10 new donor materials. 

 

2.2 Fabrication of OPV devices 

OPVs with standard structures were manufactured on patterned indium tin oxide (ITO)-coated 

glass substrates (15 Ω/sq, AE Tech.). The typical procedure is as follows: first, these 



substrates were cleaned sequentially with detergent, de-ionized water, acetone, and isopropyl 

alcohol for 20 min under sonication. They were then dried by nitrogen flow and treated with 

UV ozone for 30 min. Subsequently, 50 uL PEDOT:PSS aqueous solution was spin coated on 

an ITO substrate at 6000 rpm for 40 s, followed by a thermal annealing on a hot plate at 120 

°C for 20 min to form the hole transport layer (HTL). The substrates were then transferred 

into a glovebox filled with nitrogen (O2 < 10 ppm; H2O < 1 ppm). 40 uL mixed solution of 

donor and acceptor dissolved in chloroform was dripped on the PEDOT: PSS layer, before 

these substrates were spin coated at 2000 rpm for 30 s. To form a better molecular packing, 

solvent vapor treatment by tetrahydrofuran (THF) was introduced. Subsequently, DPO with a 

concentration of 0.5 mg/mL dissolved in isopropanol (IPA) was deposited on the top of active 

layer by spin coating at 2000 rpm for 30 s. Finally, these semi-finished devices were moved 

to a thermal evaporation chamber with a base pressure of approximately 2×10
-4

 Pa, where 100 

nm Ag was deposited through a shadow mask with an active area of 0.11 cm
2
. 

 

Table S4. Photovoltaic parameters of OPV devices fabricated with different donor 

materials. 

Device Structure 

VOC 

(V) 

JSC 

(mA/cm
2
) 

FF (%) 

PCE 

(%) 

ITO/PEDOT:PSS/1:PC71BM/DPO/Ag 0.69 3.59 39.20 0.97 

ITO/PEDOT:PSS/2:PC71BM/DPO/Ag 0.89 13.42 71.04 8.46 

ITO/PEDOT:PSS/3:IDIC/DPO/Ag 0.88 15.37 66.56 8.85 

ITO/PEDOT:PSS/4:PC71BM/DPO/Ag 0.98 8.91 60.69 5.30 

ITO/PEDOT:PSS/5:PC71BM/DPO/Ag 1.02 6.70 58.20 3.97 

ITO/PEDOT:PSS/6:PC71BM/DPO/Ag 0.96 10.71 69.17 7.10 



ITO/PEDOT:PSS/7:Y6/DPO/Ag 0.77 11.80 38.40 3.50 

ITO/PEDOT:PSS/8:PC71BM/DPO/Ag 0.90 4.28 54.70 2.10 

ITO/PEDOT:PSS/9:PC71BM/DPO/Ag 1.00 12.61 69.24 8.72 

ITO/PEDOT:PSS/10:PC71BM/DPO/Ag 1.00 3.78 40.01 1.51 

 

2.3 Predictions of the ML models 

 

Table S5. Prediction results from DNN, RF, and SVM using Hybridization and FP2 

fingerprints as inputs, as well as DNN and RF using Daylight fingerprints. 

Donor (Real PCE) PCE 0~2.99% PCE＞3.00% 

1 (0.97%)   

2 (8.46%)   

3 (8.85%)   

4 (5.30%)   

5 (3.97%)   

6 (7.10%)   

7 (3.50%)   

8 (2.10%)   

9 (8.72%)   

10 (1.51%)   

 

  



Table S6. Prediction results from BPNN using Daylight fingerprints when classification 

threshold is 10%. 

Donor (Measured PCE) Predicted PCE 0~9.99% Predicted PCE＞10.00% 

1 (0.97%)   

2 (8.46%)   

3 (8.85%)   

4 (5.30%)   

5 (3.97%)   

6 (7.10%)   

7 (3.50%)   

8 (2.10%)   

9 (8.72%)   

10 (1.51%)   

 

 

Fig. S3. Prediction results versus experimental data for the 10 new donor materials. The 

model is based on the BPNN and Daylight fingerprints as input, and the classification threshold 

is 10%. 
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