
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
Lloyd-Jones et al present SBayesR, a version of their software BayesR which only requires 
summary statistics. Their main finding is that SBayesR can perform as well as leading methods 
(e.g., the recently proposed RSS), but at a fraction of the runtime.  
 
Overall, I am satisfied with the claims of this paper. I am pleased they apply to real datasets (and 
some of the largest available). It is of course impossible to compare with all existing methods, but 
I am happy with their choice of methods to represent existing methods. There is a great interest in 
generating accurate prediction models, and while for most traits we are still a way from clinical 
utility, papers like this are moving us forward. BayesR is a well-used method, so I would expect 
interest in a summary version. The authors appear to have been thorough in their analyses, and 
ample methodological details are provided. While the latter has benefits (in particular, I believe the 
methods could help other groups implement related methods), I feel the paper could be 
substantially shorter.  
 
I have no major comments, only minor  
 
#############  
 
Minor comments  
 
I am very pleased you replicated your main UKBB results on HRS and EB data - the former could 
easily be inflated for many reasons (e.g structure and genotyping errors), whereas the latter 
should be far less sensitive.  
 
I believe throughout when using "P+T" you clump using a 0.1 r2 threshold (without tuning this 
parameter like you do P)? While it will not affect results qualitively, I think it would be normal to 
try a few values. E.g., I found that 0.5 performed better.  
 
Using only 5000 samples to tune LD Pred and P+T values seems a bit small  
 
P15 For convenience, you ran SBLUP and LDPred per chromosomes - this seems quite a big fudge, 
so is it really necessary?  
 
While your approach to restrict to HapMap3 is sensible, I would rather you instead took all good 
quality UKBB SNPs and pruned for LD (I personally consider HapMap outdated). Further, at some 
point I think you note that pruning has little effect, but this is likely because reducing to HapMap3 
already effects a strong pruning (had you not restricted to HapMap3, I would guess pruning could 
be quite beneficial).  
 
Effect of LD panel. In summarizing the LD Panel simulations, you say UKBB performed best (to be 
expected), but to me the big result is how poorly 1000G performs (1000G is widely used), so 
unless an artifact, can you mention and suggest reasons for this, please.  
 
Figure 3 - thanks for including, and I like having numbers above bars, but perhaps hours 
(presented on a log scale) would be better than log10 minutes  
 
Shortening paper - I feel throughout the methods are clear, but I find the length of the main text, 
25 double spaced pages, overwhelming. In my view, the key points required are a brief description 
of the prior distribution, an explanation of the efficient LD storage, and the results of applying your 
method to real data. By contrast, I think the details of simulations can be much shorter, some of 
the methods and also the discussion.  
 
#############  
 
Very minor comments  
 
Title - Suggest include SBayesR in title.  
 
Abstract - "which have been shown to generate optimal genetic predictions" - I do not think this is 



true (as in it is wrong to say that point-normal mixtures are optimal - perhaps you coudl instead 
say have been shown to perform well). Also, at over 350 words, that abstract seems very long.  
 
Compared with commonly used state-of-the-art summary-based methods  
 
Page 2 - I think it is unnecessarily confusing to "restrict the term polygenic risk score to those 
predictors generated from using simple linear regression" (and use EBV). Most people (imo) 
consider a PRS any linear prediction model with many SNPs  
 
When you stated you did a two-chr study, probably better to say "using chr 21 + 22" (rather than 
"on two chromosomes" (is a ten fold difference in sizes)  
Page 20 typo "although SBLUP had a much longer on mean runtime". And "13 and 1/3" - write as 
13 1/3 or 13.3 or 13  
 
When describing bb, you say there are 40M+ snps - while true, this is perhaps misleading (as you 
only use 1M?)  
 
Could add a contents list to supplementary information?  
 
#############  
 
Signed, Doug Speed  
 
 
 
Reviewer #2:  
Remarks to the Author:  
The manuscript presents a new method called SBayesR that adapts the method BayesR (an 
existing method for multiple-component sparse Bayesian regression) to use summary statistics 
instead of raw genotypes. The authors demonstrate that SBayesR outperforms existing methods in 
genetic risk prediction via simulations, via a cross-validation study of ten phenotypes from the UK 
Biobank, and via prediction of Height and BMI in two different datasets (where the models were 
fitted on UKBB). Overall this is a very powerful and impressive method.  
 
The method is powerful and constitutes new state of the art results for genetic risk prediction. The 
simulations and real data analysis are well-conducted and convincing, and the manuscript is also 
well written and extremely detailed. However, I have many questions --- mostly because the 
scope of the manuscript is quite large and there's a lot to unpack...  
 
 
Major concerns  
--------------------  
1. Can you please assess the method calibration (i.e. check if the slope of regressing the true 
phenotypes on EGV is close to 1.0)? This is very important for genetic risk prediction.  
 
2. The manuscript continuously refers to previous literature to justify the choice of four mixture 
components. Can you please justify this choice or discuss its implications? For example, how 
sensitive are the results to this choice? Is there a downside to increasing the number of mixture 
components other than computational? What is the computational price of increasing the number 
of components? It would be nice to show simulations demonstrating the impact of using a different 
number of components. 
 
3. Can SBayesR estimate the standard error of its h2 estimate? Some existing methods (e.g. 
LDSC) do this via block-jackknifing of SNPs. I guess this can be done here as well, but this will 
require hundreds of MCMC runs. Is there an alternative?  
 
4. The manuscript only studies quantitative phenotypes. Did you try running SBayesR on a binary 
phenotype? Can you please examine this and discuss what happens in this case (if any)? The 
common practice in the field is to treat 1/0 as continuous numbers - can you please comment on 
the appropriateness of this choice in the context of SBayesR?  
 
5. It would be extremely interesting to show the posterior distribution of mixture components for 
each trait (this information is one of the main advantages of SBayesR over other methods)... Do 



these estimates seem to converge after 4,000 MCMC iterations? Also, do we see roughly similar 
estimates when changing the number of mixture components?  
 
6. If I understand correctly, sparsifying the LD matrix is the main trick that allows scaling BayesR 
to UKB-sized data. Is this correct? If yes, I think that this sparsification should be discussed in 
more detail. How is it done and what are the implications? Right now the manuscript just refers to 
the Wen and Stephens paper, but as this is such an important part of this paper, I think it merits 
further discussion. For example, can you please show the distribution of basepair-distances for 
zero and non-zero LD entries? I am curious if the Wen and Stephens technique is substantially 
different from just choosing a distance cutoff and setting all pairwise-LD entries between SNPs 
with greater distance to zero.  
 
7. Can you please write down the *full* Bayesian hierarchical model? The details are currently 
scattered across many different pages of text (e.g. the distribution of \epsilon is given in Supp 
page 25 first paragraph -- it took me a long time to find it).  
Similarly, it would be very helpful to write down the entire Gibbs sampling method as an 
algorithm. Right now the details are scattered across many pages of text.  
 
8. A recent paper claims that it managed to explain all of the SNP heritability of height in out-of-
sample prediction in UKBB via Lasso[1]. Can you please comment on this? Is it possible that far 
simpler methods can provide better prediction results in large datasets?  
 
9. Can you please elaborate on the choice to use only HM3 SNPs? If this essentially an informed 
type of LD-pruning? Is it mostly for computational reasons?  
 
Related: Can the model easily scale to include millions of variants (as implied in line 680)? How 
will this affect runtime / convergence?  
 
10. A related question: Can you use SBayesR for inference of posterior effect size estimates (e.g. 
fine-mapping)? This would require including all SNPs in the model, without filtering (other than 
QC). Is this possible and do you expect this to be an interesting research direction? Line 648 
implies that the answer is yes, but refs. 63-64 don't seem to try to actually finemap SNPs in a 
biological sense.  
 
 
Less Major concerns  
---------------------  
- L415: Why does height require different mixture components compared to everything else? Did 
the model run into convergence problems with the default mixture components in the analysis of 
height?  
 
- L188: If I understand correctly, \sigma^2_g is scalar, whereas Var(X \beta) is an n by n matrix 
(the covariance matrix of the vector X - \beta, because X is a matrix as defined in L145). Should 
notations be fixed somehow?  
Similarly, in Supp page 42, \sigma^2_g is defined once as Var(X \beta), and another time as 
\var(X' \beta). Please fix the notation...  
 
- Related: Do I understand correctly that the definition of MSS in Supp page 42 treats \beta as 
fixed and X as a random vector (opposite of  
the BayesR assumptions)? Can this please be clarified somehow?  
 
- Related: Do I understand correctly that you compute the quantity at the bottom of Supp page 42 
for each vector of \beta sampled at each MCMC iteration (i.e. after round of Gibbs sampling)? If 
yes, then one way to think about this is that you treat both beta and X as random, and then apply 
the law of total variance to approximate var(X \beta) = E[Var(X \beta | \beta)] + Var(E[X \beta | 
\beta]). However, it seems to me like you ignore the second term on the right hand side... Can 
you please explain?  
 
- Why is there such a large advantage to BayesR over SBayesR in Fig. 1 10K causal variants 
h2=0.5 setting? Am I right that this suggests that the LD matrix has been regularized too heavily 
and is now too sparse?  
 
- Do you have any idea why SBLUP performs so much better than LDpred-inf in Fig. 1 50K causal 



variants setting? Is this because SBLUP uses in-sample LD?  
 
- Fig. S3: What drives the differences between BayesR and SBayesR*? Aren't they supposed to be 
exactly the same?  
 
- Fig. S4: Why is SBayesR* inferior to SBayesR? Could it be more susceptible to population 
structure in some way (by being able to pick up extremely long-range LD)?  
 
- Figure S13: "The memory for RSS, LDpred and SBLUP represents the sum over the memory 
usage for each chromosome": This seems unfairly stringent, since these runs are probably not run 
in parallel on the same computer... I would take the maximum per-chromosome memory 
requirement as the memory requirement of the per-chromosome methods.  
 
 
 
Minor concerns:  
---------------  
- Fig. S2,S4: It would be helpful if there was a dashed horizontal line at the true h2 value (e.g. 
HEreg is just as calibrated as BayesR in Fig. S4 GA3 panel, but the figure makes it look worse).  
 
- Why is LDSC not included in Fig. S4?  
 
- Can you provide some guidance about the choice of #MCMC iterations? How was the number 
4,000 selected, and how can the user assess if this is enough for their own analysis? As asked 
above, do the per-SNP effect estimates converge after 4,000 iterations (if yes then this is a 
breakthrough in Bayesian statistics in general, also outside genetics).  
 
- The introduction is quote long and full of technical details that can be moved to other sections to 
improve reading flow.  
 
- I applaud the attention to detail in the methods section, but it does come at the cost of ease of 
readability. The text is often extremely repetitive, repeating the decisions made for various 
methods (e.g. window size for LDpred) across multiple subsections. I suggest some shortening of 
the text (and possibly moving technically-important-but-conceptually-uninteresting details to a 
supplementary section).  
 
- I found the differences in method order/color in Figure 4 relative to every other figure in the 
paper a bit confusing...  
 
- Can you please show standard errors in Fig. 4 (e.g. using jackknife)?  
 
- It took me a long time to understand the differences between SBayesR and SBayesR* in Figure 4 
(especially given that there's a different definition of SBayesR* in Figures S3-S4). I suggest to 
make the text clearer and explicitly describe the differences between them.  
 
- L150: B is a correlation matrix only if the columns of X are centered, in contrast to the statement 
in line 146 that X entries are coded as 0,1 or 2.  
 
- The Methods section uses a few undefined symbols (e.g. \sigma^2_g in line 179)  
 
- Equation 6: \theta is not defined (nor is w right below it, until we get to Equation 7).  
 
- Currently the simulations choose SNPs that go into each component randomly. Maybe it makes 
sense to assign stronger effects to lower-MAF SNPs (as in Zeng et al. 2018 Nat Genet)?  
 
- L449: What's the statistical test used?  
 
- I didn't understand the difference between the 2K, 4K, 10K results of Figs. S8 and S9. Why are 
the results (and reported runtimes) different? And why do we need these two separate figures? 
What's different about them? Could it be that the caption for Fig. S9 should state that it evaluates 
BayesR instead of SBayesR?  
 
- Supp Figure references should be double-checked (e.g. Figure S11 is never referenced, and 



Figure S17 is referenced before Figures S15-S16)  
 
- L494: Since the improvement was only for 8/10 traits, I would remove the word "consistently", 
which implies a 100% improvement rate.  
 
- L20: "with the best estimate of each marker’s effect requiring the effects to be treated as 
random" -> I found this statement confusing and difficult-to-parse.  
 
 
Typos  
-----------------------------  
L12: generated 3 -> generated  
 
L451: an relative -> a relative  
 
L620: a contributed -> contributed  
 
L684: Gazel -> Gazal  
 
 
[1] Lello, Louis, et al. "Accurate genomic prediction of human height." Genetics 210.2 (2018): 
477-497. 
 
 
 

 



Reviewer	#1	(Remarks	to	the	Author):	
	
Lloyd-Jones	et	al	present	SBayesR,	a	version	of	their	software	BayesR	which	only	
requires	summary	statistics.	Their	main	finding	is	that	SBayesR	can	perform	as	well	as	
leading	methods	(e.g.,	the	recently	proposed	RSS),	but	at	a	fraction	of	the	runtime.	
	
Overall,	I	am	satisfied	with	the	claims	of	this	paper.	I	am	pleased	they	apply	to	real	
datasets	(and	some	of	the	largest	available).	It	is	of	course	impossible	to	compare	with	
all	existing	methods,	but	I	am	happy	with	their	choice	of	methods	to	represent	existing	
methods.	There	is	a	great	interest	in	generating	accurate	prediction	models,	and	while	
for	most	traits	we	are	still	a	way	from	clinical	utility,	papers	like	this	are	moving	us	
forward.	BayesR	is	a	well-used	method,	so	I	would	expect	interest	in	a	summary	
version.	The	authors	appear	to	have	been	thorough	in	their	analyses,	and	ample	
methodological	details	are	provided.	While	the	latter	has	benefits	(in	particular,	I	
believe	the	methods	could	help	other	groups	implement	related	methods),	I	feel	the	
paper	could	be	substantially	shorter.	
	
I	have	no	major	comments,	only	minor	
	
Re:	We	are	grateful	to	the	reviewer	for	their	time	and	effort	in	reviewing	our	manuscript.	
We	also	thank	them	for	their	kind	summary	of	our	work	and	the	helpful	comments	that	
have	improved	the	manuscript	substantially.	
	
#############	
	
Minor	comments	
	
I	am	very	pleased	you	replicated	your	main	UKBB	results	on	HRS	and	EB	data	-	the	
former	could	easily	be	inflated	for	many	reasons	(e.g	structure	and	genotyping	errors),	
whereas	the	latter	should	be	far	less	sensitive.	
	
Re:	We	thank	the	reviewer	for	this	comment	and	agree	that	out	of	sample	prediction	is	an	
essential	component	of	validating	the	method.		
	
I	believe	throughout	when	using	"P+T"	you	clump	using	a	0.1	r2	threshold	(without	
tuning	this	parameter	like	you	do	P)?	While	it	will	not	affect	results	qualitively,	I	think	it	
would	be	normal	to	try	a	few	values.	E.g.,	I	found	that	0.5	performed	better.	
	
Re:	We	thank	the	reviewer	for	this	comment	and	have	now	used	two	more	P+T	thresholds,	
r2=0.2	 and	 r2=0.5,	 in	 our	 cross-validation	 analyses.	 As	 mentioned,	 we	 also	 saw	 an	
improvement,	 sometimes	quite	 substantial,	when	 the	0.5	 threshold	was	used	 (Please	 see	
Response	Document	Figure	1).	These	results	have	now	been	incorporated	into	the	reporting	
of	the	cross-validation	P+T	results.	We	note	that	we	only	report	the	highest	P+T	prediction	
accuracy	of	 the	combinations	 in	 the	 results	 summaries.	Please	 see	 the	description	of	 the	
cross-validation	method	parameter	settings	on	the	bottom	of	main	text	page	25	and	the	
results	presented	in	Figure	3.	



	
Response	Document	Figure	1.	Prediction	R2	results	from	using	two	more	P+T	pruning	
thresholds,	pruning	r2	=	(pt0.1,	pt0.2,	pt0.5),	in	UK	Biobank	cross	validation	analyses.	This	
figure	only	displays	the	top	p-value	threshold	results	for	each	R2	threshold.	
	
Using	only	5000	samples	to	tune	LD	Pred	and	P+T	values	seems	a	bit	small	
	
Re:	We	thank	the	reviewer	for	this	comment.	We	chose	5,000	to	maximise	the	training	set	
that	could	be	used	for	the	cross-validation	analyses.	To	investigate	whether	the	5,000	was	
adequate,	we	performed	cross	validation	with	a	new	10,000	independent	tuning	set	for	all	
traits	using	P+T	and	for	height	and	BMI	for	LDpred.	Response	Document	Figures	2	and	3	
demonstrate	that	the	5,000	individual	independent	tuning	set	leads	to	the	same	threshold	
being	chosen	when	we	use	a	10,000	 independent	 tuning	 set	 for	all	 traits	 in	P+T	and	 for	
height	and	BMI	for	LDpred.	We	believe	that	the	5,000	set	is	satisfactory	for	its	purpose	here	
with	the	10,000	set	requiring	recomputing	of	results	for	all	methods.		
	

	



Response	Document	Figure	2.	Prediction	R2	in	tuning	data	set	results	from	P+T	in	UKB	
cross-validation	 analysis	when	using	 an	 independent	 sample	 of	 5,000	 (5K)	 or	 10,000	
(10K)	 individuals	 to	 tune	 the	 pruning	 (r2)	 and	 P-value	 threshold	 parameters	 for	
prediction	in	validation	set.	Results	presented	in	this	figure	are	selected	for	the	pruning	
and	 p-value	 threshold	 combination	 that	 gave	 the	 highest	 mean	 prediction	 accuracy	
across	the	five	folds	in	the	tuning	data	set	for	each	trait.	
	

	
Response	Document	Figure	3.	Prediction	R2	results	in	tuning	data	set	from	LDpred	in	
UKB	 cross-validation	 analysis	when	 using	 an	 independent	 sample	 of	 5,000	 or	 10,000	
individuals	to	tune	the	LDpred	P-value	threshold	parameter	for	prediction	in	validation	
set.	Height	and	BMI	(run	genome-wide	as	per	comment	below)	were	only	performed	for	
computational	reasons.	Results	presented	in	this	figure	are	selected	for	the	best	LDpred	
polygenicity	parameter	that	gave	the	highest	prediction	accuracy	in	the	tuning	data	set	
within	each	fold.	
	
P15	For	convenience,	you	ran	SBLUP	and	LDPred	per	chromosomes	-	this	seems	quite	a	
big	fudge,	so	is	it	really	necessary?	
	
Re:	 We	 appreciate	 this	 comment	 as	 it	 has	 solved	 some	 of	 the	 unexpected	 results	 from	
LDpred,	 particularly	 in	 the	 genome-wide	 simulation,	where	we	 saw	 LDpred-inf	 perform	
worse	than	SBLUP	for	some	traits	in	the	previous	version	of	the	manuscript.	We	investigated	
this	 initially	 by	 running	 LDpred	 genome-wide	 for	 height	 and	 BMI	 in	 the	 UKB	 cross-
validation	and	saw	a	marginal	improvement	in	prediction	accuracy.		
	
Following	this	we	reran	all	LDpred	analyses	genome-wide	for	all	simulations	and	real	data	
analyses	and	have	incorporated	these	new	results	into	the	main	figures	and	updated	in	the	
description	of	 the	running	of	LDpred.	The	most	dramatic	 improvements	were	seen	when	
LDpred	was	being	given	the	true	heritability	i.e.,	in	the	simulations.	The	improvements	were	
marginal	in	the	real	data	analysis.	This	also	improved	LDpred’s	memory	usage	to	around	
60GB	for	HM3	variants,	which	is	in	line	with	SBLUP	and	SBayesR	and	is	more	consistent	with	
our	expectations.	Computational	speed	remained	approximately	the	same.		



	
For	SBLUP	we	saw	no	difference	in	the	results	when	chromosome	wise	or	genome-wide	runs	
were	 performed	 in	 an	 initial	 investigation	 in	 the	 simulations.	 SBLUP	 is	 much	 more	
computationally	intensive	in	terms	of	run	time	(50-60	hours).	Results	from	LDpred-inf	and	
SBLUP	coincide	very	strongly	so	we	don’t	believe	it	needs	to	be	rerun	genome-wide.	Please	
see	the	description	of	the	genome-wide	simulation	and	cross-validation	(pages	24	and	25)	
analyses	and	the	results	presented	in	Figures	1,	2,	3,	S11,	S12,		S18,	S19	for	updated	results.		
	
While	your	approach	to	restrict	to	HapMap3	is	sensible,	I	would	rather	you	instead	took	
all	good	quality	UKBB	SNPs	and	pruned	for	LD	(I	personally	consider	HapMap	outdated).	
Further,	 at	 some	point	 I	 think	you	note	 that	pruning	has	 little	effect,	but	 this	 is	 likely	
because	reducing	to	HapMap3	already	effects	a	strong	pruning	(had	you	not	restricted	to	
HapMap3,	I	would	guess	pruning	could	be	quite	beneficial).	
	
Re:	We	agree	with	the	reviewer	that	expanding	the	variant	set	to	a	pruned	UKB	subset	is	
interesting.	 We	 also	 agree	 that	 pruning	 HM3	 would	 have	 little	 effect	 on	 improving	
prediction	 accuracy.	 Our	 pruning	 of	 HM3	 statement	 in	 the	 Discussion	 is	 a	 statement	
regarding	 the	 investigation	 into	 the	 convergence	 of	 the	 algorithm,	 where	 removing	
collinearity	may	help.	
	
We	have	now	 taken	a	 set	of	8M	UKB	variants,	which	overlap	with	previous	 large	GWAS	
studies,	are	good	quality,	and	are	present	in	the	genetic	map	for	the	LD	shrinkage	estimator.	
We	pruned	these	variants	at	LD	R2=0.99,	which	left	approximately	3.7	M	variants.	Of	these	
2.8	M	were	common	i.e.,	MAF	>	0.01.	We	computed	chromosome-wise	full	LD	matrices	for	
8M	variants	so	that	any	subset	of	these	variants	can	be	used	to	run	SBayesR.	The	LD	matrix	
set	for	the	2.8	M	common	variants	along	with	the	HM3	set	will	be	publicly	available.		
	
We	ran	SBayesR	genome-wide	for	these	2.8	M	variants	for	the	cross-validation	and	out	of	
sample	predictors	 for	height	and	BMI.	These	analyses	 took	on	average	across	 the	 cross-
validation	253GB	of	RAM	and	12.5	CPU	hours	 for	10,000	MCMC	 iterations.	We	observed	
increases	in	prediction	R2	in	the	cross-validation	and	out-of-sample	prediction	accuracy	for	
height	and	BMI	with	the	UKB	and	for	height	in	the	across-biobank	predictions	(Figures	2	
and	3	of	main	text).	
	
Updates	are	included	in	the	cross-validation	results	please	see	lines	214-217,	253-256,	266-
268,	277-280	and	Figures	2,	3,	S16	and	S18.	
	
Effect	of	LD	panel.	In	summarizing	the	LD	Panel	simulations,	you	say	UKBB	performed	
best	(to	be	expected),	but	to	me	the	big	result	is	how	poorly	1000G	performs	(1000G	is	
widely	used),	so	unless	an	artifact,	can	you	mention	and	suggest	reasons	for	this,	please.		
	
Re:	We	thank	the	reviewer	for	this	comment.	Throughout	our	analytical	work	we	observed	
that	SBayesR	performed	less	well	when	small	references	were	used.	We	hypothesised	that	
this	is	due	to	smaller	references	having	a	larger	sampling	variance	for	the	“non-true”	LD	
matrix	entries	that	can	influence	the	approximate	Gibbs	sampling	algorithm	heavily.	This	is	
also	noted	in	the	LDpred	paper	‘If	the	LD	radius	is	too	large,	then	errors	in	LD	estimates	can	
lead	to	apparent	LD	between	unlinked	loci,	which	can	lead	to	worse	effect	estimates	and	
poor	convergence.”.	This	comment	is	exacerbated	when	small	LD	references	are	used.		
	



To	investigate	this,	we	down	sampled	(random	sample	of	individuals)	the	UK	Biobank	to	the	
same	size	as	the	1000G	European	set	used	(N=378)	and	a	further	three	sets	of	N	=	(500,	750,	
1000)	individuals.	We	built	shrunk	LD	references	for	the	matrices	and	ran	SBayesR	across	
the	 small-scale	 two-chromosome	 simulation.	 The	 results	 show	 recovery	 of	 ‘benchmark’	
prediction	 accuracy	 and	 heritability	 requires	 5,000	 individuals	 from	 the	 UKB	 with	
incremental	increases	as	the	sample	size	of	reference	increases	(please	see	Figure	S1	and	
S2).	These	results	show	that	sample	size	is	likely	to	drive	the	poor	performance	at	least	for	
the	SBayesR	method.	Improvements	seen	compared	to	previous	manuscript	1000G	results	
are	 due	 to	 code	 improvements	 on	 the	 handling	 of	 the	 reconstruction	 of	 the	 phenotypic	
variance,	which	is	required	for	the	reconstruction	of	the	D	matrix	and	for	initialising	the	
scale	parameters	in	the	SBayesR	model,	which	improved	model	convergence.	
	
Please	 see	 the	updated	Figure	 S1,	 updated	 chromosome	21	and	22	 Supplementary	Note	
description	and	results	on	pages	30	-	34	of	Supplementary	Material.	
	
Figure	3	-	thanks	for	including,	and	I	like	having	numbers	above	bars,	but	perhaps	hours	
(presented	on	a	log	scale)	would	be	better	than	log10	minutes	
	
Re:	We	agree	with	the	reviewer	and	have	now	reported	time	in	Figure	S18	(moved	to	
Supp)	on	the	log	scale.	These	results	also	include	the	results	from	the	larger	SBayesR	runs	
and	results	for	male	pattern	baldness	and	type-2	diabetes.	
	
Shortening	paper	-	I	feel	throughout	the	methods	are	clear,	but	I	find	the	length	of	the	
main	text,	25	double	spaced	pages,	overwhelming.	In	my	view,	the	key	points	required	
are	a	brief	description	of	the	prior	distribution,	an	explanation	of	the	efficient	LD	
storage,	and	the	results	of	applying	your	method	to	real	data.	By	contrast,	I	think	the	
details	of	simulations	can	be	much	shorter,	some	of	the	methods	and	also	the	
discussion.	
	
Re:	Thank	you,	we	have	now	shortened	the	manuscript	dramatically	in	line	with	the	
reviewer’s	suggestions	and	the	editorial	policies	of	Nature	Communications.	We	have	
compressed	the	description	of	the	simulation	by	moving	the	detailed	components	to	
Methods	section	and	concatenated	the	description	with	the	results	as	per	the	style	of	NC.	
We	have	added	more	detail	on	the	LD	storage	and	construction	in	a	new	methods	section	
as	per	reviewer	2’s	suggestion	(see	pages	22	and	23).	We	have	shortened	the	Discussion	
and	Introduction	substantially	as	well.	
	
	
#############	
	
Very	minor	comments	
	
Title	-	Suggest	include	SBayesR	in	title.		
		
Re:	Thank	you	for	the	suggestion.	We	found	it	challenging	to	incorporate	SBayesR	in	the	
title	without	breaking	the	no	grammar	rule	in	the	title	for	Nature	Communications	and	
thus	have	left	it	as	before.	
	
Abstract	-	"which	have	been	shown	to	generate	optimal	genetic	predictions"	-	I	do	not	



think	this	is	true	(as	in	it	is	wrong	to	say	that	point-normal	mixtures	are	optimal	-	
perhaps	you	coudl	instead	say	have	been	shown	to	perform	well).	Also,	at	over	350	
words,	that	abstract	seems	very	long.	
	
Re:	Thank	you,	the	text	has	been	updated	in	the	abstract.	The	abstract	has	also	been	
shortened	substantially.	
	
Compared	with	commonly	used	state-of-the-art	summary-based	methods	
	
Re:	Thank	you,	the	text	has	been	updated	in	the	abstract.	
	
Page	2	-	I	think	it	is	unnecessarily	confusing	to	"restrict	the	term	polygenic	risk	score	to	
those	predictors	generated	from	using	simple	linear	regression"	(and	use	EBV).	Most	
people	(imo)	consider	a	PRS	any	linear	prediction	model	with	many	SNPs	
	
Re:	Thank	you	we	have	now	removed	this	from	the	manuscript.	
	
When	you	stated	you	did	a	two-chr	study,	probably	better	to	say	"using	chr	21	+	22"	
(rather	than	"on	two	chromosomes"	(is	a	ten	fold	difference	in	sizes)	
	
Re:	Thank	you.	We	have	updated	the	text.	
	
Page	20	typo	"although	SBLUP	had	a	much	longer	on	mean	runtime".	And	"13	and	1/3"	-	
write	as	13	1/3	or	13.3	or	13	
	
Re:	Thank	you.	We	have	updated	the	text.	
	
When	describing	bb,	you	say	there	are	40M+	snps	-	while	true,	this	is	perhaps	
misleading	(as	you	only	use	1M?)	
	
Re:	Thank	you.	We	have	updated	the	text	to	state	these	data	are	available	for	potential	
analysis	but	we	only	use	subsets	of	2.8	M	and	1	M	HM3	variants.		
	
Could	add	a	contents	list	to	supplementary	information?	
	
Re:	Thank	you	we	have	added	a	table	of	contents	to	the	Supplemental	Material.		
	
#############	
	
Signed,	Doug	Speed	
	
	
	
	
	
	
	
	



Reviewer	#2	(Remarks	to	the	Author):	
	
The	manuscript	presents	a	new	method	called	SBayesR	that	adapts	the	method	BayesR	
(an	existing	method	for	multiple-component	sparse	Bayesian	regression)	to	use	
summary	statistics	instead	of	raw	genotypes.	The	authors	demonstrate	that	SBayesR	
outperforms	existing	methods	in	genetic	risk	prediction	via	simulations,	via	a	cross-
validation	study	of	ten	phenotypes	from	the	UK	Biobank,	and	via	prediction	of	Height	
and	BMI	in	two	different	datasets	(where	the	models	were	fitted	on	UKBB).	Overall	this	
is	a	very	powerful	and	impressive	method.	
	
The	method	is	powerful	and	constitutes	new	state	of	the	art	results	for	genetic	risk	
prediction.	The	simulations	and	real	data	analysis	are	well-conducted	and	convincing,	
and	the	manuscript	is	also	well	written	and	extremely	detailed.	However,	I	have	many	
questions	---	mostly	because	the	scope	of	the	manuscript	is	quite	large	and	there's	a	lot	
to	unpack...	
	
Re:	We	would	like	to	thank	the	reviewer	for	their	time	and	effort	in	reviewing	our	
manuscript.	We	also	thank	them	for	their	positive	summary	of	our	work	and	the	helpful	
comments	that	have	strengthened	the	manuscript	considerably.	
	
Major	concerns	
--------------------	
	
1.	Can	you	please	assess	the	method	calibration	(i.e.	check	if	the	slope	of	regressing	the	
true	phenotypes	on	EGV	is	close	to	1.0)?	This	is	very	important	for	genetic	risk	
prediction.	
	
Re:	We	thank	the	reviewer	for	this	comment	and	have	now	summarised	the	slope	estimates	
from	 the	 regression	of	 the	 true	phenotype	on	 the	predicted	values	 from	SBayesR	 for	 the	
quantitative	 traits	 in	 the	 genome-wide	 simulation	 and	 cross-validation.	 Please	 see	 the	
results	presented	in	Supplemental	Figures	S5	and	S15.	These	are	referenced	on	lines	158	
and	241-242.	Overall	values	were	between	0.9	and	1	across	simulation	and	cross-validation	
analyses.	
	
2.	The	manuscript	continuously	refers	to	previous	literature	to	justify	the	choice	of	four	
mixture	components.	Can	you	please	justify	this	choice	or	discuss	its	implications?	For	
example,	how	sensitive	are	the	results	to	this	choice?	Is	there	a	downside	to	increasing	
the	number	of	mixture	components	other	than	computational?	What	is	the	
computational	price	of	increasing	the	number	of	components?	It	would	be	nice	to	show	
simulations	demonstrating	the	impact	of	using	a	different	number	of	components.	
	
Re:	We	 thank	 the	reviewer	 for	 this	comment.	To	 investigate	 this,	we	ran	SBayesR	 for	all	
traits	in	the	UKB	cross-validation	using	2,	3,	4,	5,	and	6	mixture	components.	SBayesR	is	very	
flexible	 in	 its	 implementation	 and	 can	 change	 the	 number	 of	 components	 easily.	 We	
preferred	to	do	this	in	real	data	as	we	think	the	results	from	a	simulation	may	not	be	as	
convincing	or	transferable	(outside	the	simulation)	as	those	from	real	data.	Figure	S13	of	
the	manuscript	shows	that	in	terms	of	prediction	accuracy	we	don’t	observe	any	on	mean	
improvement	 in	prediction	accuracy	past	 four	components,	whereas	 the	 four-component	
model	 is	never	worse	and	often	better	than	using	two	or	three	components	although	the	



gains	are	marginal.	Computational	time	scaling	is	trait	dependent	but	on	average	moving	
from	2	to	6	mixture	distributions	will	increase	the	run	time	by	2.5	times	(Figure	S14	of	the	
manuscript).	For	10,000	MCMC	iterations	this	led	to	variation	between	1.5	hours	to	4	hours.	
Given	 this	 we	 believe	 4	mixtures	 is	 a	 good	 compromise	 between	 speed	 and	maximising	
accuracy	for	all	traits	analysed	and	potential	traits.	
	
Please	see	Figures	S13	and	S14	and	the	text	summary	on	235-238.	
	
3.	Can	SBayesR	estimate	the	standard	error	of	its	h2	estimate?	Some	existing	methods	
(e.g.	LDSC)	do	this	via	block-jackknifing	of	SNPs.	I	guess	this	can	be	done	here	as	well,	
but	this	will	require	hundreds	of	MCMC	runs.	Is	there	an	alternative?	
	
Re:	We	thank	the	reviewer	for	this	comment.	We	now	report	the	posterior	standard	error	
for	 the	h2	 estimates	and	 their	95%	higher	probability	density	of	 the	posterior.	Although	
block-jackknifing	 SE	 estimates	 may	 be	 possible	 we	 prefer	 to	 keep	 the	 reporting	 of	
uncertainty	within	the	Bayesian	paradigm,	which	is	an	advantage	of	Bayesian	methodology	
and	another	strength	of	SBayesR.	Please	see	figure	S18	for	the	h2	point	estimates	and	their	
90%	and	95%	highest	probability	densities.	
	
Please	see	Figure	S17	and	statements	on	lines	260-262.	
	
4.	The	manuscript	only	studies	quantitative	phenotypes.	Did	you	try	running	SBayesR	on	
a	binary	phenotype?	Can	you	please	examine	this	and	discuss	what	happens	in	this	case	
(if	any)?	The	common	practice	in	the	field	is	to	treat	1/0	as	continuous	numbers	-	can	you	
please	comment	on	the	appropriateness	of	this	choice	in	the	context	of	SBayesR?	
	
Re:	We	 thank	 the	 reviewer	 for	 this	 comment.	We	now	perform	genome-wide	 simulation	
studies	 for	 case-control	 phenotypes	 simulated	 under	 the	 liability	 threshold	 model	 with	
disease	prevalence	0.05.	We	simulate	the	phenotypes	using	10k	causal	variants	taken	from	
the	BayesR	model	and	two	heritability	scenarios.	Prediction	accuracy	is	summarised	using	
the	area	under	the	receiver	operating	characteristic	curve	(AUC)	and	heritability	is	reported	
on	the	liability	scale	using	the	transformation	of	(Lee,	2011,	AJHG).	Summary	statistics	are	
taken	from	a	regression	analysis	that	performs	linear	regression	on	the	0,	1	phenotype.	The	
results	from	the	case-control	phenotypes	largely	reflect	those	from	the	quantitative	traits	
with	the	exception	that	the	SBayesR	AUC	exceeded	that	of	BayesR	for	the	0.5	heritability	
scenario.	Please	see	the	changes	to	genome-wide	simulation	description	on	pages	6	and	7	
and	the	results	presented	and	Figures	1	and	Figure	S6,	S11	and	S12	for	the	results	from	these	
analyses.		
	
We	also	include	male	pattern	baldness,	which	is	categorical	trait	(coded	1-4)	and	type-2	
diabetes	as	further	traits	in	the	UKB	cross-validation	to	update	the	analyses	and	investigate	
the	 performance	 of	 SBayesR	 on	 case-control	 phenotypes.	 We	 first	 perform	 principal	
component,	age	and	sex	correction	and	analyse	the	residuals	using	a	linear	model.	Please	
see	Figures	2,	3,	S16,	S17	and	S18	for	the	results	from	these	updated	analyses.	Please	trait	
description	and	processing	on	lines	605-613.	
	
The	method	is	derived	assuming	that	the	association	effects	have	been	generated	from	a	
linear	least	squares	analysis	and	we	therefore	recommend	analysing	the	0-1	or	as	we	have	



performed	 above	 the	 residuals	 from	 the	 regression	 of	 the	 binary	 phenotype	 on	 quality	
control	covariates	e.g.	age,	sex	and	principal	components.	
	
5.	It	would	be	extremely	interesting	to	show	the	posterior	distribution	of	mixture	
components	for	each	trait	(this	information	is	one	of	the	main	advantages	of	SBayesR	
over	other	methods)...	Do	these	estimates	seem	to	converge	after	4,000	MCMC	
iterations?	Also,	do	we	see	roughly	similar	estimates	when	changing	the	number	of	
mixture	components?	
	
Re:	We	 agree	with	 the	 reviewer	 that	 the	 distribution	 of	 the	 proportion	 of	 effects	 in	 the	
mixture	model	is	one	of	the	most	interesting	components	of	the	BayesR	model.	Throughout	
our	analysis	and	testing	of	SBayesR,	we	observed	that	model	parameter	estimates	can	be	
biased	e.g.,	marginal	inflation	of	the	heritability	estimates,	which	is	one	of	the	most	robust	
parameters	in	the	model.	The	parameters	of	the	mixture	distribution,	such	as	the	mixing	
probabilities	pis,	are	expected	to	be	subject	to	larger	biases.	The	underlying	true	mixture	
distribution	may	not	be	identifiable	especially	when	the	causal	variants	are	not	observed	in	
practice.	 For	 example,	 a	 large	 causal	 effect	 could	 be	 captured	 as	 a	 large	 effect	 or	 as	 a	
combination	of	a	 few	small	effects	at	 the	SNPs	 in	LD	with	 the	causal	variant,	which	will	
subsequently	affect	the	estimation	of	the	mixture	distribution	parameters.	Establishing	the	
robustness	 of	 the	 mixture	 proportions	 estimates	 would	 require	 substantial	 simulation	
validation.	 We	 prefer	 to	 maintain	 the	 focus	 of	 this	 current	 manuscript	 on	 polygenic	
prediction,	 which	 we	 have	 established	 can	 be	 improved	 given	 these	 marginally	 biased	
estimates.		
	
We	intended	to	present	the	results	from	the	Response	Document	Figure	4.	in	the	manuscript,	
which	 summarises	 the	 proportion	 of	 SNP	 heritability	 that	 each	 of	 the	 non-zero	mixture	
components	explains.	This	figure	communicates	the	difficulty	in	interpreting	whether	these	
results	represent	a	true	mechanism	without	a	much	larger	initial	validation	of	capacity	of	
the	model	to	estimates	these	parameters	well.	Understanding	this,	we	believe,	is	out	of	the	
scope	of	the	current	manuscript	on	prediction	and	we	intend	on	investigating	this	in	future	
work.	We	now	acknowledge	this	point	as	a	limitation	in	the	Discussion	on	lines	370-378.	
	

	
Response	Document	Figure	4.	Proportion	of	SNP-based	heritability	explain	by	
variants	in	each	of	the	small,	medium	and	large	mixture	components.	The	proportion	of	
SNP	heritability	exaplined	my	mixture	component	c	is	calculated	by	Vg_c	=	gamma_c	*	



pi_c	/	(sum_(c=1)^C	gamma_c	*	pi_c)	
	
	
6.	If	I	understand	correctly,	sparsifying	the	LD	matrix	is	the	main	trick	that	allows	
scaling	BayesR	to	UKB-sized	data.	Is	this	correct?	If	yes,	I	think	that	this	sparsification	
should	be	discussed	in	more	detail.	How	is	it	done	and	what	are	the	implications?	Right	
now	the	manuscript	just	refers	to	the	Wen	and	Stephens	paper,	but	as	this	is	such	an	
important	part	of	this	paper,	I	think	it	merits	further	discussion.	For	example,	can	you	
please	show	the	distribution	of	basepair-distances	for	zero	and	non-zero	LD	entries?	I	
am	curious	if	the	Wen	and	Stephens	technique	is	substantially	different	from	just	
choosing	a	distance	cutoff	and	setting	all	pairwise-LD	entries	between	SNPs	with	
greater	distance	to	zero.	
	
Re:	We	thank	the	reviewer	for	this	comment.	The	computation	speed	is	a	combination	of	
writing	the	algorithm	such	that	right-hand	side	updating	can	be	used	and	coupling	this	with	
a	 sparse	 matrix.	 The	 choice	 of	 an	 optimally	 sparse	 reference	 LD	 matrix	 for	 use	 in	 the	
approximation	is	a	difficult	open	question.	Observations	from	our	own	in-house	analytical	
work	have	 shown	 that	SBayesR	can	be	 faster	and	more	memory	efficient	 if	we	 set	more	
elements	of	the	LD	matrix	to	zero.	We	have	used	and	implemented	other	forms	of	sparse	LD	
matrix	type	including	a	block	diagonal	matrix	but	observed	that	the	method	of	Wen	and	
Stephen’s	produces	the	most	stable	method.	We	believe	that	Wen	and	Stephen’s	shrunk	LD	
matrix	method	and	their	theoretical	results	give	good	guidance	as	to	how	to	optimally	make	
the	LD	matrix	sparse	and	thus	we	prefer	to	point	the	research	to	their	results.		

We	now	provide	the	distribution	of	base-pair	distances	for	the	non-zero	LD	entries	for	each	
variant	in	Figure	S21,	which	shows	the	high	variability	in	per	variant	window	width	for	the	
non-zero	elements	within	the	sparse	HM3	matrix.	We	believe	that	the	incorporation	of	this	
variability	and	LD	at	large	BP	distances	is	one	of	the	strengths	of	the	methodology	and	a	
large	contributor	to	the	improved	performance	of	SBayesR	over	methods	that	use	a	fixed	
window	approach.	

The	updated	text	now	includes	more	detail	on	the	generation	of	the	sparse	LD	matrix	and	
its	implications	in	the	discussion.	See	line	534-576.	

7.	 Can	 you	please	write	 down	 the	 *full*	 Bayesian	 hierarchical	model?	 The	 details	 are	
currently	scattered	across	many	different	pages	of	text	(e.g.	the	distribution	of	\epsilon	
is	 given	 in	 Supp	 page	 25	 first	 paragraph	 --	 it	 took	 me	 a	 long	 time	 to	 find	 it).	
Similarly,	it	would	be	very	helpful	to	write	down	the	entire	Gibbs	sampling	method	as	an	
algorithm.	Right	now	the	details	are	scattered	across	many	pages	of	text.	

Re:	We	thank	the	reviewer	for	this	comment.	We	have	now	provided	more	detail	in	the		
Method	summary	and	implementation	section	of	the	Supplemental	Material	and	the	
algorithm	in	Algorithm	2	(page	54)	of	the	Supplemental	Material.	
	
8.	A	recent	paper	claims	that	it	managed	to	explain	all	of	the	SNP	heritability	of	height	in	
out-of-sample	prediction	in	UKBB	via	Lasso[1].	Can	you	please	comment	on	this?	Is	it	
possible	that	far	simpler	methods	can	provide	better	prediction	results	in	large	
datasets?	
	



Re:	We	thank	the	reviewer	for	this	comment	and	now	make	reference	to	this	work.	The	work	
of	Lello	et	al.	[1]	requires	the	tuning	of	the	lasso	regularisation	parameter,	which	is	non-
trivial	 in	 our	 opinion,	 in	 large	 individual-level	 data	 sets.	 We	 believe	 the	 crux	 of	 their	
impressive	 results	 is	 derived	 from	 the	 use	 of	 the	 453K	 UKB	 individuals	 (related	 and	
unrelated)	with	a	small	set	of	5K	individuals	held	back	for	validation.	The	lasso	parameter	
is	tuned	across	a	fine	range	of	potential	values	in	the	5K	individuals	held	back	and	not	in	an	
independent	set.	Using	this	technique	Lello	et	al.	[1]	reached	a	maximum	correlation	value	
of	“somewhat	<	0.7	“	(R2=0.49).	As	noted	by	Reviewer	1	within	data	set	prediction	validation	
can	be	inflated	for	many	reasons.	We	believe	the	best	test	of	a	method’s	capacity	to	predict	
is	independent	out	of	sample	or	across-biobank	predictions.	Using	their	methodology,	Lello	
et	al.	[1]	predicted	into	the	independent	ARIC	biobank	and	obtained	a	prediction	R^2	for	
height	of	0.2916,	which	is	 less	than	our	updated	value	of	approximately	0.35	in	HRS	and	
ESTB	although	these	are	different	data	but	similar	results	would	be	anticipated	for	ARIC.	
Furthermore,	 their	methodology	would	 require	 individual	 level	 data,	 which	may	 not	 be	
available	for	many	phenotypes.		
	
9.	Can	you	please	elaborate	on	the	choice	to	use	only	HM3	SNPs?	If	 this	essentially	an	
informed	type	of	LD-pruning?	Is	it	mostly	for	computational	reasons?	
	
Re:	We	thank	the	reviewer	for	this	comment.	We	restricted	the	set	of	variants	to	HM3,	as	
this	set	is	known	to	capture	common	variation	well,	has	precedence	in	the	literature	as	a	
widely	used	set,	the	variants	are	known	to	have	high	imputation	quality.	Furthermore,	the	
use	 of	 approximately	 one	 million	 variants	 was	 within	 the	 computational	 scope	 of	 the	
methods	 intended	 for	 comparison	 (in	 particular	 BayesR	 which	 is	 computationally	
intensive).	Reviewer	1	suggested	LD	pruning	of	UKB	variants	as	an	alternative	set,	which	we	
have	now	performed.	 Please	 see	 the	 response	 to	 the	 next	 comment.	We	now	outline	 the	
reasons	for	restricting	the	set	of	variants	to	HM3	in	the	simulation	method’s	description.	
Please	see	lines	113-116.	
	
Related:	Can	the	model	easily	scale	to	include	millions	of	variants	(as	implied	in	line	680)?	
How	will	this	affect	runtime	/	convergence?	
	
Re:	We	thank	the	reviewer	for	this	comment	and	have	now	taken	a	set	of	8M	UKB	variants,	
which	overlap	with	previous	large	GWAS	studies,	are	of	good	quality,	and	are	present	in	the	
genetic	map	for	the	LD	shrinkage	estimator.	We	pruned	these	variants	at	LD	r2=0.99,	which	
left	 approximately	 3.7	 M	 variants.	 Of	 these	 2.8	 M	 were	 common	 i.e.,	 MAF	 >	 0.01.	 We	
computed	chromosome-wise	full	LD	matrices	for	the	8	M	variants	so	that	any	subset	of	these	
variants	can	be	used	to	run	SBayesR.	The	LD	matrix	set	for	the	2.8	M	common	variants	along	
with	that	for	the	HM3	set	will	be	made	publicly	available.		
	
We	ran	SBayesR	genome-wide	for	these	2.8	M	variants	for	the	cross-validation	and	out	of	
sample	predictors	 for	height	and	BMI.	These	analyses	 took	on	average	across	 the	 cross-
validation	253GB	of	RAM	and	12.5	CPU	hours	 for	10,000	MCMC	 iterations.	We	observed	
increases	in	the	cross-validation	and	out-of-sample	prediction	accuracy	for	height	and	BMI	
within	the	UKB	and	for	height	in	the	across-biobank	predictions	(Figures	2	and	3	of	main	
text).	Runtime	and	memory	are	also	summarised	Figures	S18	and	S19.	
	
Updates	are	included	in	the	cross-validation	results	please	see	lines	213-218,	253-257,	266-
268,	277-279	and	Figures	2,	3,	S16,	S18	and	S19.	



	
	
10.	 A	 related	 question:	 Can	 you	 use	 SBayesR	 for	 inference	 of	 posterior	 effect	 size	
estimates	 (e.g.	 fine-mapping)?	 This	 would	 require	 including	 all	 SNPs	 in	 the	 model,	
without	 filtering	 (other	 than	 QC).	 Is	 this	 possible	 and	 do	 you	 expect	 this	 to	 be	 an	
interesting	research	direction?	Line	648	implies	that	the	answer	is	yes,	but	refs.	63-64	
don't	 seem	 to	 try	 to	 actually	 finemap	 SNPs	 in	 a	 biological	 sense.	
	
Re:	We	thank	the	reviewer	for	this	comment	and	believe	that	SBayesR	has	the	capacity	to	
be	used	for	fine	mapping	because	it	inherits	the	properties	of	BayesR,	which	has	been	shown	
in	previous	studies	(those	referenced	in	the	previous	manuscript)	 in	both	simulation	and	
real	data	analyses	to	be	a	powerful	association	detection	too	through	the	use	of	the	reported	
posterior	 inclusion	 probability.	 The	 increased	 computational	 efficiency	 and	 capacity	 to	
scale	to	an	arbitrary	number	of	individuals	makes	SBayesR	potentially	very	useful	for	fine	
mapping.	The	validation	of	SBayesR	to	fine	map	a	region	we	believe	is	out	of	the	scope	of	
this	manuscript,	 which	 focuses	 on	 prediction,	 but	 we	 believe	 it	 to	 be	 a	 very	 interesting	
research	direction.	We	now	make	this	clearer	in	the	Discussion	please	see	lines	381-382.	
	
Less	Major	concerns	
---------------------------	
	
-	L415:	Why	does	height	require	different	mixture	components	compared	to	everything	
else?	Did	the	model	run	into	convergence	problems	with	the	default	mixture	
components	in	the	analysis	of	height?	
	
Re:	We	thank	the	reviewer	for	this	remark.	Yes,	the	use	of	these	non-default	scaling	values	
for	 the	 analysis	 of	 the	 summary	 statistics	 from	 Yengo	 et	 al.	 2018	 was	 required	 for	
convergence	of	the	SBayesR	algorithm,	which	we	make	reference	to	in	the	manuscript	on	
lines	638-641.	We	believe	that	the	difficulty	in	convergence	for	these	summary	statistics	are	
potentially	due	to	errors	in	the	reporting	of	the	summary	statistics	that	are	very	difficult	to	
diagnose	or	eliminate	via	quality	control	without	observing	the	original	data.	We	note	that	
this	was	the	only	set	of	summary	statistics	across	all	analyses	that	required	this	adjustment.	
	
-	L188:	If	I	understand	correctly,	\sigma^2_g	is	scalar,	whereas	Var(X	\beta)	is	an	n	by	n	
matrix	(the	covariance	matrix	of	the	vector	X	-	\beta,	because	X	is	a	matrix	as	defined	in	
L145).	 Should	 notations	 be	 fixed	 somehow?	
Similarly,	in	Supp	page	42,	\sigma^2_g	is	defined	once	as	Var(X	\beta),	and	another	time	
as	\var(X'	\beta).	Please	fix	the	notation...	
	
Re:	We	thank	the	reviewer	very	much	for	this	comment.	We	have	now	redefined	this	
quantity	to	be	the	sample	variance	of	the	vector	X	beta	defined	to	be	V(X	beta),	which	is	
also	now	further	defined	in	the	Supplemental	Material.	Please	see	lines	508-512	of	main	
text	and	page	54,	55	of	Supp	Material.	
	
-	Related:	Do	I	understand	correctly	that	the	definition	of	MSS	in	Supp	page	42	treats	
\beta	as	fixed	and	X	as	a	random	vector	(opposite	of	the	BayesR	assumptions)?	Can	this	
please	be	clarified	somehow?	
	



Re:	To	compute	the	estimate	of	the	genetic	variance	we	are	treating	beta	as	fixed	at	the	
sampled	value	at	the	ith	MCMC	iteration	and	X	as	random	as	per	the	definition	of	genetic	
variance.	Let	x_j	be	a	vector	of	genotypes	for	an	individual	random	sampled	from	the	
population,	and	b	be	the	vector	of	SNP	effects	which	are	fixed	values	independent	of	the	
genotype	sampling.	The	genetic	variance	is	Var(x’b)	=	b’	Var(x)	b	=	b’	Cov[x_i,	x_j]	b	=	b’Bb	
where	B	is	the	LD	correlation	matrix	among	SNPs.	This	is	similar	to	how	V(X\beta)	is	
computed	in	the	Zhu	and	Stephens	RSS	paper.	We	now	clarify	this	on	page	55	of	Supp	
Material.	
	
-	Related:	Do	I	understand	correctly	that	you	compute	the	quantity	at	the	bottom	of	Supp	
page	42	for	each	vector	of	\beta	sampled	at	each	MCMC	iteration	(i.e.	after	round	of	Gibbs	
sampling)?	If	yes,	then	one	way	to	think	about	this	is	that	you	treat	both	beta	and	X	as	
random,	and	then	apply	the	law	of	total	variance	to	approximate	var(X	\beta)	=	E[Var(X	
\beta	|	\beta)]	+	Var(E[X	\beta	|	\beta]).	However,	 it	seems	to	me	 like	you	 ignore	the	
second	term	on	the	right	hand	side...	Can	you	please	explain?	
	
Re:	We	thank	the	reviewer	for	this	comment.	In	this	representation	the	second	component	
is	equal	to	0	because	E(X)=0	after	centring	and	thus	the	computation	of	var(X\beta)	is	
equal	to	that	stated	in	the	previous	comment,	which	is	computed	in	each	iteration	of	the	
MCMC	chain.	
	
-	Why	is	there	such	a	large	advantage	to	BayesR	over	SBayesR	in	Fig.	1	10K	causal	
variants	h2=0.5	setting?	Am	I	right	that	this	suggests	that	the	LD	matrix	has	been	
regularized	too	heavily	and	is	now	too	sparse?	
	
Re:	We	appreciate	this	comment	and	agree	that	this	likely	to	be	a	result	of	a	combination	of	
inter-chromosomal	LD	and	long-range	LD	within	chromosome	that	has	been	ignored	within	
the	 summary	 model,	 which	 may	 have	 resulted	 from	 making	 the	 LD	 matrix	 too	 sparse.		
	
-	Do	you	have	any	idea	why	SBLUP	performs	so	much	better	than	LDpred-inf	in	Fig.	1	50K	
causal	 variants	 setting?	 Is	 this	 because	 SBLUP	 uses	 in-sample	 LD?	
	
Re:	We	 thank	 the	 reviewer	 for	 this	 comment	and	have	now	rectified	 this	discrepancy	by	
running	LDpred	genome-wide	for	all	analyses	as	per	the	request	of	Reviewer	1.	Please	see	
the	updated	results	in	Figure	1.	
	
-	Fig.	S3:	What	drives	the	differences	between	BayesR	and	SBayesR*?	Aren't	they	
supposed	to	be	exactly	the	same?	
	
Re:	 Thank	 you	 for	 this	 comment.	 These	 differences	 could	 be	 caused	 by	 the	 different	
implementation	of	the	methodology	where	BayesR	results	are	generated	from	the	program	
written	in	Moser	et	al.	2015.	Furthermore,	 in	the	SBayesR	method	we	allow	each	SNP	to	
have	a	different	residual	variance,	which	could	be	slightly	different	to	individual	data	results	
because	 of	 the	 small	 differences	 in	 per-SNP	 sample	 size	 and	 estimation	 variance.	 The	
rounding	 of	 the	 summary	 statistics	 and	 subsequent	 model	 reconstruction	 from	 these	
rounded	values	could	also	contribute.	These	sources	are	 the	 likely	cause	of	 the	marginal	
differences	 in	 variance	 (in	 scenarios	 GA1	 and	 GA2)	 across	 replicates	 between	 the	 two	
methods.	We	highlight	that	the	prediction	accuracy	means	are	exactly	the	same	between	



these	two	methods	in	all	scenarios.		We	now	discuss	this	in	the	results	from	the	chromosome	
21	and	22	study	in	the	Supplemental	Material	page	35.	
	
	
-	Fig.	S4:	Why	is	SBayesR*	inferior	to	SBayesR?	Could	it	be	more	susceptible	to	population	
structure	in	some	way	(by	being	able	to	pick	up	extremely	long-range	LD)?	
	
Re:	Figure	S4.	displays	SNP-based	heritability	estimates	with	SBayesR*	showing	the	smallest	
deviation	from	the	true	value	over	all	other	methods.	SBayesR	shows	a	slight	upward	bias	
in	the	heritability	estimate.	We	apologise	if	the	plots	were	confusing	and	have	now	added	a	
horizontal	line	at	the	0.1	mark.	
	
-	 Figure	 S13:	 "The	memory	 for	 RSS,	 LDpred	 and	 SBLUP	 represents	 the	 sum	 over	 the	
memory	usage	for	each	chromosome":	This	seems	unfairly	stringent,	since	these	runs	are	
probably	not	 run	 in	parallel	 on	 the	 same	 computer...	 I	would	 take	 the	maximum	per-
chromosome	memory	requirement	as	the	memory	requirement	of	the	per-chromosome	
methods.	
	
Re:	We	thank	the	reviewer	for	this	suggestion.	In	the	updated	manuscript	only	SBLUP	and	
RSS	are	run	chromosome	wise	as	LDpred	is	now	run	genome-wide.	Although	we	agree	with	
the	reviewer	that	this	representation	makes	RSS’s	memory	usage	look	poor,	conversely,	we	
believe	 the	 maximum	memory	 over	 chromosomes	 would	 be	 unfair	 to	 the	 genome-wide	
methods,	which	 can	 be	 run	 chromosome-wise	 but	 are	 not.	We	wanted	 to	 highlight	 that	
running	SBayesR	genome-wide	is	as	memory	efficient	as	running	some	of	the	other	methods	
chromosome	wise.	We	now	report	in	the	Figure	S12	and	S19	captions	the	maximum	memory	
required	for	RSS	(and	the	SE),	which	is	approx.	200GB	for	chromosome	2	and	communicate	
that	this	would	be	the	maximum	per	CPU	memory	requirement	for	RSS	if	parallel	computing	
was	available	 to	 the	user.	This	 is	 less	 important	 for	SBLUP	as	 it	has	 the	 lowest	memory	
requirement	of	all	methods	in	the	Figures.		
	
	
Minorconcerns:	
---------------	
	
-	Fig.	S2,	S4:	It	would	be	helpful	if	there	was	a	dashed	horizontal	line	at	the	true	h2	value	
(e.g.	HEreg	is	just	as	calibrated	as	BayesR	in	Fig.	S4	GA3	panel,	but	the	figure	makes	it	
look	worse).	
	
Re:	Thank	you.	We	have	now	added	a	dashed	line	in	these	Figures	along	with	the	genome-
wide	simulation	results.	
	
-	Why	is	LDSC	not	included	in	Fig.	S4?	
	
Re:	We	 thank	 the	 reviewer	 for	 this	 comment	 and	 did	 run	 LDSC	 for	 these	 scenarios.	 The	
method	returned	very	poor	h2	estimates	on	mean	for	each	scenario,	which	we	attributed	to	
the	small	SNP	set.	We	reviewed	the	code	and	realised	it	need	altering	for	two	chromosome	
analyses.		This	has	improved	the	LDSC	results	dramatically	and	we	have	now	included	these	
in	Figure	S4.	



	
-	Can	you	provide	some	guidance	about	the	choice	of	#MCMC	iterations?	How	was	the	
number	4,000	selected,	and	how	can	the	user	assess	if	this	is	enough	for	their	own	
analysis?	As	asked	above,	do	the	per-SNP	effect	estimates	converge	after	4,000	
iterations	(if	yes	then	this	is	a	breakthrough	in	Bayesian	statistics	in	general,	also	
outside	genetics).	
	
Re:	 Thank	 you	 for	 this	 comment.	 Previously	 we	 chose	 4,000	 as	 it	 was	 a	 computational	
restriction	on	the	running	of	BayesR.	We	ran	SBayesR	for	4,000	MCMC	iterations	to	match	
BayesR	so	the	results	would	be	more	comparable.	Figure	S8	in	the	previous	version	of	the	
manuscript	 showed	 that	 after	 4,000	 iterations	 that	 the	 mean	 prediction	 accuracy	 for	
BayesR	did	not	change	with	a	marginal	increase	in	h2	estimate	when	BayesR	was	run	for	
10,000	iterations	in	one	of	the	genome-wide	simulation	scenarios.	Furthermore,	Figure	S9	
of	 the	 previous	 version	 of	 the	 manuscript	 showed	 marginal	 fluctuations	 in	 SBayesR	
prediction	 accuracy	 from	 4,000	 iteration	 to	 100,000	 MCMC	 iterations.	 In	 the	 updated	
manuscript	we	have	 run	BayesR	and	 SBayesR	 for	 10,000	 iterations	 for	 all	 genome-wide	
simulations	and	real	data	analyses,	which	we	are	confident	is	adequate	for	generating	good	
predictors.	Please	see	Figures	S7	and	S8	of	Supplemental	Material	in	current	version.	
	
-	The	introduction	is	quote	long	and	full	of	technical	details	that	can	be	moved	to	other	
sections	to	improve	reading	flow.	
	
Re:	Thank	you.	We	have	no	made	the	introduction	shorter	and	removed	much	of	the	
technical	description.	
	
-	I	applaud	the	attention	to	detail	in	the	methods	section,	but	it	does	come	at	the	cost	of	
ease	of	readability.	The	text	is	often	extremely	repetitive,	repeating	the	decisions	made	
for	various	methods	(e.g.	window	size	for	LDpred)	across	multiple	subsections.	I	
suggest	some	shortening	of	the	text	(and	possibly	moving	technically-important-but-
conceptually-uninteresting	details	to	a	supplementary	section).	
	
Re:	Thank	you.	The	main	text	has	been	substantially	shortened	with	much	of	the	detail	
move	to	a	detailed	Methods	section	for	each	of	the	genome-wide	simulation,	cross	
validation	and	out	of	sample	prediction	analyses.	As	these	descriptions	are	repetitive,	we	
now	point	the	reader	to	previous	sections	that	are	the	same	but	more	detailed.	Please	see	
pages	24-27	for	more	compressed	descriptions.	
	
-	I	found	the	differences	in	method	order/color	in	Figure	4	relative	to	every	other	figure	
in	the	paper	a	bit	confusing...	
	
Re:	Thank	you	we	agree.	The	colours	and	order	of	the	now	Figure	3	have	been	changed	to	
be	consistent	with	the	previous	figures.	
	
-	Can	you	please	show	standard	errors	in	Fig.	4	(e.g.	using	jackknife)?	
	
Re:	We	thank	the	reviewer	for	this	comment.	Using	a	resampling	method	to	acquire	SEs	for	
data	at	this	scale	would	be	very	challenging.	We	now	provide	testing	of	the	polygenic	risk	
score	variance	explained.	Prediction	R2	improvement	between	methods	was	assessed	by	
ranking	the	predictors	from	each	model	and	fitting	the	true	phenotype	on	two	(lower	_	



higher)	predictors	in	a	linear	model.	ANOVA	is	used	to	compare	the	null	model	(just	lower	
ranked	PRS)	versus	alternative	(lower	ranked	PRS	+	higher	ranker	PRS)	and	the	F-statistic	
and	associated	p-value	are	reported	from	the	ANOVA	analysis.	The	coefficient	of	partial	
determination	(Partial	R^2)	is	also	reported	for	the	null	versus	alternative	and	measures	
the	proportional	reduction	in	sums	of	squares	after	the	higher	ranked	PRS	is	introduced	
into	the	linear	model.	Please	see	Table	S1	for	the	results.	
	
-	It	took	me	a	long	time	to	understand	the	differences	between	SBayesR	and	SBayesR*	in	
Figure	4	(especially	given	that	there's	a	different	definition	of	SBayesR*	in	Figures	S3-
S4).	I	suggest	to	make	the	text	clearer	and	explicitly	describe	the	differences	between	
them.	
	
Re:	We	thank	the	reviewer	for	this	comment	and	apologise	for	the	confusion.	The	BayesR*/	
SBayesR*	was	intended	to	provide	a	clear	comparison	between	BayesR	and	SBayesR	
prediction	accuracy	using	the	same	data	set	i.e.,	the	whole	UKB	data	set.	In	the	updated	
manuscript	we	only	report	BayesR	(450K	UKB)	versus	SBayesR	(summary	statistics	from	
Yengo	et	al.	2018)	and	SBayesR	2.8M	(450K	UKB	and	2.8	M	common	variants).	This	allows	
for	a	clearer	continuation	from	the	cross-validation	analyses	(in	terms	of	colours	etc.	as	
per	comment	above)	with	the	SBayesR*	values	reported	now	just	in	Table	S1.	
	
-	L150:	B	is	a	correlation	matrix	only	if	the	columns	of	X	are	centered,	in	contrast	to	the	
statement	in	line	146	that	X	entries	are	coded	as	0,1	or	2.	
	
Re:	Thank	you.	Yes	this	was	a	mistake.	We	have	now	updated	the	text	to	read	that	we	
consider	X	to	be	either	catered	or	centred	and	scaled.	Please	see	lines	462-463.	
	
-	The	Methods	section	uses	a	few	undefined	symbols	(e.g.	\sigma^2_g	in	line	179)	
	
Re:	Thank	you	we	have	defined	this	on	lines	533-540.	
	
-	Equation	6:	\theta	is	not	defined	(nor	is	w	right	below	it,	until	we	get	to	Equation	7).	
	
Re:	Thank	you	we	have	now	defined	theta	on	line	502	and	w	on	line	518.	
	
-	Currently	the	simulations	choose	SNPs	that	go	into	each	component	randomly.	Maybe	
it	makes	sense	to	assign	stronger	effects	to	lower-MAF	SNPs	(as	in	Zeng	et	al.	2018	Nat	
Genet)?	
	
Re:	Thank	you.	We	agree	that	this	is	interesting	future	work	and	have	implemented	the	
summary	SBayesS	method.	It’s	exposition	we	are	currently	pursuing	as	future	research.			
	
-	L449:	What's	the	statistical	test	used?	
	
Re:	Thank	you.	The	test	used	was	the	paired	t-test,	which	we	now	report.	Please	see	lines	
171	and	254.		
	
-	I	didn't	understand	the	difference	between	the	2K,	4K,	10K	results	of	Figs.	S8	and	S9.	
Why	are	the	results	(and	reported	runtimes)	different?	And	why	do	we	need	these	two	



separate	figures?	What's	different	about	them?	Could	it	be	that	the	caption	for	Fig.	S9	
should	state	that	it	evaluates	BayesR	instead	of	SBayesR?	
	
Re:	We	thank	the	reviewer	for	this	comment.	We	apologise	for	the	confusion	but	these	
figures	are	a	justification	of	MCMC	chain	length	for	BayesR	(S7)	and	SBayesR	(S8).	
Runtimes	indicate	the	change	in	runtime	with	the	change	in	length.	These	figures	are	
important	to	show	the	reader	that	the	choice	of	10,000	MCMC	iterations	is	adequate	to	
produce	consistent	predictions.	
	
-	Supp	Figure	references	should	be	double-checked	(e.g.	Figure	S11	is	never	referenced,	
and	Figure	S17	is	referenced	before	Figures	S15-S16).	
	
Re:	Thank	you	these	have	been	double	checked.	
	
-	L494:	Since	the	improvement	was	only	for	8/10	traits,	I	would	remove	the	word	
"consistently",	which	implies	a	100%	improvement	rate.	
	
Re:	Thank	you	this	has	been	updated.	
	
-	L20:	"with	the	best	estimate	of	each	marker’s	effect	requiring	the	effects	to	be	treated	
as	random"	->	I	found	this	statement	confusing	and	difficult-to-parse.	
	
Re:	We	agree	and	this	section	has	been	updated.	
	
Typos	
-----------------------------	
L12:	generated	3	->	generated	
	
L451:	an	relative	->	a	relative	
	
L620:	a	contributed	->	contributed	
	
L684:	Gazel	->	Gazal	
	
Re:	Thank	you	these	have	been	updated.	
	
	
	
	
	
 



Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The authors have responded to my comments, and in my view done an excellent job, performing 
substantial further analyses that satisfy my previous (minor) concerns. Im particularly interested 
to see the results from 1000G and the subsampling of UKBB - as I mentioned in my previous 
comments, 1000G is probably the most widely used reference panel, and so intereting to learn 
that while it suffices for heritability estimation (say) it is too small for prediction  
Thanks  
Signed Doug Speed  
 
 
 
Reviewer #2:  
Remarks to the Author:  
I thank the authors for their thorough revision, which fully addressed my previous concerns. I am 
very happy with the revision, except for the following new concerns:  
 
 
Major concerns  
--------------  
- The authors estimate h^2 for case-control data using the transformation of [1], which has been 
shown to be severely biased (e.g. [2,3,4]). Can the authors demonstrate via simulations that there 
is no bias in this case? If yes, can they explain how come that this model (which is an extended 
version of an LMM) fixes the bias found in standard LMMs? Otherwise I suggest to mention this 
caveat and to remove the estimation of T2D h^2 from the manuscript.  
 
 
Minor concerns  
--------------  
- The discrepancy between LDSC and HEreg in Sup. Fig. 4 is surprising, given that in some 
circumstances they are equivalent [4]. Could this be due to the use of a "different flavor of 
heritability" in LDSC compared with other methods, which extrapolates per-SNP h^2 estimates to 
a specific set of common SNPs found in the reference panel [5,6]?  
 
- Does the GCTB software estimate LD using hard-calls of imputed SNPs, rather than dosage 
estimates? This is what it seems like from the documentation, given that it uses Plink files. If it 
does, please mentioned and explain this caveat.  
 
- When computing sumstats using BOLT-LMM, did you use the observed sample size? Recent 
BOLT-LMM publications proposed using a corrected estimate of "effective sample size". I don't 
suggest that you redo all the analyses from scratch, but this technical comment should at least be 
mentioned [7].  
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[3] Hayeck, T. J. et al. (2015). Mixed model with correction for case-control ascertainment 
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[4] Loh, P. R. et al. (2015). Contrasting genetic architectures of schizophrenia and other complex 
diseases using fast variance-components analysis. Nature genetics, 47(12), 1385.  
[5] Bulik-Sullivan et al. (2015). An atlas of genetic correlations across human diseases and traits. 



Nature genetics, 47(11), 1236.  
[6] http://www.nealelab.is/blog/2017/9/14/heritability-501-ldsr-based-h2-in-ukbb-for-the-
technically-minded  
[7] Loh et al. (2018). Mixed-model association for biobank-scale datasets. Nature genetics, 50(7), 
906. 



Reviewer	#1	(Remarks	to	the	Author):	
	
The	authors	have	responded	to	my	comments,	and	in	my	view	done	an	
excellent	job,	performing	substantial	further	analyses	that	satisfy	my	previous	
(minor)	concerns.	Im	particularly	interested	to	see	the	results	from	1000G	
and	the	subsampling	of	UKBB	-	as	I	mentioned	in	my	previous	comments,	
1000G	is	probably	the	most	widely	used	reference	panel,	and	so	intereting	to	
learn	that	while	it	suffices	for	heritability	estimation	(say)	it	is	too	small	for	
prediction.	
	
Thanks	
	
Signed	Doug	Speed	
	
Re.	We	would	like	to	again	thank	the	reviewer	for	their	time	and	effort	reviewing	our	
manuscript.	We	believe	it	has	substantially	improved	the	research	and	its	presentation.	
	
Reviewer	#2	(Remarks	to	the	Author):	
	
I	thank	the	authors	for	their	thorough	revision,	which	fully	addressed	my	
previous	concerns.	I	am	very	happy	with	the	revision,	except	for	the	following	
new	concerns:	
	
Re.	We	again	thank	the	reviewer	for	their	time	and	effort	reviewing	our	manuscript	and	
appreciate	their	further	comments.	
	
Major	concerns	
--------------------	
-	The	authors	estimate	h^2	for	case-control	data	using	the	transformation	of	
[1],	which	has	been	shown	to	be	severely	biased	(e.g.	[2,3,4]).	Can	the	authors	
demonstrate	via	simulations	that	there	is	no	bias	in	this	case?	If	yes,	can	they	
explain	how	come	that	this	model	(which	is	an	extended	version	of	an	LMM)	
fixes	the	bias	found	in	standard	LMMs?	Otherwise	I	suggest	to	mention	this	
caveat	and	to	remove	the	estimation	of	T2D	h^2	from	the	manuscript.	
	
Re.	We	thank	the	reviewer	for	this	important	comment	and	agree	that	the	PCGC	estimator	
of	Golan	et	al.	2014[1]	has	been	shown	to	be	a	reliable	estimator	of	SNP-based	heritability	
estimation	in	case-control	settings.	In	the	updated	manuscript,	we	maintain	the	reporting	
of	the	results	for	binary	traits	for	completeness	in	simulation	and	for	T2D	in	cross-validation	
but	have	replaced	the	HE	regression	estimate	with	that	from	S-PCGC[2].	Please	see	Methods	
for	 a	 description	 of	 the	 running	 of	 the	 S-PCGC	 (lines	 649-657).	We	 report	 the	marginal	
heritability	estimate	as	recommended	for	T2D.	The	results	from	S-PCGC	coincide	well	with	
the	truth	in	simulation	and	are	more	in	line	with	the	other	results	for	T2D	compared	with	
the	previously	reported	HE	regression	result.	We	have	also	added	to	the	discussion	a	caveat	
that	 the	 estimates	 of	 heritability	 reported	 from	 binary	 traits	 should	 be	 interpreted	



carefully,	particularly	when	cases	are	oversampled	or	sample	prevalence	is	very	low.	Please	
see	lines	389-391.	
	
Minor	concerns	
	
--------------			
-	The	discrepancy	between	LDSC	and	HEreg	in	Sup.	Fig.	4	is	surprising,	given	
that	in	some	circumstances	they	are	equivalent	[4].	Could	this	be	due	to	the	use	
of	 a	 "different	 flavor	 of	 heritability"	 in	 LDSC	 compared	with	 other	methods,	
which	extrapolates	per-SNP	h^2	estimates	 to	a	 specific	 set	of	 common	SNPs	
found	in	the	reference	panel	[5,6]?	
	
Re.	We	thank	the	reviewer	for	this	comment	and	agree	that	the	results	are	surprising.	When	
estimating	 h^2_SNP	 in	 this	 simulation	 using	 LDSC	 we	 performed	 many	 checks	 on	 the	
implementation	as	the	results	were	not	in	line	with	our	expectation.	To	further	investigate	
these	results	we	subsetted	the	variants	used	in	the	analysis	to	only	those	that	are	in	the	LDSC	
provided	 1000	Genomes	European	LD	 score	 file.	 Using	 these	 down	 sampled	 variants	we	
generated	 two	 simulation	 scenarios,	 one	 with	 1,500	 causal	 variants	 sampled	 from	 a	
standard	 normal	 distribution,	 and	 another	 using	 all	 variants	 (approx.	 29000)	 as	 causal	
sampled	from	a	standard	normal,	which	is	more	in	line	with	the	model	assumptions	of	LDSC	
and	HEreg.	The	heritability	was	again	set	at	a	true	value	of	0.1.	Response	Document	Figure	
1	shows	that	the	LDSC	deflation	is	still	present	relative	to	HE	regression.	
	
When	running	the	LDSC	software	the	reported	software	warning	of	“WARNING:	number	of	
SNPs	less	than	200k;	this	is	almost	always	bad”	is	present	when	we	only	use	variants	from	
chromosomes	21	and	22.	We	have	hypothesised	previously	that	using	this	few	variants	may	
affect	LDSC		h^2_SNP	estimation.	To	investigate	this,	we	simulated	1,500	causal	variants	
sampled	 from	 a	 standard	 normal	 distribution	 on	 HM3	 variants	 (in	 the	 LDSC	 LD-score	
reference)	from	chromosomes	1-3	(approx.	260,000	variants).	Response	Document	Figure	1	
shows	LDSC	h^2_SNP	estimates	appear	unbiased	and	are	in	line	with	HEreg	in	this	scenario.		
	
We	believe	that	this	is	the	most	likely	driver	of	the	small	downward	bias.	We	now	provide	
this	 caveat	 in	 the	 caption	 of	 Figure	 S4	 and	 in	 the	 results	 for	 the	 chromosome	 21-22	
simulation	in	the	Supplemental	Note	(top	of	page	36).	
	

	



	
Response	Document	Figure	1.	Results	for	HE	regression	(HEreg)	and	LDSC	for	three	
scenarios	only	using	common	(MAF	>	0.05)	HM3	variants	in	the	LDSC	software	provided	
1000	Genomes	European	LD	score	file.	Panel	one	shows	results	from	simulation	scenario	
with	1500	causal	variants	on	chromosomes	1-3.	Panel	two	shows	results	from	simulation	
scenario	with	1500	causal	variants	on	chromosomes	21-22.	Panel	 three	shows	results	
from	 simulation	 scenario	 with	 29000	 (all	 variants	 on	 chr	 21-22)	 causal	 variants	 on	
chromosomes	21-22.	True	heritability	is	0.1	in	each	scenario.	
	
-	Does	the	GCTB	software	estimate	LD	using	hard-calls	of	imputed	SNPs,	rather	
than	 dosage	 estimates?	 This	 is	 what	 it	 seems	 like	 from	 the	 documentation,	
given	that	it	uses	Plink	files.	If	it	does,	please	mentioned	and	explain	this	caveat.	
	
Re.	We	thank	the	reviewer	for	this	comment,	and	yes	the	GCTB	software	is	only	currently	
capable	of	using	hard-call	genotypes.	As	much	of	the	analyses	are	performed	using	variants	
with	 high	 imputation	 accuracy	we	 believe	 that	 the	 use	 of	 dosage	 values	 are	 unlikely	 to	
influence	the	current	results.	However,	we	agree	that	this	is	an	important	point	and	may	be	
important	for	more	poorly	imputed	genotypes.	We	now	have	made	reference	to	this	in	the	
discussion	and	stated	that	it	is	a	likely	future	capability	of	GCTB.	Please	see	lines	359-363.	
	
-	When	computing	sumstats	using	BOLT-LMM,	did	you	use	the	observed	sample	
size?	Recent	BOLT-LMM	publications	proposed	using	a	corrected	estimate	of	
"effective	 sample	 size".	 I	 don't	 suggest	 that	 you	 redo	 all	 the	 analyses	 from	
scratch,	 but	 this	 technical	 comment	 should	 at	 least	 be	 mentioned	 [7].	
	
Re.	 We	 thank	 the	 reviewer	 for	 this	 comment.	 The	 SBayesR	 model	 is	 derived	 under	 the	
assumption	that	the	summary	statistics	have	been	generated	from	a	least-squares	analysis.	
Summary	statistics	generated	from	an	LMM	are	not	equivalent	to	those	from	least	squares,	
which	affects	 the	 reconstruction	of	X’y	 in	 the	SBayesR	model.	We	now	mention	 this	as	a	
caveat	in	the	Discussion	and	make	further	reference	to	the	corrected	estimate	of	"effective	
sample	size"	from	Loh	et	al.	2018	[3]	as	a	potential	remedy.	Please	see	lines	384-387.	

	
[1]	Golan,	D.	et	al.	(2014).	Measuring	missing	heritability:	inferring	the	
contribution	of	common	variants.	Proceedings	of	the	National	Academy	of	
Sciences,	111(49),	E5272-E5281.	
[2]	Weissbrod,	O.,	Flint,	J.	&	Rosset,	S.	Estimating	SNP-based	heritability	and	
genetic	correlation	in	case-control	studies	directly	and	with	summary	
statistics.	The	American	Journal	of	Human	Genetics	103,	89–99	(2018).		
[3]	Loh	et	al.	(2018).	Mixed-model	association	for	biobank-scale	datasets.	
Nature	genetics,	50(7),	906. 

 



Reviewers' Comments:  
 
Reviewer #2:  
Remarks to the Author:  
I thank the authors for fully addressing my comments and for the effort they clearly made. I am 
very happy with the revised manuscript. I would like to point out that it is a very impressive work 
that will hopefully set future standards for PRS studies.  
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