
Supplementary information - Improved polygenic
prediction by Bayesian multiple regression on

summary statistics
Lloyd-Jones, Zeng et al.

1



Supplementary Figures

Supplementary Figure 1

Prediction accuracy (R2) for SBayesR using different LD matrix reference

cohorts in the simulation on chromosomes 21 and 22 . . . . . . . . . . . . . 6

Supplementary Figure 2

SNP-based heritability estimation (h2
SNP) for SBayesR using different LD

matrix reference cohorts in the simulation on chromosomes 21 and 22. . . . 7

Supplementary Figure 3

Prediction accuracy performance using different methods in the simulation

on chromosomes 21 and 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Supplementary Figure 4

SNP-based heritability (h2
SNP) estimation for different methods in the simu-

lation on chromosomes 21 and 22. . . . . . . . . . . . . . . . . . . . . . . . . 9

Supplementary Figure 5

Slope estimates from regression of observed phenotypic values on the pre-

dicted values from SBayesR in genome-wide simulation. . . . . . . . . . . . 10

Supplementary Figure 6

SNP-based heritability (h2
SNP) estimation performance for different methods

in UKB genome-wide simulation . . . . . . . . . . . . . . . . . . . . . . . . . 11

Supplementary Figure 7

BayesR prediction accuracy and SNP-based heritability (h2
SNP) estimation

as a function of MCMC chain length for one scenario of UKB genome-wide

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Supplementary Figure 8

SBayesR prediction accuracy and SNP-based heritability (h2
SNP) estimation

change with MCMC chain length for one scenario of UKB genome-wide

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 LLJ et al.



Supplementary Figure 9

Regression with Summary Statistics (RSS)1 prediction accuracy for results

generated from 200,000 (200k) and 2,000,000 (2M) iterations of the MCMC

chain for all scenarios of the UKB genome-wide simulation. . . . . . . . . . 14

Supplementary Figure 10

Regression with Summary Statistics (RSS)1 SNP-based heritability (h2
SNP)

estimates for results generated from 200,000 (200k) and 2,000,000 (2M) it-

erations of the MCMC chain for all scenarios of the UKB genome-wide

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Supplementary Figure 11

Runtime (log(hours)) comparison for BayesR, SBayesR, RSS, LDpred and

SBLUP for UKB genome-wide simulation. . . . . . . . . . . . . . . . . . . . . 16

Supplementary Figure 12

Memory usage in gigabytes (GB) comparison for BayesR, SBayesR, RSS,

LDpred and SBLUP for UKB genome-wide simulation. . . . . . . . . . . . . 17

Supplementary Figure 13

SBayesR prediction accuracy change as a function of number of mixtures

fitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Supplementary Figure 14

SBayesR computational time change as a function of number of mixtures

fitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Supplementary Figure 15

Slope estimates from regression of observed phenotypic values on the pre-

dicted values from SBayesR in UKB cross-validation. . . . . . . . . . . . . . 20

Supplementary Figure 16

SNP-based heritability (h2
SNP) estimation performance for different methods

in the 5-fold cross-validation analysis of 12 quantitative traits in the UKB. . 21

Bayesian multiple regression 3



Supplementary Figure 17

SNP-based heritability (h2
SNP) point estimates and highest-probability den-

sities for SBayesR in the 5-fold cross-validation analysis of 12 traits in the

UKB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Supplementary Figure 18

Runtime (log(hours)) comparison for BayesR, SBayesR, RSS, LDpred and

SBLUP in cross-validation analysis of 12 traits in the UKB. . . . . . . . . . . 23

Supplementary Figure 19

Memory usage comparison in gigabytes (GB) for cross validation analysis

of 10 quantitative traits in the UKB. . . . . . . . . . . . . . . . . . . . . . . . . 24

Supplementary Figure 20

Regression with Summary Statistics (RSS)1 prediction accuracy for results

generated from 200,000 (200k) and 2,000,000 (2M) iterations of the MCMC

chain in the 5-fold cross-validation analysis of 10 quantitative traits in the

UKB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Supplementary Figure 21

Regression with Summary Statistics (RSS)1 SNP-based heritability (h2
SNP)

estimates for results generated from 200,000 (200k) and 2,000,000 (2M) it-

erations of the MCMC chain in the 5-fold cross-validation analysis of 10

quantitative traits in the UKB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Supplementary Figure 22

Variability in the number of per variant window width (measured in Mb)

from the shrunk-sparse LD correlation matrix within chromosome for each

of 1.09 million HapMap3 variants in the UKB. . . . . . . . . . . . . . . . . . 27

Supplementary Figure 23

Distribution and truncation of per-variant sample size from BMI and height

summary statistics for 982,000 HapMap3 variants from Yengo et al.2 . . . . . 28

4 LLJ et al.



Supplementary Tables

Supplementary Table 1

Summary of across-biobank predictions and testing of polygenic risk scores

(PRSs) variance explained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Supplementary Notes

1 Supplementary Note 1 - Simulation study using chromosomes 21 and 22 30

1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Supplementary Note 2 - Bayesian multiple regression 36

2.1 Joint sampling of δj and β j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Supplementary Note 3 - Summary statistics based Bayesian multiple regression 48

3.1 Sampling β j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Sampling σ2
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Computing estimate of genotypic variance . . . . . . . . . . . . . . . . . . . 54

4 Supplementary Note 4 - Method summary and implementation 55

5 Supplementary Note 5 - Full-data likelihood equivalence 58

6 Supplementary Note 5 - Additional acknowledgements 60

Supplementary References 63

Bayesian multiple regression 5



Supplementary Figure 1 Prediction accuracy (R2) for SBayesR using different LD matrix reference cohorts in the simulation
on chromosomes 21 and 22. Each panel displays boxplot summaries of the prediction R2 (y-axis) from the SBayesR method in the
10,000 individual validation data set for each LD reference cohort (x-axis). Each boxplot summarises results from 10 replicates for
each of the three simulation scenarios i.e., the first genetic architecture (GA1) contained two causal variants explaining 3% and 2%
of the phenotypic variance and 1,498 causal variants sampled from a N(0, 0.05/1, 498). The second architecture (GA2) was simu-
lated under a BayesR model with three sets of causal variants: the first with 1,445 causal variants sampled from a N(0, 0.06/1445)
distribution, the second 50 causal variants from N(0, 0.02/50) and the third 5 causal variants N(0, 0.02/5). The third architecture
(GA3) contained 1,500 variants sampled from a N(0, 0.1/1500) distribution. The mean R2 across the 10 replicates is displayed
above the boxplot for each cohort. Poorer prediction accuracies for the 1000G cohort are hypothesised to be primarily driven by
the small sample size (n = 378) of this reference, with small references having a larger sampling variance for the “non-true” LD
matrix entries, which can influence the convergence of the approximate SBayesR Gibbs sampling algorithm. All UKB cohorts are
random sub samples from the UK Biobank unrelated individuals. Sample size for Atherosclerosis Risk in Communities (ARIC)3

and GENEVA Diabetes study was 12,942, Phase 3 of the 1000 Genomes Project (1000G)4 contained 378 individuals with and the
UK10K project5 3,642 individuals. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and
third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1. The
points depict the prediction R2 for each replicate.
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Supplementary Figure 2 SNP-based heritability estimation (h2
SNP) for SBayesR using different LD matrix reference cohorts

in the simulation on chromosomes 21 and 22. Each panel displays boxplot summaries of h2
SNP estimates (y-axis) for each LD ref-

erence cohort (x-axis) across the 10 replicates for each of the three simulation scenarios in the chromosome 21 and 22 simulation.
Each trait has a simulated true h2

SNP = 0.1 (horizontal line) and 1,500 causal variants. The mean h2
SNP across the 10 replicates is

displayed above the boxplot for each cohort. Inflated h2
SNP estimates for the 1000G cohort are hypothesised to be primarily driven

by the small sample size (n = 378) of this reference. See Supplementary Figure 1 for descriptions of the genetic architectures
(GA1, GA2, GA3).The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3)
and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1. The points depict the
h2

SNP estimate for each replicate.
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Supplementary Figure 3 Prediction accuracy performance using different methods in the simulation on chromosomes 21 and
22. Each panel displays boxplot summaries of the prediction R2 (y-axis) in the 10,000 individual validation data set and an LD
reference generated from a random subset of 50,000 individuals from the UKB. Each boxplot shows the prediction R2 across the
10 replicates for each of the three simulation scenarios in the chromosome 21 and 22 simulation i.e., the first genetic architecture
(GA1) contained two causal variants of large effect explaining 3% and 2% of the phenotypic variance respectively and a polygenic
tail of 1,498 causal variants sampled from a N(0, 0.05/1, 498) distribution such that the expected total genetic variance explained
by all variants was 0.1. The second architecture (GA2) was simulated under a BayesR model with three sets of causal variants:
the first contained 1,445 causal variants sampled from a N(0, 0.06/1445) distribution, the second contained 50 causal variants
sampled from a N(0, 0.02/50) distribution and the third five causal variants sampled from N(0, 0.02/5) distribution. The third
architecture (GA3) contained 1,500 variants sampled from a N(0, 0.1/1500) distribution. SBayesR* corresponds to the analysis
using the SBayesR model and the full set of 100,000 individuals used in the GWAS analysis to create the LD matrix. This LD
matrix includes all pairwise correlations i.e., includes inter-chromosomal LD. The mean R2 across the 10 replicates is displayed
above the boxplot for each cohort. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and
third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.

8
LLJ

etal.



Supplementary Figure 4 SNP-based heritability (h2
SNP) estimation for different methods in the simulation on chromosomes

21 and 22. Each panel displays boxplot summaries of the h2
SNP estimates (y-axis) for each method (x-axis) across the 10 replicates

in each of the three scenarios in the chromosome 21 and 22 simulation. Each trait has a simulated true h2
SNP = 0.1 (horizontal line)

and 1,500 causal variants. SBayesR* corresponds to the analysis using the SBayesR model and the full set of 100,000 individuals
used in the GWAS analysis to create the LD matrix. The mean h2

SNP across the 10 replicates is displayed above the boxplot for
each method. See Supplementary Figure 1 for descriptions of the genetic architectures (GA1, GA2, GA3). The deflation of the
LDSC estimate across scenarios should be interpreted with caution as it is a likely result of the use of the small number of vari-
ants in this simulation. Simulations (not shown) using chromosomes 1-3 and the GA3 simulation scenario show unbiased LDSC
estimates.The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the
lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 5 Slope estimates from regression of observed phenotypic values on the predicted values from
SBayesR for quantitative phenotypes in the genome-wide simulation studies. Each panel shows a boxplot summary of the
estimated regression slope across the 10 replicates for each scenario with the mean displayed above each method’s boxplot.The
box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and
upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 6 SNP-based heritability (h2
SNP) estimation performance for different methods in UKB genome-wide

simulation. Each panel displays boxplot summaries of h2
SNP estimates (y-axis) for each method (x-axis) across the 10 replicates

for each of the six simulation scenarios that varied in the number of causal variants, 10k and 50k, and the true simulated h2
SNP =

(0.1, 0.2, 0.5). Two genetic architecture scenarios were generated: 10,000 causal variants sampled under the SBayesR model i.e.,
2500, 5000, and 2500 variants from each of N(0, 0.01σ2

β), N(0, 0.1σ2
β), and N(0, σ2

β) distributions respectively and σ2
β = 1. For the

second architecture, 50,000 causal variants were sampled from a standard normal distribution. For each replicate a new sample
of causal variants was chosen at random from the set of 1,094,841 HapMap 3 variants. The mean h2

SNP estimate across the 10
replicates is displayed above the boxplot for each method. Case-control phenotypes were generated from the liability threshold
model using the 10,000 causal variants BayesR model and were generated using the GCTA software with a simulated disease
prevalence of 0.05 and h2

SNP = (0.2, 0.5). The box plot centre line is the median, the bottom and top of the box are the first (Q1) and
third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 7 BayesR prediction accuracy and SNP-based heritability (h2
SNP) estimation change with MCMC

chain length for one scenario of UKB genome-wide simulation. Each panel displays boxplot summaries of prediction R2 and
h2

SNP estimates (y-axis) for 2,000 (2k), 4,000 (4k), 6,000 (6k) and 10,000 (10k) MCMC iterations of the BayesR method6. Each box-
plot shows the results from the 10 replicates in the 10k (simulated under a BayesR model) causal variant and the true simulated
h2

SNP = 0.5 scenario. The mean prediction R2 and h2
SNP estimates across the 10 replicates are displayed above the relevant boxplot.

The mean run time for each of the 2k, 4k, 6k and 10k MCMC iterations scenarios was 32.5, 56.7, 77.9 and 109.8 hours respectively.
The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and
upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 8 SBayesR prediction accuracy and SNP-based heritability (h2
SNP) estimation change with MCMC

chain length for one scenario of UKB genome-wide simulation. Each panel displays boxplot summaries of prediction R2 and
h2

SNP estimates (y-axis) for 2,000 (2k), 4,000 (4k), 10,000 (10k), 20,000 (20k), 50,000 (50k), and 100,000 (100k) MCMC iterations of
the SBayesR method. Each boxplot shows the results from the 10 replicates in the 10k (simulated under a BayesR model) causal
variant and the true simulated h2

SNP = 0.5 scenario. The mean prediction R2 and h2
SNP estimates across the 10 replicates are dis-

played above the relevant boxplot. The mean run time for each of the 2k, 4k, 10k, 20k, 50k and 100k MCMC iterations scenarios
was 0.35, 0.78, 4.4, 4.5, 7.7, and 14.6 hours respectively. The box plot centre line is the median, the bottom and top of the box are
the first (Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where
IQR = Q3 – Q1.
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Supplementary Figure 9 Regression with Summary Statistics (RSS)1 prediction accuracy for results generated from 200,000
(200k) and 2,000,000 (2M) iterations of the MCMC chain for all scenarios of the UKB genome-wide simulation. Each panel
displays boxplot summaries of the prediction R2 (y-axis) for RSS across the 10 replicates for each of the six simulation scenarios
that varied in the number of causal variants, 10k and 50k, and the true simulated h2

SNP = (0.1, 0.2, 0.5). Two genetic architecture
scenarios were generated: 10,000 causal variants sampled under the SBayesR model i.e., 2500, 5000, and 2500 variants from each
of N(0, 0.01σ2

β), N(0, 0.1σ2
β), and N(0, σ2

β) distributions respectively and σ2
β = 1. For the second architecture, 50,000 causal variants

were sampled from a standard normal distribution. The mean prediction R2 value across the 10 replicates is displayed above the
relevant boxplot. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3)
and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 10 Regression with Summary Statistics (RSS)1 SNP-based heritability (h2
SNP) estimates for results

generated from 200,000 (200k) and 2,000,000 (2M) iterations of the MCMC chain for all scenarios of the UKB genome-wide
simulation. Each panel displays boxplot summaries of h2

SNP estimates (y-axis) for RSS across the 10 replicates for each of the six
simulation scenarios that varied in the number of causal variants, 10k and 50k, and the true simulated h2

SNP = (0.1, 0.2, 0.5). Two
genetic architecture scenarios were generated: 10,000 causal variants sampled under the SBayesR model i.e., 2500, 5000, and 2500
variants from each of N(0, 0.01σ2

β), N(0, 0.1σ2
β), and N(0, σ2

β) distributions respectively and σ2
β = 1. For the second architecture,

50,000 causal variants were sampled from a standard normal distribution. The mean prediction h2
SNP estimate across the 10 repli-

cates is displayed above the relevant boxplot.The box plot centre line is the median, the bottom and top of the box are the first
(Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3
– Q1.
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Supplementary Figure 11 Runtime (log(hours)) comparison for BayesR, SBayesR, RSS, LDpred and SBLUP for UKB genome-
wide simulation. Each panel shows a boxplot summary of runtime across the 10 replicates for each scenario with the mean
runtime displayed above each method’s boxplot. The runtime for RSS, LDpred and SBLUP represents the sum over the runtimes
for each chromosome. Results for P+T, HEreg, S-PCGC and LDSC are not shown as they required relatively minimal computing
resources. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the
lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 12 Memory usage in gigabytes (GB) comparison for BayesR, SBayesR, RSS, LDpred and SBLUP for
UKB genome-wide simulation. Each panel shows a boxplot summary of memory usage across the 10 replicates for each scenario
with the mean memory displayed above each method’s boxplot. The memory for RSS, and SBLUP represents the sum over the
memory usage for each chromosome. The maximum chromosome memory requirement for RSS is for chromosome two which
required on average 192 GB (SE = 5 GB) of RAM across simulation scenarios. Results for P+T, HEreg, S-PCGC and LDSC are not
shown as they required relatively minimal computing resources. The box plot centre line is the median, the bottom and top of the
box are the first (Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively,
where IQR = Q3 – Q1.
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Supplementary Figure 13 SBayesR prediction accuracy in five-fold cross-validation for 12 traits in the UK Biobank using
different numbers of mixture components. Panel headings describe the abbreviation for 12 traits including: standing height
(HEIGHT, n=347,106), male pattern baldness (MPB, n =125,157), basal metabolic rate (BMR, n=341,819), heel bone mineral den-
sity T-score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), type-2 diabetes (T2D, n=274,271) body mass index (BMI,
n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume in one-second (FEV, n=317,502), hip circumference
(HC, n=347,231), waist-to-hip ratio (WHR, n=347,198) and birth weight (BW, n=197,778). Each panel shows a boxplot summary
of the prediction R2 across the five folds with the mean across the five folds displayed above each distribution number boxplot.
Traits are ordered by mean estimated h2

SNP (see Supplementary Figure 16) from highest to lowest. The box plot centre line is the
median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5
IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 14 SBayesR computational time change in five-fold cross-validation for 12 traits in the UK Biobank us-
ing different numbers of mixture components. Panel headings describe the abbreviation for 12 traits including: standing height
(HEIGHT, n=347,106), male-pattern baldness (MPB, n =125,157), basal metabolic rate (BMR, n=341,819), heel bone mineral den-
sity T-score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), type-2 diabetes (T2D, n=274,271) body mass index (BMI,
n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume in one-second (FEV, n=317,502), hip circumference
(HC, n=347,231), waist-to-hip ratio (WHR, n=347,198) and birth weight (BW, n=197,778). Each panel shows a boxplot summary
of the computation time (hours:minutes:seconds) across the five folds with the mean across the five folds displayed above each
distribution number boxplot. Traits are ordered by mean estimated h2

SNP (see Supplementary Figure 16) from highest to lowest.
The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and
upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 15 Slope estimates from regression of observed phenotypic values on the predicted values from
SBayesR for quantitative phenotypes in the UK Biobank cross-validation studies. Each panel shows a boxplot summary of
the estimated regression slope across the five folds for each trait with the mean displayed above each method’s boxplot. The box
plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and upper
whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 16 SNP-based heritability (h2
SNP) estimation performance for different methods in the 5-fold cross-

validation analysis of 12 quantitative traits in the UKB. Panel headings describe the abbreviation for the 12 quantitative traits
(see Supplementary Figure 13 for a description of the traits names). Each panel shows a boxplot summary of the h2

SNP estimates
across the five folds with the mean across the five folds displayed above each method’s boxplot. The box plot centre line is the
median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5
IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 17 SNP-based heritability (h2
SNP) posterior mean estimates

and highest-probability densities (HPD) for SBayesR results from five fold cross-
validation analysis of 12 traits in the UKB. Y-axis labels describe the abbreviation for
the 12 traits (see Supplementary Figure 13 for a description of the traits names). The
standard error of h2

SNP across folds for the traits as they appear in the plot are 0.0024,
0.0024, 0.0010, 0.0012, 0.0024, 0.0008, 0.0010, 0.0010, 0.0054, 0.0006, 0.0020, 0.0025. The
mean of the reported posterior standard error of h2

SNP across folds for the traits as they
appear in the plot are 0.0024, 0.0040, 0.0023, 0.0034, 0.0024, 0.0023, 0.0023, 0.0016, 0.0023,
0.0024, 0.0022, 0.0029. The point represents the mean, thick line the 95% HPD and the
thin line the 80% HPD.
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Supplementary Figure 18 Runtime (log(hours)) comparison for BayesR, SBayesR, RSS, LDpred and SBLUP in cross-
validation analysis of 12 traits in the UKB. Panel headings describe the abbreviation for 12 traits including: standing height
(HEIGHT, n=347,106), male-pattern baldness (MPB, n =125,157), basal metabolic rate (BMR, n=341,819), heel bone mineral den-
sity T-score (hBMD, n=197,789), forced vital capacity (FVC, n=317,502), type-2 diabetes (T2D, n=274,271) body mass index (BMI,
n=346,738), body fat percentage (BFP, n=341,633), forced expiratory volume in one-second (FEV, n=317,502), hip circumference
(HC, n=347,231), waist-to-hip ratio (WHR, n=347,198) and birth weight (BW, n=197,778). Each panel shows a boxplot summary of
runtime with the mean across the five folds displayed above each method’s boxplot. Results for RSS, LDpred and SBLUP repre-
sent the sum over time for each chromosome-wise analysis. Results for RSS and SBayesR do not include the time to compute the
LD reference matrix. Results for P+T, HEreg, S-PCGC and LDSC are not shown as they required relatively minimal computing
resources. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles (Q3) and the
lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 19 Memory usage comparison in gigabytes (GB) for cross validation analysis of 10 quantitative traits
in the UKB. Panels headings describe the abbreviation for the 10 quantitative traits. Each panel shows a boxplot summary of
memory usage across the five folds with the mean across the five folds displayed above each method’s boxplot. Results for RSS
and SBLUP represent the sum over memory for each chromosome-wise analysis. Results for RSS and SBayesR do not include the
memory required to compute the LD reference matrix. See Supplementary Figure 16 for description of trait abbreviations. The
maximum chromosome memory requirement for RSS is for chromosome one which required on average 174 GB (SE = 22 GB)
of RAM across simulation scenarios. Results for HEreg, S-PCGC and LDSC are not shown as they required relatively minimal
computing resources. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third quartiles
(Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 20 Regression with Summary Statistics (RSS)1 prediction accuracy for results generated from 200,000
(200k) and 2,000,000 (2M) iterations of the MCMC chain in the 5-fold cross-validation analysis of 10 quantitative traits in
the UKB. Panel headings describe the abbreviation for the 10 quantitative traits including: standing height (HEIGHT), basal
metabolic rate (BMR), heel bone mineral density T-score (hBMD), forced vital capacity (FVC), body mass index (BMI), body fat
percentage (BFP), forced expiratory volume in one-second (FEV), hip circumference (HC), waist-to-hip ratio (WHR) and birth
weight (BW). Each panel shows a boxplot summary of the prediction R2 across the five folds with the mean across the five folds
displayed above each boxplot. The box plot centre line is the median, the bottom and top of the box are the first (Q1) and third
quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 – Q1.
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Supplementary Figure 21 Regression with Summary Statistics (RSS)1 SNP-based heritability (h2
SNP) estimates for results

generated from 200,000 (200k) and 2,000,000 (2M) iterations of the MCMC chain in the 5-fold cross-validation analysis of 10
quantitative traits in the UKB. Panel headings describe the abbreviation for the 10 quantitative traits including: standing height
(HEIGHT), basal metabolic rate (BMR), heel bone mineral density T-score (hBMD), forced vital capacity (FVC), body mass in-
dex (BMI), body fat percentage (BFP), forced expiratory volume in one-second (FEV), hip circumference (HC), waist-to-hip ratio
(WHR) and birth weight (BW). Each panel shows a boxplot summary of the h2

SNP estimates across the five folds with the mean
across the five folds displayed above each boxplot. The box plot centre line is the median, the bottom and top of the box are the
first (Q1) and third quartiles (Q3) and the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR
= Q3 – Q1.
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Supplementary Figure 22 Variability in per variant window width (measure in mega bases (Mb)) from the shrunk-sparse LD
correlation matrix within chromosome for each of 1.09 million HapMap3 variants in the UKB. The chromosome-wise LD ma-
trices were calculated using imputed genotype data for a random set of 50,000 individuals from the unrelated European individu-
als in the UKB data. The LD matrices depicted were from the shrunk matrix estimator described in the main text and the basepair
window width represents the distance from the first non-zero row correlation to the last non-zero row correlation for each variant.
N.B. some elements within the window may be equal to zero and are not stored in the sparse matrix form lowering memory and
improving computational efficiency.
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Supplementary Figure 23 Distribution and truncation of per-variant sample size from BMI and height summary statistics for
982,000 HapMap3 variants from Yengo et al.2. The 982,000 variants are those that overlap between the summary statistics made
available from Yengo et al.2 and the 1.09 M HM3 variants used in the simulation and cross-validation analyses. Vertical bars
indicate the 0.025 and 0.95 percentiles for BMI and the 0.05 percentile for height. These truncations on n reduced the variant sets
to 909,293 and 932,969 for BMI and height respectively. This truncation is required for model stability as the RSS and SBayesR
models assume that the summary data were generated from the same set of individuals.
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Method Prediction R2 Null Alternative F-statistic p-value Partial R2

HRS - BMI
P+T 0.1027 – – – – –
BayesR 0.1251 P+T P+T + BayesR 252.7 < 2.2e-16 0.030
SBayesR-UKB 0.1323 BayesR BayesR + SBayesR-UKB 77.3 < 2.2e-16 0.009
LDpred 0.1326 SBayesR-UKB SBayesR + LDpred 38.3 6.5e-10 0.005
SBayesR 2.8 M 0.1343 LDpred LDpred + SBayesR 2.8 M 99.4 < 2.2e-16 0.012
RSS 0.1353 SBayesR 2.8 M SBayesR 2.8 M + RSS 93.8 < 2.2e-16 0.011
SBayesR 0.1357 RSS RSS + SBayesR 11.8 5.8e-4 0.002

HRS - Height
P+T 0.2676 – – – – –
LDPred 0.2973 P+T P+T + LDPred 574.0 < 2.2e-16 0.065
BayesR 0.3150 LDPred LDPred + BayesR 448.0 < 2.2e-16 0.052
RSS 0.3166 BayesR BayesR + RSS 264.1 < 2.2e-16 0.031
SBayesR-UKB 0.3213 RSS RSS + SBayesR-UKB 202.4 < 2.2e-16 0.024
SBayesR 0.3217 SBayesR-UKB SBayesR-UKB + SBayesR 152.6 < 2.2e-16 0.018
SBayesR 2.8 M 0.3416 SBayesR SBayesR + SBayesR 2.8 M 431.7 < 2.2e-16 0.050

ESTB - BMI
P+T 0.0909 – – – – –
BayesR 0.1095 P+T P+T + BayesR* 870.0 < 2.2e-16 0.026
SBayesR-UKB 0.1155 BayesR BayesR + SBayesR-UKB 259.2 < 2.2e-16 0.008
LDpred 0.1200 SBayesR-UKB SBayesR-UKB + LDpred 222.2 < 2.2e-16 0.007
SBayesR 2.8 M 0.1175 LDpred LDpred + SBayesR 2.8 M 265.4 < 2.2e-16 0.008
RSS 0.1203 SBayesR 2.8 M SBayesR 2.8 M + RSS 387.1 < 2.2e-16 0.012
SBayesR 0.1224 RSS RSS + SBayesR 86.0 < 2.2e-16 0.003

ESTB - Height
P+T 0.2719 – – – – –
LDPred 0.3012 P+T P+T + LDPred 2287.8 < 2.2e-16 0.066
BayesR 0.3147 LDPred LDPred + BayesR 1638.9 < 2.2e-16 0.048
RSS 0.32003 BayesR* BayesR + RSS 1109.8 < 2.2e-16 0.033
SBayesR-UKB 0.32006 RSS RSS + SBayesR-UKB 673.0 < 2.2e-16 0.020
SBayesR 0.3261 SBayesR-UKB SBayesR-UKB + SBayesR 749.8 < 2.2e-16 0.023
SBayesR 2.8 M 0.3521 SBayesR SBayesR + SBayesR 2.8 M 2016.5 < 2.2e-16 0.058

Supplementary Table 1 Summary of across-biobank predictions and testing of polygenic risk scores (PRSs) variance ex-
plained. This table supplements the results presented in main text Figure 4. Methods are ranked by prediction R2 and two linear
models are run: Model 1 - true phenotype on the lower ranked PRS (null); Model 2 - true phenotype on lower plus higher ranked
PRS (alternative). ANOVA is used to compare the null versus alternative and the F-statistic and associated p-value are reported
from the ANOVA run. The coefficient of partial determination (Partial R2) is also reported for the null versus alternative and
measures the proportional reduction in sums of squares after the higher ranked PRS is introduced into the linear model.
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1. Supplementary Note 1 - Simulation study using chromosomes 21 and

22

1.1. Description

To initially investigate the performance of the SBayesR methodology, we simulated quanti-

tative phenotypes using 30,122 HM3 variants from chromosomes 21 and 22 for a random

subset of 100,000 individuals from the 348,580 unrelated Europeans in the version three

UKB data set. The variants on chromosomes 21 and 22 were taken from the list of 1,365,446

HM3 SNPs, which included a final filter that excluded SNPs with MAC > 5 and pHWE

< 1× 10−5 and missingness > 0.05, in the UKB data set. Taking the overlap between

the HM3 variants on these chromosomes and the 1000G genetic map downloaded from

joepickrell/1000-genomes-genetic-maps left 30,122 variants. The 1000G genetic map is re-

quired for use in the LD matrix shrinkage estimator of Wen and Stephens7. The genetic

map files contain interpolated map positions for the CEU population generated from the

1000G OMNI arrays. The shrinkage estimator of the LD matrix, shrinks the off-diagonal

entries of the an LD correlation matrix toward zero and is required for the Regression with

Summary Statistics (RSS) method1.

Using these genotypes, three genetic architecture scenarios were generated under the

multiple regression model yi = ∑
p
j=1 wijβ j + εi, where wij = (xij − 2qj)/

√
2qj(1− qj)

with xij being the reference allele count for the ith individual at the jth SNP, qj the allele

frequency of the jth variant and εi was sampled from a normal distribution with mean

0 and variance Var(Wβ)(1/h2
SNP − 1) such that h2

SNP = 0.1 for each simulation replicate,

which is larger than the contribution to the genome-wide SNP-based heritability (h2
SNP)

estimate for these chromosomes for most quantitative traits. For each scenario replicate, the

length p of β was set to 1,500 causal variants, which is the approximate number of causal

variants that are expected given the proportion of HM3 variants on chromosomes 21 and

22 and a trait with 50,000 genome-wide causal variants. The elements β j of β were sampled

from the following distributions: the first genetic architecture (GA1) contained two causal
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variants of large effect explaining 3% and 2% of the phenotypic variance respectively and

a polygenic tail of 1,498 causal variants sampled from a N(0, 0.05/1, 498) distribution such

that the expected total genetic variance explained by all variants was 0.1. The second

architecture (GA2) was simulated under a BayesR model with three sets of causal variants:

the first contained 1,445 causal variants sampled from a N(0, 0.0.06/1445) distribution, the

second contained 50 causal variants sampled from a N(0, 0.02/50) distribution and the

third five causal variants sampled from N(0, 0.02/5) distribution. The third architecture

(GA3) contained 1,500 variants sampled from a N(0, 0.1/1500) distribution. For each of

the three genetic architecture scenarios, 10 simulation replicates were generated for the

100,000 individuals by taking a new sample of genetic effects from the above distributions.

We generated two independent tuning and validation genotype sets from the remaining

248,580 unrelated European individuals each containing 10,000 individuals. The tuning

genotype data set is required for parameter tuning, for example, the p-value threshold

when performing clumping and then p-value thresholding Tuning and validation pheno-

types were generated using the effects generated from the training data. For each of the

10 simulation replicates in the three scenarios, simple linear regression for each variant

was run using the PLINK 1.9 software8 to generate summary statistics. All phenotypes

were generated using the R programming language. For each of the simulation scenarios

the following methods were applied: LDpred9, RSS1, summary BLUP (SBLUP)10, LD

clumping and then p-value thresholding (P+T) implemented in PLINK 1.9, individual

data BayesR6 and the summary data implementation of BayesR (SBayesR) implemented

in the GCTB software. For h2
SNP comparison we ran Haseman-Elston regression (HEreg)

in the GCTA software11–13. LDSC was run using LD scores calculated from the 1000G

Europeans provided by the software and h2
SNP estimation performed. . The SBayesR and

RSS methods require precomputed reference LD correlation matrices.

To assess the influence of LD data reference on prediction performance and parameter

estimation, we generated LD correlation matrices for the 30,122 HM3 variants using

genotypes from the 1000G, ARIC and UK10K cohorts and six random subsamples from the
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UKB genotype data with 378 (UKB-378), 500 (UKB-500), 750 (UKB-750), 1000 (UKB-1K),

5,000 (UKB-5K) and 50,000 (UKB-50K) individuals. The sample size of 378 individuals was

chosen to match that of the 1000G and the other six to investigate a value at which optimal

SBayesR performance is reached. For each LD reference cohort chromosome-wise LD

matrices i.e., all inter chromosomal LD is ignored, were built and the shrinkage estimator

of the LD matrix7 calculated using an efficient implementation in the GCTB software. The

calculation of the shrunk LD matrix requires the effective population sample size, which

we set to be 11,400 (as in Zhu and Stephens1), the sample size of the genetic map reference,

which corresponds to the 183 individuals from the CEU cohort of the 1000G and the hard

threshold on the shrinkage value, which we set to 10−3. We further stored the shrunk LD

matrix in sparse matrix format (ignoring matrix elements equal to 0) for efficient SBayesR

computation. SBayesR was run for each of the simulation scenarios using each reference

LD matrix.

The PLINK 1.9 software was used to calculate the estimate genetic values for each

individual for all LD matrix cohorts and the prediction R2, calculated via linear regression

of the true simulated phenotype in the validation data set on that predicted values from

SBayesR, used as a measure of prediction accuracy. The UKB-50K reference showed

marginal improvements over the other cohorts in prediction accuracy in the validation

data set and had the smallest upward bias in h2
SNP estimation (Figure Supplementary

Figure 1). We therefore selected this LD reference cohort for all methods. For LDpred,

SBLUP and P+T, a separate genotype data set is required to be specified for LD correlation

reference and utilisation within each method’s program. This was set to be the same

50,000 individual genotype set used for SBayesR and RSS. Furthermore, the full LD matrix

that incorporates inter-chromosomal LD information was generated using the full 100,000

individuals such that the individual data BayesR model could be compared with the

SBayesR model run with the full LD matrix, which is expected to produce equivalent

results.

For LDpred, we specified h2
SNP to be equal to the true 0.1, specified the number of SNPs
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on each side of the focal SNP for which LD should be adjusted to be 3,500, which equated

to an approximate 10 megabase (MB) window, and calculated effects size estimates for all

of the 10 fraction of non-zero effects pre-specified parameters, which included LDpred-

inf, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001. A larger LD window size than

recommended was chosen because of the large effects simulated, it was computationally

feasible in this small simulation and to be comparable with the LD references used for

SBayesR and RSS. For RSS, analyses were performed for each chromosome to limit the

computational burden of running these analyses using MATLAB, as in Zhu and Stephens1.

For each chromosome, the RSS-BSLMM model was run for 2 million MCMC iterations

with 1 million as burn in and a thinning rate of 1 in 100 to arrive at 10,000 posterior samples

for each of the model parameters. For each chromosome, the posterior mean over posterior

samples for the SNP effects and h2
SNP estimates was used. The chromosome wise h2

SNP

estimates were then summed to get the total estimate. For SBLUP, we used the GCTA

software implementation, which required the specification of the λ = m(1/h2
SNP − 1)

parameter, which was calculated using h2
SNP = 0.1 and m = 30, 122 and the LD correlation

window size specification was set to 10 MB. For P+T, we used the PLINK 1.9 software to

clump the GWAS summary statistics discarding variants within 1 MB (using 10 MB gave

very similar results) of and in LD R2 > 0.1 with the most associated SNP in the region.

Using these clumped results, we generated PRSs for sets of SNPs at the following p-value

thresholds: 5×10−8, 1×10−6, 1×10−4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, and 1.0. BayesR was

run using a mixture of four normal distributions model with distribution variance weights

γ = (0, 10−4, 10−3, 10−2)′. BayesR was run for 4,000 iterations with 2,000 taken as burn

in and a thinning rate of 1 in 10. The posterior mean of the effects and the proportion of

variance explained over the 200 posterior samples was taken as the parameter estimate

for each scenario replicate. For SBayesR the MCMC chain was run for 4,000 iterations

with 2,000 taken as burn in and a thinning rate of 1 in 10 and run with four distributions

and variance weights γ = (0, 0.01, 0.1, 1)’. HEreg requires a genetic relatedness matrix,

which was built from 30,122 HM3 variants from chromosomes 21 and 22 using the GCTA
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software.

To assess prediction accuracy, the polygenic risk score (PRS) for each individual was

calculated using the genotype data from the 10,000 individual tuning and validations data

sets and genetic effect estimates from each method. Tuning was performed for LDpred

and P+T where for each simulation replicate the prediction accuracy was assessed for each

of the pre-specified fraction of non-zero effects parameters for LDpred and the p-value

thresholds for P+T. The parameter that gave the optimal prediction R2 in the tuning data

set was then used for calculating the PRS in the validation data set. SNP effects from

BayesR and SBayesR were estimated using scaled genotypes and thus each variant’s effect

was divided by
√

2qj(1− qj), where qj is the allele frequency from the validation cohort of

the jth variant, before PLINK scoring was performed. The PLINK 1.9 software was used

to perform the EGV calculation for all methods and the prediction R2 calculated via linear

regression of the true simulated phenotype on that estimated from each method used as a

measure of prediction accuracy.

1.2. Results

The choice of LD matrix reference cohort for use in SBayesR analysis led to differences in

absolute prediction accuracy and bias in h2
SNP estimation (Supplementary Figure 1 and

Supplementary Figure 2). The UKB-378 or 1000G cohort showed the poorest prediction

accuracy and upward bias in on mean h2
SNP estimates. Improvement absolute prediction

accuracy and bias in h2
SNP when the random subsample from the UKB was increase from

378 to 1000 individuals. The ARIC and UK10K LD reference cohorts showed similar on

mean prediction R2 and bias in h2
SNP estimation as the UKB-50K and UKB-5K cohorts.

The results for smaller references suggest that the larger sampling variance for the “non-

true” LD matrix entries of these LD matrices can influence the SBayesR approximate

Gibbs sampling algorithm with 3-5,000 individuals appearing a minimum for optimal

SBayesR results although reasonable results can be obtained with smaller references.

However, overall the UKB-50K cohort showed the maximum prediction accuracy and

smallest upward bias in h2
SNP estimation across all scenarios and thus was chosen as the
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LD reference cohort for all analyses.

Across the three simulation scenarios we observed that the individual level analysis

using BayesR, or SBayesR with the full LD matrix, gave the highest mean validation data

set prediction R2 (Supplementary Figure 3). Marginal differences in prediction accuracy

variance were observed between BayesR and SayesR with the full LD matrix for the

GA1 and GA2 simulation scenarios (Supplementary Figure 3). These differences could

be caused by the different implementation of the methodology where BayesR results

are generated from the program written in Moser et al.6. Furthermore, in the SBayesR

method we allow each SNP to have a different residual variance, which could be slightly

different to individual data results because of the small differences in per-SNP sample size

and estimation variance. The rounding of the summary statistics and subsequent model

reconstruction from these rounded values could also contribute. These sources are the

likely cause of the marginal differences in variance (in scenarios GA1 and GA2) across

replicates between the two methods. We highlight that the prediction accuracy means are

exactly the same between these two methods in all scenarios.

The relative difference between the individual data BayesR model mean prediction accu-

racy and the highest performing summary statistics method, SBayesR, ranged from 1.2%

to 3.9% (Supplementary Figure 3). P+T showed the lowest on mean prediction accuracy

across scenarios but showed similar mean prediction accuracies to the LDpred infinitesimal

model and SBLUP for scenario one, which contains variants of very large effect and a

polygenic tail. SBayesR showed substantial improvement in prediction accuracy relative to

other summary statistics methodologies particularly in scenario one, with RSS showing the

closest prediction R2 compared to SBayesR in all scenarios. RSS outperformed SBLUP and

LDpred-inf in all scenarios but showed a smaller relative improvement in prediction R2 as

the simulated traits had fewer large effects. SBLUP outperformed LDpred-inf in each of the

simulation scenarios, which is the most similar LDpred model to SBLUP (Supplementary

Figure 3). Overall, on mean prediction R2 improvement ranged from 1.3% to 7.9% when

comparing SBayesR with the best alternative summary statistic method (RSS) across all
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scenarios (Supplementary Figure 3).

Across all simulation scenarios all methods showed minimal bias in h2
SNP estimation

(Supplementary Figure 4). The deflation of the LDSC estimate across scenarios should

be interpreted with caution as it is a likely result of the use of the small number of

variants in this simulation. Simulations (not shown) using chromosomes 1-3 and the GA3

simulation scenario show unbiased LDSC estimates. Overall SBayesR using the full LD

matrix showed the smallest bias, with HEreg showing the largest bias in scenario one

with the bias diminishing as the scenarios became more similar to the infinitesimal model.

RSS showed a downward bias in GA1 and was unbiased for GA2 and GA3. SBayesR

maintained a marginal upward bias across all simulation scenarios and a maximum relative

upward on mean bias of 3% in GA2 and GA3 (Supplementary Figure 4).

2. Supplementary Note 2 - Bayesian multiple regression

The starting point is the multiple linear model of the form

y = Xβ + ε, (1)

where y is an n× 1 vector (centred) of trait phenotypes, X is an n× p matrix of genotype

covariates initially coded 0, 1, 2 representing the number of copies of a reference allele

at each marker, and we consider that the columns of X can either be centred or centred

and scaled. The vector β is a p× 1 vector of random partial regression coefficients of the p

SNPs (marker effects) and ε is a vector (n× 1) of residuals.

We wish to optimise the parameters of the stated linear model using Bayesian posterior

inference, which requires the specification of prior distributions for β and ε. We assume

that the error term ε|σ2
ε ∼ MVN(0, Rσ2

ε ), where MVN denotes the multivariate normal

distribution, 0 is a column vector of zeroes of length n, and R is a covariance matrix,

which is assumed here to be a diagonal matrix of ones. The parameter σ2
ε is treated as an

unknown with a scaled inverse chi-square distribution prior with scale parameter s2
ε and

degrees of freedom νε.
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Members of the Bayesian alphabet for genomic selection including BayesA and BayesB14,

BayesC and BayesCπ 15, BayesR6,16, BSLMM17, BayesS18 among others, differ largely in

the prior used for β. In this work, we will focus on the BayesR model, which assumes that

β j comes from a finite mixture of normals distribution, which includes a point mass at

zero. This prior is motivated by the capacity of the mixture distribution to be flexible and

thus model a diverse set of underlying genetic effect distributions.

Inferences on marker associations are based on the posterior distribution of the marker

effects f (β|y). Closed form expressions are not available for making inferences from

f (β|y) and instead they are drawn from the posterior of interest. The following derivation

describes a similar Markov chain Monte Carlo (MCMC) algorithm as in Habier et al.15,

which is discussed in detail in Fernando and Garrick19.

Let θ = (β′, π′, σ2
β, σ2

ε )
′ denote all the unknowns in the model including the random

marker effects, mixing proportions of the mixture of normals, the variance of the marker

effects, and the residual variance. For each model parameter, we draw posterior samples

using the single site Gibbs sampler, which draws samples for each element i of the vector

θ from its full conditional posterior: f (θi|θ−i, y). The full conditional can be expressed as

f (θi|θ−i, y) ∝ f (θi, θ−i, y). (2)

The joint density in Supplementary Equation (2) can be written as

f (θi, θ−i, y) = f (y|θ) f (θi) f (θ−i),

where f (y|θ) is the density function of the conditional distribution of y|θ, and f (θi) and

f (θ−i) are the densities of the prior distributions of θi and θ−i. Ignoring factors that

are constant with respect to θi gives the kernel of the full-conditional posterior for each

parameter of interest, which we will derive for each element of θ.

The conditional distribution of y given all the unknowns is MVN with expectation Xβ
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and covariance matrix Rσ2
e . The MVN density is thus

f (y|θ) = (2πσ2
e )
−n/2 exp

[
− (y− Xβ)′(y− Xβ)

2σ2
e

]
. (3)

Formally, under the BayesR model we assume the following prior on the genetic effects

β j|π, σ2
β =



0 with probability π1,

∼ N(0, γ2σ2
β) with probability π2,

...

∼ N(0, γCσ2
β) with probability1−∑C−1

c=1 πc,

where C denotes the maximum number of components in the finite mixture model, which

is prespecified. The γc coefficients are prespecified and constrain how the common marker

effect variance σ2
β scales in each distribution. For example it is common in BayesR to

assume C = 4 such that γ = (γ1, γ2, γ3, γ4)
′ = (0, 0.0001, 0.001, 0.01)′ representing a class

of effects with no effect and three further classes of small, medium and large effects. Under

this prior assumption, we derive the MCMC Gibbs sampling routine for sampling of the

key model parameters θ = (β′, π′, σ2
β, σ2

ε )
′ from their full conditional distributions.

We introduce the dummy variable δj which is a random variable that takes values

1, 2, . . . , C depending on which mixture distribution marker j is sampled in. The prior

distribution for the marker effects conditional on the marker effect variance σ2
β and mixture

class is

f (β|δ = c, γcσ2
β) =

kc

∏
j=1

(2πγcσ2
β)
−1/2 exp

[
−

β2
j

2γcσ2
β

]
,

which represents the product over those markers sampled in class c denoted kc. We assume

that the prior for σ2
β is a scaled inverse chi-square distribution with density

f (σ2
β; νβ, S2

β) =
(S2

βνβ/2)νβ/2

Γ(νβ/2)

exp(−νβS2
β/2σ2

β)

(σ2
β)

1+νβ/2 ,
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where S2
β and νβ are the scale parameter and degrees of freedom respectively. As stated

above the residual variance σ2
ε is assumed to have scaled inverse chi-square distribution

prior with distribution

f (σ2
ε ; νε, S2

ε ) =
(S2

ε νε/2)νε/2

Γ(νε/2)
exp(−νεS2

ε /2σ2
ε )

(σ2
ε )

1+νε/2 .

The full conditional posterior of β j is proportional to the product of the likelihood, the

prior distribution for β j, and the prior distributions of the variances. The variances don’t

contain β j and nor do the other components of the product for the prior for β j. Therefore,

the full conditional for β j can be written as

f (β j|δj = c, θ−β j , y) ∝ exp
[
− (y− Xβ)′(y− Xβ)

2σ2
e

]
exp

[
−

β2
j

2γcσ2
β

]
.

We define w = y−∑k 6=j xkβk to be the vector of trait phenotypes corrected for all effects

other than that being sampled. Given this we can write

f (β j|δj = c, θ−β j , y) ∝ exp

{
− 1

2σ2
e

[
(w− xjβ j)

′(w− xjβ j) +
β2

j σ2
e

2γcσ2
β

]}

∝ exp

[
− 1

2σ2
e

(
w′w− 2x′jwβ j + x′jxjβ

2
j +

β2
j σ2

e

σ2
β

)]
. (4)

We can complete the square with respect to β j in Supplementary Equation (4) to obtain

f (β j|δj = c, θ−β j , y) ∝ exp
[
− 1

2σ2
e

(
w′w− ljc β̂2

j + ljc(β j − β̂ j)
2
)]

,

where ljc = x′jxj + σ2
e /(γcσ2

β) is the left hand side of the well known mixed model equations

(MME)20 for β j, β̂ j = x′jw/ljc, and x′jw is the right hand side of the MME. Dropping terms

that are free from β j the full conditional becomes

f (β j|δj = c, θ−β j , y) ∝ exp

−1
2
(β j − β̂ j)

2

σ2
e

ljc

 .

Bayesian multiple regression 39



This can be seen to be the kernel of the normal distribution and within each iteration of the

Gibbs sampler we sample the genetic effect from a normal distribution with mean β̂ j and

variance σ2
e /ljc.

In BayesR the prior assumption is that the marker effects have IID Gaussian mixture dis-

tributions, with a point mass at zero with probability π1, a univariate normal distribution

with variance γ2σ2
β with probability π2, a univariate normal distribution with variance

γ3σ2
β with probability π3 etc. up to a univariate normal distribution with variance γCσ2

β

with probability πC , such that πC = 1−∑C−1
c=1 πc, where C here denotes the maximum

number of components in the finite mixture model. The vector π = (π1, π2, . . . , πC)
′ is

treated as an unknown and is assumed to have a Dirichlet prior, which is the extension

of the concept in BayesCπ 15 that the π is treated as an unknown with a uniform prior.

BayesR classically assumes that there are C = 4 classes but C can be chosen to be arbitrarily

large with some scaling (not necessarily an exponential function) of each of the variance

components assumed.

To derive the posterior update for π, we treat the indicator variables δj as a random

variable that takes values 1, 2, 3, . . . , C depending on which class marker j is sampled in.

Therefore, δj can be modelled as a categorical random variable, which implies that

f (δj|π) =
C

∏
c=1

π
[δj=c]
c ,

where [δj = c] evaluates to 1 if δj = c and 0 otherwise. Therefore,

f (δ|π) =
p

∏
j=1

C

∏
c=1

π
[δj=c]
c .

The Dirichlet distribution is the conjugate prior distribution of the categorical distribution.

Given, δj has a categorical distribution if we assume that π has a Dirichlet(1, 1, . . . , 1) prior,

which assumes that the prior probability of a SNP being in any distribution is the same,

then the posterior distribution of δj is also Dirichlet. Then, more generally in our setting

α = (α1, . . . , αc, . . . , αC) where αc = 1 and we can write our prior as π|α ∼ Dirichlet(C, α).

40 LLJ et al.



Given an initial vector π then δ|π ∼ Categorical(C, π). From the form of the Dirichlet

distribution we have

f (π1, ...., πC; α1, . . . , αC) =
1

B(α)

C

∏
c=1

παc−1
c .

As always we can ignore the normalising constant and look at

f (π|δ, α) ∝ f (δ|π) f (π|α) =
p

∏
j=1

C

∏
c=1

π
[δj=c]
c

C

∏
c=1

παc−1
c =

p

∏
j=1

C

∏
c=1

π
[δj=c]+αc−1
i ,

which is the kernel of a Dirichlet(C, c + α), where c is a vector of length C with the count

of the number of variants in each class and c + α is a vector with elements (c1 + α1, c2 +

α2, . . . , cC + αC). Therefore, in the Gibbs sampler we sample π from a Dirichlet(C, c + α)

conditional on the number of variants sampled in each of the C mixture classes.

16 do not sample the marker effect variance σ2
β but instead scale and centre the genotypes

and equate the genetic variance σ2
g = mσ2

β, where m is the number of causal loci21 and

substitute a pre-estimated value of σ2
g , from a previous h2

SNP study.6 also equate the genetic

variance with the marker effect variance and sample σ2
g from a scaled inverse chi-square

distribution with parameters ν0 + mg and
mg ∑

p
j=1 β2

j +ν0S2
0

ν0+mg
, where mg is the number of SNPs

included in the current model. Moser et al.6 specify prior values of ν0 and S2
0 are to be

−2 and 0, which are proposed to lead to a uninformative prior. For polygenic traits this

is likely to be reasonable but a more general hypothesis is to not to connect the genetic

variance with the marker effect variance under this assumption.

To derive a new update, we note that the common marker effect variance is only present

in the normal density functions of β j when δj 6= 1 and its own prior. Therefore,

f (β|σ2
β, δ) =

q

∏
j=1

φ(β j; 0, γδj σ
2
β),

where δ = (δ2, . . . , δp), δj ∈ (1, 2, . . . , C), φ is the normal probability density function and
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the number of non-zero effects in the model q = |β−β j :δj=1|. Given this

f (σ2
β; νβ, S2

β) f (β|σ2
β, δ) =

(S2
βνβ/2)νβ/2

Γ(νβ/2)

exp(−νβS2
β/σ2

β)

(σ2
β)

1+νβ/2

q

∏
j=1

(2πγδj σ
2
β)
−1/2 exp

[
−

β2
j

2γδj σ
2
β

]

=
(S2

βνβ/2)νβ/2

Γ(νβ/2)

exp(−νβS2
β/2σ2

β)

(σ2
β)

1+νβ/2 γ−c2/2
δ2

. . . γ−cC/2
δC

(2πσ2
β)
−q/2 exp

[
− 1

2σ2
β

q

∑
j=1

β2
j

γδj

]
,

where (c2, . . . , cC) are the number of variants in each of the non-zero classes. Retaining only those

elements that contain σ2
β

∝
exp(−νβS2

β/2σ2
β)

(σ2
β)

1+νβ/2 (σ2
β)
−q/2 exp

[
−

∑
q
j=1 β2

j

2γδj σ
2
β

]

∝ exp

[
− 1

2σ2
β

(
νβS2

β +
q

∑
j=1

β2
j

γδj

)]
(σ2

β)
−1−νβ/2−q/2,

which is the kernel of a scale inverse chi-squared distribution with degrees of freedom

νβ + q, where q is the number of non-zero markers in the model. The scale parameter

can be determined by letting ν̃β = νβ + q. The expression inside must be equal to ν̃βS̃2
β =

νβS2
β + ∑

q
j=1

β2
j

γδj
. The new scale parameter is thus now

S̃2
β =

νβS2
β + ∑

q
j=1

β2
j

γδj

νβ + q
.

This is only equivalent to that presented in Moser et al.6 when each γδj is equal to 1/q.

2.1. Joint sampling of δj and β j

We employ a similar strategy as18 to jointly sample δj and β j by first sampling δj uncondi-

tional on β j and then sample β j conditional on δj. Mathematically

f (β j, δi|θ−β j,δj , y) = f (β j|δj, θ−β j , y) f (δj|θ−δj , y),
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and then sample β j from f (β j|δj = c, θ−β j , y). The categorical random variable δj appears

in the likelihood and in its own prior

f (δj|π) =
C

∏
c=1

π
[δj=c]
j .

Samples can be drawn from this categorical distribution by calculating the membership

probabilities

P(δj = c|θ−δj , y) =
f (w|δj = c, θ, y)P(δj = c)

∑C
c=1 f (w|δj = c, θ, y)P(δj = c)

,

and then use the sampling routine for a categorical distribution once the probabilities are

known. If we would like to use this then if δj 6= 1 then we need to integrate out β j from

f j(w|δj = c, θ, y), which requires the following integral

f (w|δj = c, θ, y) =
∫

f (w|β j, σ2
ε ) f (β j|δj, σ2

α)dβ j

=
∫
(2πσ2

ε )
−n/2 exp

[
−
(w− xjβ j)

′(w− xjβ j)

2σ2
ε

]
(2πγcσ2

β)
−1/2 exp

[
−

β2
j

2γcσ2
β

]
dβ j.

Expanding the product terms and combining the exponential terms we have

f (w|δj = c, θ, y) =
∫
(2πγcσ2

β)
−1/2(2πσ2)−n/2 exp

[
− 1

2σ2
ε

(
w′w− 2x′jwβ j + x′jxjβ

2
j +

β2
j σ2

ε

γcσ2
β

)]
dβ j.

We let ljc = x′jxj + σ2
e /(γcσ2

β) and thus

=
∫
(2πγcσ2

β)
−1/2(2πσ2

ε )
−n/2 exp

[
− 1

2σ2
ε

(
w′w− 2x′jwβ j + β2

j ljc

)]
dβ j.
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Letting β̂ j = x′jw/ljc we again look to complete the square and take out from the integral those

elements that do not involve β j

=
∫
(2πγcσ2

β)
−1/2(2πσ2

ε )
−n/2 exp

[
− 1

2σ2
e

(
w′w− 2β̂ jljcβ j + β2

j ljc + β̂2
j ljc − β̂2

i ljc

)]
dβ j

= (2π
σ2

ε

lj
)1/2(2πγcσ2

β)
−1/2(2πσ2

ε )
−n/2 exp

[
− 1

2σ2
ε

(
w′w− ljc β̂2

j

)]
×

∫
(2π

σ2
ε

ljc
)−1/2 exp

− 1

2 σ2
ε

ljc

(β j − β̂ j)
2

 dβ j.

The integral component is now a normal distribution and thus integrates to 1. The term left over

after cleaning is

f (w|δj = c, θ, y) =

(
γδj σ

2
βlj

σ2
ε

)−1/2

(2πσ2
ε )
−n/2 exp

[
− 1

2σ2
e

(
w′w− ljc β̂2

j

)]
.

Our goal was to derive a form for f (w|δj = c, θ, y) that was independent of β j for use in

the probability calculations in

P(δj = c|θ−δj , y) =
f (w|δj = c, θ, y)P(δj = c)

∑C
c=1 f (w|δj = c, θ, y)P(δj = c)

.

We only need to calculate C− 1 of these as the Cth probability is 1−∑C
c=1 P(δj = c|θ, y).

We calculate the probabilities for multiple terms similarly to the following example

f (w|δj = 1, θ, y)
f (w|δj = 2, θ), y)

=
f (w|δj = 1, θ, y)∫

f (w|δj = 2, β j, θ, y) f (β j|δj, σ2
β)dβ j

=
(2πσ2

ε )
−n/2 exp

[
− 1

2σ2
ε
(w′w)

]
(

γ2σ2
β lj2

σ2
ε

)−1/2

(2πσ2
ε )
−n/2 exp

[
− 1

2σ2
ε

(
w′w− lj2β̂2

j

)]
=

(
γ2σ2

βlj2

σ2
ε

)1/2

exp
[
− 1

2σ2
ε
(w′w) +

1
2σ2

ε
(w′w)− 1

2σ2
ε
(lj2β̂2

j )

]

=

(
γ2σ2

βlj2

σ2
ε

)1/2

exp
[
− 1

2σ2
ε
(lj2β̂2

j )

]
,
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where lj2 = [x′jxj + σ2
ε /(γ2σ2

β)] is the left hand side of the MME for β j given δj = c,

β̂ j = x′jw/lj2, and x′jw is the right hand side of the MMEs. This form only depends on the

scalar right hand side of the MMEs, which can be updated efficiently, and fixed constants

for each iteration.

In the above example we observed a cancelling of the computationally difficult com-

ponent w′w, which will happen for all forms of the ratio
f (w|δj=c,θ,y)

f (w|δj=∼c,θ),y) . To calculate the

probability updates for δj we will attempt to observe the form using C = 2 and extrapolate

to an arbitrary C value. Therefore,

P(δj = 1|θ, y) =
f j(w|δj = 1, θ, y)π1

f j(w|δj = 1, θ, y)π1 + f j(w|δj = 2, θ, y)π2
.

Let σ2
c = γcσ2

β

P(δj = 1|θ, y) =

(
σ2

1 x′j xj+σ2
ε

σ2
ε

)−1/2

(2πσ2
ε )
−1/2 exp

[
− 1

2σ2
ε

(
w′w−

(x′j w)2

(x′j xj+σ2
ε /σ2

1 )

)]
π1(

σ2
1 x′jxj+σ2

ε

σ2
ε

)−1/2

(2πσ2
ε )−1/2 exp

[
− 1

2σ2
ε

(
w′w−

(x′j w)2

(x′j xj+σ2
ε /σ2

1 )

)]
π1 +

(
σ2

2 x′j xj+σ2
ε )

σ2
ε

)−1/2

(2πσ2
ε )−1/2 exp

[
− 1

2σ2
ε

(
w′w−

(x′jw)2

(x′jxj+σ2
ε /σ2

2 )

)]
π2

.

The component (2πσ2
e )
−1/2 exp

[
− 1

2σ2
e
(w′w)

]
is common to all the distributions and thus

they can be partitioned out in the likelihood calculations. We therefore have

P(δj = 1|θ, y) =
(

σ2
1 (x
′
jxj)+σ2

ε )

σ2
ε

)−1/2 exp
[

σ2
1

2σ2
ε

(
(x′jw)2

(σ2
1 x′jxj+σ2

ε )

)]
π1

(
σ2

1 (x
′
jxj)+σ2

ε )

σ2
ε

)−1/2 exp
[

σ2
1

2σ2
ε

(
(x′jw)2

(σ2
1 x′jxj+σ2

ε )

)]
π1 + (

σ2
2 (x
′
jxj)+σ2

ε )

σ2
ε

)−1/2 exp
[

σ2
2

2σ2
ε

(
(x′jw)2

(σ2
2 x′jxj+σ2

ε )

)]
π2

.

This form is computationally important as it cancels the w′w component so that we do

no have to calculate it in each iteration. In order to calculate the posterior probability

updates for an arbitrary number of components all that is required is rj = x′jw and

σ2
c ljc = σ2

c (x′jxj) + σ2
ε . Then with respect to taking ratios of the components of interest it is

sufficient to write

log(Lc) = log[ f (w|δj = c, θ)] = −1
2

[
log

(
σ2

c ljc

σ2
ε

)
−

r2
j

σ2
ε ljc

]
+ log(πc) (5)
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and

P(δj = c|θ, y) =
exp[log(Lc)]

∑C
c=1 exp[log(Lc)]

,

where C is the total number of mixture components. With the mixing proportions πc being

sampled in the previous iteration from the Dirichlet distribution. We use the numerically

more stable version of the updates from Erbe et al.16

P(δj = c|θ, y) =
1

∑C
l=1 exp[log(Ll)− log(Lc)]

,

which can be shown to be equivalent by

P(δj = c|θ, y) =
exp[log(Lc)]

exp[log(L1)] + exp[log(L2)] + . . . + exp[log(LC)]

=
1

exp[log(L1)]
exp[log(Lc)

+
exp[log(L2)]
exp[log(Lc)]

+ . . . + exp[log(LC)]
exp[log(Lc)]

=
1

∑C
l=1 exp[log(Ll)− log(Lc)]

. (6)

Combining Supplementary Equation (6) with the simple calculation of log(Lc) using

Supplementary Equation (5) we have all that is required to calculate the probabilities for

the categorical distribution for an arbitrary number of mixture components.

Given these probabilities we need to sample from the categorical distribution, which

determines which class the variant will be sampled from. With this sampled we can sample

the effect from the relevant normal distribution or give it a zero effect. To sample from the

categorical distribution we

• Create a vector of cumulative probabilities calculated from above P(δj = 1|θ, y), P(δj =

2|θ, y), . . . , P(δj = C|θ, y) ordered by category

• Accept the lowest c such that the cumulative probability > u, where u is sample

form a U(0, 1) distribution. For example if the sampled uniform value is 0.8 and the

second group has a cumulative probability of 0.81 then we set δj = 2.
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Once we have sampled the distribution membership then we can sample the effect from

β j|δj = c, θ, y ∼ N(x′jw/ljc, σ2
ε /ljc), (7)

where ljc = (x′jxj +
σ2

ε

σ2
c
).

All that is required to do the sampling is the knowledge of x′jxj, which can be recon-

structed from the LD matrix or estimated from the data, and x′jw, which is the jth element

of the right hand side, which can be updated efficiently using residual updating and

reconstructed from summary statistics. This will highlighted in the next section.

Algorithm 1 – Individual level data algorithm
Initialise parameters and read genotypes and phenotypes in PLINK binary format
Initialise y∗ = y− Xβ
for i :=1 to number of iterations do

for j:=1 to p do
Calculate r∗j = x′jy

∗

Calculate rj = r∗j + x′jxj β
(i−1)
j

Calculate σ2
c = σ2

βγδj=c for each of C classes (e.g., BayesR C=4 and γ = (0, 0.0001, 0.001, 0.01))

Calculate the left hand side ljc = x′jxj +
σ2

ε

σ2
c

for each of the C classes

Calculate the log densities of given δj = c using log(Lc) = − 1
2

[
log
(

σ2
c ljc

σ2
ε

)
−

r2
j

σ2
ε ljc

]
+ log(πc), where πc is the current

Calculate the full conditional posterior probability for δj = c for C classes with P(δj = c|θ, y) = 1
∑C

l=1 exp[log(Ll )−log(Lc)]

Using full conditional posterior probabilities sample class membership for β
(i)
j using categorical random variable sampler

Given class sample SNP effect β
(i)
j from N

( rj
ljc

, σ2
ε

ljc

)
Given SNP effect adjust corrected phenotype side (y∗)(i) = (y∗)(i−1) − xj

(
β
(i)
j − β

(i−1)
j

)
od

Sample update from full conditional for σ2
β from scaled inverse chi-squared distribution ν̃β = νβ + q and S̃2

β =
νβS2

β+∑
q
j=1

β2
j

γc
νβ+q ,

where q is the number of non-zero variants
Sample update from full conditional for σ2

ε from scaled inverse chi-squared distribution ν̃ε = n + νε

and scale parameter S̃2
ε = SSE+νεS2

ε
n+νε

and SSE = y∗′y∗

Sample update from full conditional for π, which is Dirichlet(C, c + α), where c is a vector of length C and contains the counts
of the number of variants in each variance class and α = (1, . . . , 1)

Estimate genetic variance for h2
SNP calculation using σ̂2

g = V(Xβ), where V(Xβ) is the sample variance of Xβ

Calculate h2
SNP =

σ̂2
g

σ̂2
g+σ̂2

ε

od
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3. Supplementary Note 3 - Summary statistics based Bayesian multiple

regression

We relate the phenotype to the set of genetic variants under the multiple linear regression

model stated in Supplementary Equation (1). We can relate the multiple regression model

to the the regression coefficients estimated from p simple linear regressions b from GWAS,

by multiplying Supplementary Equation (1) by D−1X′ where D = diag(x′1x1, . . . , x′pxp)

(assuming column centred genotypes) to arrive at

D−1X′y = D−1X′Xβ + D−1X′ε. (8)

Noting that the correlation matrix between all genetic markers B = D−
1
2 X′XD−

1
2 we

rewrite the multiple regression model as

b = D−
1
2 BD

1
2 β + D−1X′ε. (9)

Assuming ε1, . . . , εn are N(0, σε) the following likelihood can be proposed for the multiple

regression coefficients β

L(β; b, D, B) := N (b; D−
1
2 BD

1
2 β, D−

1
2 BD−

1
2 ), (10)

where N (ξ; µ, Σ) represents the multivariate normal distribution with mean vector µ and

covariance matrix Σ for ξ. If individual level data are available then inference about β can

be obtained by replacing D and B with estimates (D̂, B̂) from the individual level data.

If individual level data are unavailable then we can replace D with D̂ = diag[2n1q1(1−

q1), . . . , 2njqj(1− qj)], where (nj, qj) are the sample size used to compute the simple linear

regression coefficient and the variant allele frequency respectively. Furthermore, if we

assume PLINK 1.9that genotype column j has been centred and scaled by
√

2qj(1− qj)

then D̂ = diag[n1, . . . , nj]. These approximations to D, assume the the variant is in

Hardy-Weinberg equilibrium, which may not be the true for all variants. Furthermore,
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summary statistics in the public domain often do not include allele frequencies or report

allele frequencies from a reference population. The methodology is susceptible to these

deviations from the desired summary statistics for qj, which is the allele frequency for

the variant used in the analysis. Motivated by this drawback and the implementation

of Zhu and Stephens1 we seek an approximation to D that does not depend on qj. For

an individual variant from GWAS, the expression for the squared standard error of the

estimated effect can be rearranged to arrive at

x′jxj =
(y′y)j

σ̂2(bj)nj + b2
j
. (11)

Multiplying top and bottom of the right-hand side by 1/n

x′jxj =
(y′y)j/nj

σ̂2(bj) + b2
j /nj

, (12)

and we note the numerator is the sample variance of the phenotype assuming it has been

centred or a mean term fitting in the marginal regression. It is often the case that GWAS

are performed on phenotypes that have been standardised to unit variance, which leads to

x′jxj =
1

σ̂2(bj) + b2
j /nj

. (13)

If this is not the case we note that y′y is a constant that can be shown to not contribute

to the updates of any parameter in the sampling routine, which was also observed and

proven in Mak et al.22. However, initialisation of the hyperparameters for the sampling of

the marker effect variance, σ2
β, of the SBayesR model requires an estimate of the phenotypic

variance (more detail below) to improve mixing. Initially, we reconstruct x′jxj using the

reported allele frequency and sample size summary statistics for each variant. An estimate

of the phenotypic variance (y′y)/n is then reconstructed by calculating the total sum of
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squares for each variant

(y′y)j = σ̂2(bj)x′jxj(n− 2) + b2
j x′jxj.

and taking the ratio of the median over the set of (y′y)j and nj values, which Yang et al.23

suggest is reliable. Given the estimated phenotypic variance we reconstruct D using the

more reliable Supplementary Equation (12).

Similarly, we replace B, the LD correlation matrix between the genotypes at all markers

in the population, which the genotypes in the sample are assumed to be a random sample,

with B̂ an estimate calculated from a population reference that is assumed to closely resem-

ble the sample used to generate the GWAS summary statistics. Zhu and Stephens1 discuss

further the theoretical properties of a similar likelihood and approximate reconstruction.

3.1. Sampling β j

As shown in the previous section the update of the jth SNP effect involves the calculation

of rj = x′jw and ljc = σ2
c (x′jxj) + σ2

ε . We require

rj = x′ jw = x′ j[y− X−jβ−j]

for use in Supplementary Equation (5) and Supplementary Equation (7). To find this we

define the corrected right hand side as X′y corrected for all current β

r∗ = X′y− X′Xβ = X′y− X′X−jβ−j − X′xjβ j,

where r∗ is a vector of dimension p× 1 and X−j is X minus the jth column. We reconstruct

X′y using the GWAS effect estimates b and D such that X′y = Db. The jth element of r∗ is

r∗j = x′jy− x′jX−jβ−j − x′ jxjβ j.

r∗j + x′ jxjβ j = x′jy− x′jX−jβ−j = x′j(y− X−jβ−j) = rj.
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Therefore, for each SNP we calculate

rj = x′ jw = r∗j + x′ jxjβ j.

This can be used in conjunction with Supplementary Equation (5) to calculate the class

membership probabilities and then update the SNP effect using Supplementary Equation

(7), which only requires rj and the diagonal elements of X′X. The matrix X′X is easily

calculated from summary statistics via X′X = D
1
2 BD

1
2 . Given a new β j in MCMC iteration

m we can update the corrected right hand side (r∗) by

(r∗)(m+1) = (r∗)(m) − X′xj[β
(m+1)
j − β

(m)
j ].

This can be shown by noting

(r∗) = X′y− X′Xβ = X′y− X′X−jβ−j − X′xjβ j

(r∗)(m) = X′y− X′X−jβ−j − X′xjβ
(m)
j

(r∗)(m+1) − (r∗)(m) = X′y− X′X−jβ−j − X′xjβ
(m+1)
j − X′y + X′X−jβ−j + X′xjβ

(m)
j

(r∗)(m+1) = (r∗)(m) − X′xj(β
(m+1)
j − β

(m)
j ).

This forms the basis of the RHS updating scheme. The beauty of this updating scheme is

that it only requires scalar operations and one vector subtraction. If the effect is 0 for the

jth SNP no sampling of the effect is required.

The LD matrix only enters into the sampling routine through the diagonal elements in

the calculation of ljc, which are scalar and efficiently stored, and in the X′xj of the residual

update. If we are only updating elements of the r∗ that are in LD with the current SNP

then the update is even more efficient as we only have to do the vector subtraction on

the non-zero elements. The LD approximation using a sparse matrix or formed by block

diagonalising the matrix using a window based approach leads to such a scenario. The

efficient updating scheme and the fact that we don’t have to store and read the genotype

Bayesian multiple regression 51



matrix makes this method very efficient. We also avoid the dot product computation of

x′y∗, which was present in the previous BayesR algorithm (Algorithm 1).

3.2. Sampling σ2
ε

The updating of the σ2
ε is one of the most critical parts of the summary statistics Gibbs

sampling algorithm because its update requires the reconstruction of unobservables, which

if we had the full LD matrix could be approximated very well. However, when a sparse

LD matrix is used the updating of σ2
ε can become very unstable due to the approximation.

We begin by deriving the full conditional distribution for σ2
ε . The parameter σ2

ε appears

only in its prior

f (σ2
ε ; νε, S2

ε ) =
(S2

ε νε/2)ν/2

Γ(νε/2)
exp(−νεS2

ε /2σ2
ε )

(σ2
ε )

1+νε/2 ,

and in the conditional distribution of y given all the unknowns,

f (y|θ) = (2πσ2
ε )
−n/2 exp

[
− (y− Xβ)′(y− Xβ)

2σ2
ε

]
.

Therefore,

f (σ2
ε |θ−σ2

ε
, y) =

(S2
ε νε/2)ν/2

Γ(νε/2)
exp(−νεS2

ε /2σ2
ε )

(σ2
ε )

1+νε/2 (2πσ2
ε )
−n/2 exp

[
− (y− Xβ)′(y− Xβ)

2σ2
ε

]
∝

exp(−νεS2
ε /2σ2

ε )

(σ2
ε )

1+νε/2 (σ2
ε )
−n/2 exp

[
−SSE

2σ2
ε

]
∝ (σ2

ε )
−(n+2+νε)/2 exp

[
−SSE + νεS2

ε

2σ2
ε

]
,

where SSE is the sum of squared errors of prediction. This can be recognised as the kernel

of a scaled inverse chi-square distribution with degrees of freedom ν̃ε = n + νε and scale

parameter S̃2
ε = SSE+νεS2

ε
n+νε

.

If we don’t have the individual level data then we cannot observe certain components of

the SSE. Assuming that the fixed effects have already been corrected from the phenotype
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then the SSE can be written as

SSE = y′y− 2(Xβ)′y + (Xβ)′Xβ

= y′y− 2β′Db + β′X′Xβ, (14)

where D = diag(X′X) and b = D−1X′y. We don’t observe y′y but can we approximate

it from the GWAS results. For an individual variant from GWAS, the expression for the

squared standard error of the estimated effect can be rearranged to arrive at

(y′y)j = σ̂2(bj)x′jxj(n− 2) + b2
j x′jxj. (15)

Yang et al.23 suggest that the mean across all SNPs is a good estimate of y′y.

The estimation of SSE highlights the problems with approximating the individual data

algorithm using summary data and a sparse X′X. For example, the SSE equation contains

the genetic effect estimates b, which were calculated using the full X matrix, whereas the

X′X is now banded. In the individual data algorithm each marker requires the sampled

value of σ2
ε in each calculation of ljc and the sample of the SNP effect using Supplementary

Equation (7). If the full LD matrix is used in the algorithm routine then SSE is the same for

each variant. However, as each variant ignores a unique set of LD correlations we propose

a marker specific variance (σ2
ε )j, which attempts to correct for the discrepancy between

the fact that a sparse X′X has replaced the full X′X in Supplementary Equation (14).

We can attempt to improve on this by estimating a marker specific residual variance

that only contains a contribution from non-zero LD correlation matrix elements of β′X′Xβ,

which is specific to each variant.

(σ̂2
ε )j =

SSEj

nj − 1
. (16)
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The computation of β′X′Xβ for each variant is expensive. Therefore, we use the corrected

right hand side to efficiently compute the marker specific residual variance. Generally,

corrected right hand side r∗ = X′y− X′Xβ can be combined with Supplementary Equation

(14) for a more efficient update

SSE = y′y− 2β′X′y + β′X′Xβ

= y′y− β′X′y− β′X′y + β′X′Xβ

= y′y− β′X′y− β′r∗ (17)

= y′y− β′(r∗ + X′y) = y′y−
p:LD 6=0

∑
k=1

β′k[r
∗
k + (X′y)k]−

p:LD=0

∑
k=1

β′k[r
∗
k + (X′y)k]. (18)

This allows for an efficient calculation of the per variant marker effects variance

SSEj = (y′y)j −
p:LD 6=0

∑
k=1

β′k[rk
∗ + (X′y)k],

which intuitively is the individual variant total sum of squares subtract the contributions

from those other variants in LD with variant j. The individual variance is calculated

using Supplementary Equation (16) and used in the per variant calculation of ljc and the

sampling of the effect from Supplementary Equation (7). These values are updated every

100 iterations of the MCMC chain as a compromise between accuracy and computational

efficiency. After the completion of the sampling of all marker effects the SSE is calculated

using Supplementary Equation (17) and a global σ2
ε is sampled from a scaled inverse chi-

square distribution with degrees of freedom ν̃ε = n + νε and scale parameter S̃2
ε = SSE+νεS2

ε
n+νε

.

This value is only used for h2
SNP estimation.

3.3. Computing estimate of genotypic variance

We estimate the genetic variance σ2
g by computing the sample variance of the vector Xβ

defined to be V(Xβ) by treating β as fixed at the sampled value of β(i) at the ith MCMC

iteration and X as random as per the definition of genetic variance (similar to Zhu and

Stephens1). Conditioning on the sampled value of β in each MCMC iteration, V(Xβ) can
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be approximated by MSS/n, where

MSS = β′X′Xβ.

Again to efficiently update this we use r∗ = X′y− X′Xβ→ (X′y− r∗) = X′Xβ and thus

MSS = β′(X′y− r∗)

= β′X′y− β′r∗.

Therefore, for each iteration of the MCMC chain we estimate σ2
g using the corrected right

hand side, the current sampled β, X′y and compute

σ̂2
g = V(Xβ) = MSS/n.

4. Supplementary Note 4 - Method summary and implementation

The full joint distribution of the data (b, B, D) and the model parameters θ = (β′, π′, σ2
β, σ2

ε )
′

is

f (θ, b, B, D) = |2πσ2
ε D−1/2BD−1/2|−1/2×

exp

[
− (b−D−1/2BD1/2β)′(D−1/2BD−1/2)

−1
(b−D−1/2BD1/2β)

2σ2
ε

]
×

p

∏
j=1

C

∑
c=1

πc(2σ2
βγc)

−1/2 exp

[
−

β2
j

2σ2
βγc

]
×

C

∏
c=1

παc−1
c ×

exp(−νβS2
β/2σ2

β)

(σ2
β)

1+νβ/2 ×

exp(−νεS2
ε /2σ2

ε )

(σ2
ε )

1+νε/2 ,

where α = (α1, . . . , αc, . . . , αC) and αc = 1 are Dirichlet prior hyperparameters, the variance
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weights γc are pre-specified and are taken to be magnitudes of 10, for example for default

C = 4 the vector of weights are γ = (0, 0.01, 0.1, 1.0)′, S2
β and νβ and S2

ε and νε are the

scale parameter and degrees of freedom respectively for the prior of the scaled inverse chi-

squared distribution prior of the variance components. We use a Gibbs sampling algorithm

to draw posterior samples for all parameters will the following implementation.

The summary based Bayesian multiple regression method has been implemented in a

software tool named Genome-wide Complex Trait Bayesian analyses (GCTB). The tool has

been written in the C++ programming language and is available and freely distributable

under a MIT License. The method requires the following data:

• The univariate regression effects from GWAS b.

• The standard error estimates for each genetic effect from univariate regression σ̂2(b).

• An LD matrix calculated from the cohort or a population matched reference B =

D−1/2X′XD−1/2, where X is the genotype matrix from the cohort to analysed or a

reference. If we assume that the SNP covariates have been mean adjusted, or the

mean has been fitted in the univariate regression analysis, then D is a diagonal

matrix with diagonal elements that should be very well approximated in large

samples by Supplementary Equation (13). If the genotypes are assumed to have

been centred and scaled then D is a diagonal matrix with diagonal elements nj. The

algorithm requires X′X and thus using effects estimated from a PLINK GWAS we

have X′X = D1/2BD1/2.

• The algorithm also requires X′y, which from the least squares solutions can be

recovered b̂ = diag(X′X)−1X′y = D−1X′y and thus X′y = Db̂.

Parameters to be estimated

• The joint genetic effects β0. Initialised as all zeros.

• The proportion of effects in each class π. This is by default the original BayesR model

with four components and initialised such that a large proportion of variants have

no effect, for example, π0 = (0.95, 0.02, 0.02, 0.01).
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• The vector γ specifies the weights for the mixture normal class variances, which are by

default set to (0, 0.01, 0.1, 1). These deviate from the BayesR model (0, 0.0001, 0.001, 0.01)′

as they represent the weights for the marker effect variance as opposed to the genetic

variance as in Erbe et al.16 and Moser et al.6.

• The variance components include the marker effect variance σ2
β and the residual

variance σ2
ε . The initial value of the residual variance is set to (σ2

ε )0 = SSE
n−1 , where

SSE = y′y− 2β′0X′y+ β′0X′Xβ0 = y′y (given β0 = 0), and y′y = 1
p ∑

p
j=1(y

′y)j where

(y′y)j = σ̂2(b̂j)x′jxj(n− 2) + b̂2
j x′jxj, which is reconstructed from the summary statis-

tics from the univariate regression for each variant. The parameter σ2
β is initialised as

(σ2
β)0 = (σ2

g)0/[(1− (π0)1)∑j 2qj(1− qj)]
24, where qj is the allele frequency of allele

j (σ2
g)0 is the genotypic variance and is set to (σ2

g)0 = h2
SNP

y′y
(n−1) and h2

SNP = 0.5 is

set by default set a starting h2
SNP.

Hyperparameters to be set

• The degrees of freedom ν and scale parameters S2 for the scale inverse chi-squared

distribution, which form the priors for the σ2
β and σ2

ε parameters are required to be

set. For both the degrees of freedom are set to 419 and S2
α =

(νβ−2)(σ2
β)0

νβ
=

(σ2
β)0

2 and

S2
ε = (νε−2)(σ2

ε )0
νε

= (σ2
ε )0
2 , which comes from a method of moments estimator for the

scale parameter.

Bayesian multiple regression 57



Algorithm 2 Summary data algorithm
Initialise parameters and read summary statistics
Reconstruct X′X and X′y from summary statistics and LD reference panel
Calculate r∗ = X′y− X′Xβ
for i :=1 to number of iterations do

for j :=1 to p do
Calculate rj = r∗j + x′jxj β j

Calculate σ2
c = σ2

βγδj=c for each fo C classes (e.g., SBayesR C=4 and γ = (0, 0.01, 0.1, 1)′)

Calculate the left hand side ljc = x′jxj +
σ2

ε

σ2
c

for each of the C classes

Calculate the log densities of given δj = c using log(Lc) = − 1
2

[
log
(

σ2
c ljc

σ2
ε

)
−

r2
j

σ2
ε ljc

]
+ log(πc), where πc is the current

Calculate the full conditional posterior probability for δj = c for C classes with P(δj = c|θ, y) = 1
∑C

l=1 exp[log(Ll )−log(Lc)]

Using full conditional posterior probabilities sample class membership for β
(i)
j using categorical random variable sampler

Given class sample SNP effect β
(i)
j from full conditional N

( rj
ljc

, σ2
ε

ljc

)
Given SNP effect adjust corrected right hand side (r∗)(i+1) = (r∗)(i) − X′xj

(
β
(i+1)
j − β

(i)
j

)
. X′xj is the jth column of X′X.

od

Sample update from full conditional for σ2
β from scaled inverse chi-squared distribution ν̃β = ν0 + q and τ̃2

β =
ν0τ2

0 +∑
q
j=1

β2
j

γδj
ν0+q ,

where q is the number of non-zero variants
Sample update from full conditional for σ2

ε from scaled inverse chi-squared distribution ν̃ε = n + νε

and scale parameter τ̃2
ε = SSE+νετ2

ε
n+νε

and SSE = y′y− β′r∗ − β′X′y
Sample update from full conditional for π, which is Dirichlet(C, c + β), where c is a vector of length C and contains the counts

of the number of variants in each variance class.
Calculate genetic variance for h2

SNP calculation using σ̂2
g = MSS/n, where MSS = β̂

′
X′y− β̂

′
r∗

Calculate h2
SNP =

σ̂2
g

σ̂2
g+σ̂2

ε

od

5. Supplementary Note 5 - Full-data likelihood equivalence

If we have access to the individual level data then under the multiple regression model

the full-data likelihood for inferring β is

L(β; y, X, σ2
ε ) = (2πσ2

ε )
−n/2 exp

[
− (y− Xβ)′(y− Xβ)

2σ2
ε

]
. (19)

Zhu and Stephens1 show that under their likelihood and the assumptions that the LD

correlation matrix B̂ has been computed from the genotypes X, n > p and that σ2
ε = n−1y′y

that the full-data likelihood is equivalent to their likelihood up to a constant that does not

depend on β. We will seek to arrive at the same conclusion under the likelihood proposed

in Supplementary Equation (10). Replacing in Supplementary Equation (10) B with B̂ and
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D with D̂ then the summary data likelihood is

L(β; b, B̂, D̂) = |2πσ2
ε D̂−1/2B̂D̂−1/2|−1/2×

exp

[
− (b− D̂−1/2B̂D̂1/2β)′(D̂−1/2B̂D̂−1/2)

−1
(b− D̂−1/2B̂D̂1/2β)

2σ2
ε

]
.

When n > p then B̂ computed from the sample genotypes is non-singular and thus we

require this assumption in the statement of the likelihood. Taking the logarithm and

expanding we have

log[L(β; b, B̂, D̂)] = − p
2

log(2πσ2
ε )−

1
2

log |D̂−1/2B̂D̂−1/2| − 1
2σ2

e
b′(D̂−1/2B̂D̂−1/2)

−1
b +

1
σ2

e
(D̂−1/2B̂D̂1/2β)′(D̂−1/2B̂D̂−1/2)

−1
b −

1
2σ2

e
(D̂−1/2B̂D̂1/2β)′(D̂−1/2B̂D̂−1/2)

−1
(D̂−1/2B̂D̂1/2β).

Similarly for the full data likelihood, we take the logarithm and expand

log[L(β; y, X, σ2
ε )] = −

n
2

log(2πσ2
ε )−

1
2σ2

ε
y′y +

1
σ2

ε
β′X′y− 1

2σ2
ε

β′X′Xβ. (20)

Looking at the difference we have

log[L(β; y, X, σ2
ε )]− log[L(β; b, B̂, D̂)] = −n

2
log(2πσ2

ε )−
1

2σ2
ε

y′y +
1
σ2

ε
β′X′y− 1

2σ2
ε

β′X′Xβ−

p
2

log(2πσ2
ε ) +

1
2

log |D̂−1/2B̂D̂−1/2| +
1

2σ2
ε

b′(D̂−1/2B̂D̂−1/2)
−1

b −

1
σ2

ε
(D̂−1/2B̂D̂1/2β)′(D̂−1/2B̂D̂−1/2)

−1
b +

1
2σ2

ε
(D̂−1/2B̂D̂1/2β)′(D̂−1/2B̂D̂−1/2)

−1
(D̂−1/2B̂D̂1/2β).
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Gathering up terms that do not depend on β and letting them equal Q, and substitut-

ing D̂−1/2X′XD̂−1/2 = B̂, b = D̂−1X′y and (D̂−1X′XD̂−1)
−1

= D̂(X′X)−1D̂ then the

difference is

= Q +
1
σ2

e
β′X′y− 1

σ2
ε
(D̂−1X′Xβ)′(D̂−1X′XD̂.−1)

−1
b

− 1
2σ2

ε
β′X′Xβ +

1
2σ2

e
(D̂−1X′Xβ)′(D̂−1X′XD̂−1)

−1
(D̂−1X′Xβ)

= Q +
1
σ2

ε
β′X′y− 1

σ2
ε
(D̂−1X′Xβ)′D̂(X′X)−1D̂D̂−1X′y +

− 1
2σ2

ε
β′X′Xβ +

1
2σ2

ε
(D̂−1X′Xβ)′D̂(X′X)−1D̂(D̂−1X′Xβ)

= Q.

Given this the summary and individual data models will be equivalent up to a constant

Q = −n
2 log(2πσ2

ε ) +
p
2 log(2πσ2

ε ) +
1
2 log |D̂−1/2B̂D̂−1/2|, as the − 1

2σ2
e
y′y and

1
2σ2

ε
b′(D̂−1/2B̂D̂−1/2)

−1
b terms cancel, that does not depend on β. This assumes that σ2

ε is

known and the full LD matrix is computed from the individual data genotypes. In reality

we do not know σ2
ε but estimate it using posterior inference and the MCMC algorithm.

The difference between the individual and summary likelihoods in dependent on σ2
ε with

the deviation dependent on the difference between n and p.
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