
Supplementary Information for
“Evolutionary games on isothermal

graphs”

Benjamin Allen, Gabor Lippner, and Martin A. Nowak

Contents

Supplementary Note 1: Derivation of conditions for success 2
1.1 Model and notation . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Isothermal graphs . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Evolutionary process . . . . . . . . . . . . . . . . . . . 3

1.2 Weak selection analysis . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Coalescence times . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Conditions for success: death-Birth or birth-Death . . . . . . . 7
1.5 Conditions for success: Birth-death or Death-birth . . . . . . . 8
1.6 Extension to arbitrary 2× 2 games . . . . . . . . . . . . . . . 8

Supplementary Note 2: Bounds on effective degree 9
2.1 Background on hitting times . . . . . . . . . . . . . . . . . . . 9
2.2 Spectral gap bounds on remeeting times . . . . . . . . . . . . 10
2.3 Quantile bounds for an arbitrary isothermal graph . . . . . . . 11
2.4 Isothermal expander graphs . . . . . . . . . . . . . . . . . . . 12
2.5 Arithmetic and harmonic mean bounds . . . . . . . . . . . . . 13
2.6 Sharper bounds for large spectral gap . . . . . . . . . . . . . . 14

Supplementary Note 3: Examples 16
3.1 Wheel graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Island model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Power-law graphs . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Quantile bounds . . . . . . . . . . . . . . . . . . . . . 21

1



3.3.2 Sharper bounds for g > 1/2 . . . . . . . . . . . . . . . 22

Supplementary Note 4: Diffusible public goods 23

Supplementary Note 5: Non-isothermalizable topologies 27

Supplementary Note 1: Derivation of condi-

tions for success

The conditions for a type to be favored on an arbitrary weighted graph, for
weak selection, were derived in Refs. [1, 2]. Here we provide a simplified
derivation for the case of isothermal graphs.

1.1 Model and notation

1.1.1 Isothermal graphs

In our model, population structure is described by a weighted isothermal
graph G with weights wij. The graph is undirected (wij = wji for each
i, j) and has no self-loops (wii = 0 for all i). For all update rules we will
consider, transition probabilities depend on relative, rather than absolute,
edge weights. Because of this we may scale edge weights so that

∑
j∈Gwij = 1

for each vertex i, without loss of generality.
The Simpson degree of vertex i is defined as

κi =

(∑
j∈G

w2
ij

)−1

.

Random walks on G are defined with step probabilities equal to edge
weights: pij = wij for each pair of vertices i and j. The probability that an

n-step random walk from i terminates at j is denoted p
(n)
ij . Note that

p
(2)
ii =

∑
j∈G

w2
ij = κ−1

i .

The stationary distribution for random walks on isothermal graphs is uni-
form: πi = 1/N for each i ∈ G. We also have the reversibility property

p
(n)
ij = p

(n)
ji .
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The adjacency matrix of an isothermal graph G is symmetric and doubly
stochastic. It therefore has real eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λN .
Moreover, λ2 < 1 as long as G is connected. The spectral gap is defined as
g = 1− λ2.

1.1.2 Evolutionary process

The type occupying vertex i is denoted xi ∈ {0, 1}, with 1 corresponding
to A and 0 corresponding to B. The population state is given by the vector
x = (xi)i∈G ∈ {0, 1}G.

There are two competing types, A and B, corresponding to two strategies
in the matrix game: (A B

A a b
B c d

)
, (1)

In a given state, the edge-weighted average payoff to vertex i is denoted
fi(x) =

∑
j∈Gwijfij(x), where fij(x) is the game payoff that i receives from

interacting with j in state x.
Payoff is translated into fecundity by Fi = 1 + δfi(x), where δ ≥ 0

quantifies the strength of selection. The case δ = 0 represents neutral drift,
for which the game has no effect on selection. Weak selection is the regime
0 < δ � 1.

Each time-step, an individual in a particular vertex i is chosen to re-
produce, and the offspring replaces the occupant of another vertex j. The
probability that i replaces j in a given state x, which we denote by eij(x),
depends on the specified update rule:

eij(x) =



1

N

(
wijFi(x)∑
k∈GwkjFk(x)

)
death-Birth (dB)

(
(Fj(x))−1∑
k∈G (Fk(x))−1

)
wij Death-birth (Db)

(
Fi(x)∑
k∈G Fk(x)

)
wij Birth-death (Bd)

1

N

(
wij (Fj(x))−1∑
k∈Gwik (Fk(x))−1

)
birth-Death (bD)

(2)
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(The above replacement probabilities are stated for isothermal graphs with∑
j wij = 1 for each i. For arbitrary weighted graphs, the wij in the above

formulae are replaced by pij = wij/
∑

k wik. Note that these pij, and by ex-
tension the transition probabilities, are invariant to rescaling all edge weights
by a constant.)

For neutral drift (δ = 0), the probability that i replaces j is eij = wij/N
for all four update rules. This property is particular to isothermal graphs,
and does not hold for the more general class of weighted undirected graphs.

There are two absorbing states: the state 1 for which only type A is
present (xi = 1 ∀i ∈ G), and the state 0 for which only type B is present
(xi = 0 ∀i ∈ G). All other states are transient [3, Theorem 2]. We define the
fixation probability of A, denoted ρA, as the expected probability of reaching
state 1 from an initial state with a single A at a uniformly chosen random
vertex, and all other vertices having type B. Likewise, we define the fixation
probability of B, denoted ρB, as the expected probability of reaching state 1
from an initial state with a single B at a uniformly chosen random vertex,
and all other vertices having type A.

1.2 Weak selection analysis

The expected change in the number of A’s from a given state x can be
expressed as

∆(x) =
∑
i,j∈G

eij(x)(xi − xj). (3)

We compute this for the four update rules, based on Supplementary Equa-
tion 2

∆(x) =



1

N

∑
j∈G

(
−xj +

∑
i∈G xiwijFi(x)∑
k∈GwkjFk(x)

)
dB

∑
j∈G
(
(Fj(x))−1 (−xj +

∑
i∈G xiwij

))∑
k∈G (Fk(x))−1 Db

∑
i∈G

(
Fi(x)

(
xi −

∑
j∈G xjwij

))
∑

k∈G Fk(x)
Bd

1

N

∑
i∈G

(
xi −

∑
j∈G xjwij (Fj(x))−1∑
k∈Gwik (Fk(x))−1

)
bD.

(4)
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We observe that for neutral drift (δ = 0), ∆(x) = 0 for each state x.

For weak selection, we require the derivative, ∆′(x) = d∆(x)
dδ
|δ=0. These

derivatives can be expressed as

∆′(x) =


1
N

∑
i∈G xi

(
fi(x)− f (2)

i (x)
)

dB or bD

1
N

∑
i∈G xi

(
fi(x)− f (1)

i (x)
)

Bd or Db.
(5)

Above, we have introduced the notation f
(n)
i (x) =

∑
j p

(n)
ij fj(x) for the ex-

pected payoff to the vertex at the end of an n-step random walk from i.
We say that A is favored under weak selection if ρA > ρB to first or-

der in δ. Allen and McAvoy [2] showed this criterion can be evaluated by
computing the expectation of ∆(x) over a particular probability distribution
of population states x. This distribution, called the neutral rare-mutation
conditional distribution, is obtained by (i) fixing δ = 0, (ii) introducing a
mutation probability u > 0 to obtain a stationary distribution over states,
(iii) conditioning this stationary distribution on both types being present,
and (iv) taking the u → 0 limit. Denoting expectations over the neutral
rare-mutation conditional distribution by 〈 〉, Allen and McAvoy [2] showed
that A is favored under weak selection if and only if

〈∆′〉 > 0. (6)

1.3 Coalescence times

The conditions for success under weak selection can be expressed in terms of
coalescence times. Coalescence times are defined by considering a discrete-
time process in which two random walkers start at vertices i and j. At each
time, one of them is chosen, with equal probability, to take a step according
to the usual step probabilities pij. We denote the positions of the walkers at
time t by the pair (Xt, Yt), where Xt and Yt are random variables with values
in G.

Suppose that the two walkers start at vertices i and j: (X0, Y0) = (i, j).
Let Mij denote the time until the walkers meet: Mij = min{t ≥ 0 : X(t) =
Y (t)}. The coalescence time is defined as τij = E[Mij]. These coalescence
times satisfy the recurrence relation

τij =

{
0 i = j

1 + 1
2

∑
k∈G (wikτjk + wjkτik) i 6= j.

(7)

5



For isothermal graphs, this coalescing random walk applies to all four
update rules. (For arbitrary weighted graphs, the coalescing random walk
varies for different update rules [2, 1].)

Of particular interest is the remeeting time for two walkers from the
same vertex. Suppose both walkers start at vertex i: (X0, Y0) = (i, i). Let
M+

ii denote the first positive time for which the walkers occupy the same
vertex: M+

ii = min{t > 0 : X(t) = Y (t)}. We define the remeeting time as
τi = E[M+

ii ]. Remeeting times are related to coalescence times by

τi = 1 +
∑
j∈G

wijτij. (8)

Remeeting times satisfy a return-time identity [1], which in the isothermal
case is ∑

i∈G

τi = N2. (9)

Another important quantity is the remeeting time τ (n) from the two ends
of an n-step random walk started from stationarity:

τ (n) =
1

N

∑
i,j∈G

p
(n)
ij τij. (10)

The τ (n) satisfy the recurrence relation

τ (n+1) = τ (n) +
1

N

∑
i∈G

p
(n)
ii τi − 1. (11)

Using Supplementary Equations 9 and 11, and recalling the absence of self-
loops (p

(1)
ii = 0), we obtain

τ (0) = 0 (12)

τ (1) = N − 1 (13)

τ (2) = N − 2 (14)

τ (3) = N +
1

N

∑
i∈G

τip
(2)
ii − 3. (15)

Defining the effective degree κ̃ as

κ̃ =

∑
i∈G τi∑

i∈G τiκ
−1
i

= N2

(∑
i

τiκ
−1
i

)−1

= N2

(∑
i

τip
(2)
ii

)−1

,
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we can rewrite Supplementary Equation 15 as

τ (3) = N +N/κ̃− 3. (16)

Statistics of spatial assortment can be obtained from coalescence times
[4, 5]. Eq. (111) of Allen and McAvoy [2] implies that, for each i, j ∈ G,

τij ∝
1

2
− 〈xixj〉. (17)

Let us define x
(n)
i =

∑
j∈G p

(n)
ij xj to be the expected value of the type at the

end of an n-step random walk from i. Then from Supplementary Equations
10 and 17 we have ∑

i∈G

〈
xi

(
x

(m)
i − x(n)

i

)〉
∝ τ (n) − τ (m). (18)

1.4 Conditions for success: death-Birth or birth-Death

We will first consider the donation game

( A B

A b− c −c
B b 0

)
, (19)

in which type A pays a cost c to give a benefit b to its partner. We will
extend our results to the general game, Supplementary Equation 1, in Sup-
plementary Note 1.6. For the donation game (Supplementary Equation 19),
the payoff to vertex i can be written

fi = −cxi + bx
(1)
i . (20)

To determine the condition for A to be favored for dB or bD updating,
we compute

〈∆′〉 =
1

N

∑
i∈G

〈
xi

(
fi − f (2)

i

)〉
=

1

N

∑
i∈G

(
−c
〈
xi

(
xi − x(2)

i

)〉
+ b
〈
xi

(
x

(1)
i − x

(3)
i

)〉)
.
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Applying Supplementary Equations 6 and 18, we obtain the condition

− cτ (2) + b
(
τ (3) − τ (1)

)
> 0. (21)

Now using Supplementary Equations 13–15, we find that A is favored under
weak selection if and only if

− c(N − 2) + b (N/κ̃− 2) > 0. (22)

1.5 Conditions for success: Birth-death or Death-birth

For Bd or Db updating, we compute

〈∆′〉 =
1

N

∑
i∈G

〈
xi

(
fi − f (1)

i

)〉
=

1

N

∑
i∈G

(
−c
〈
xi

(
xi − x(1)

i

)〉
+ b
〈
xi

(
x

(1)
i − x

(2)
i

)〉)
.

Applying Supplementary Equations 6 and 18 yields the condition

− cτ (1) + b
(
τ (2) − τ (1)

)
> 0. (23)

Substituting from Supplementary Equations 13–15, we obtain that A is fa-
vored under weak selection if and only if

− c(N − 1)− b > 0. (24)

1.6 Extension to arbitrary 2× 2 games

We turn now to the general 2 × 2 game, given in Supplementary Equation
1. The Structure Coefficient Theorem [6] states that, for a general class
of evolutionary game theory processes, including those considered here, the
condition for success under weak selection takes the form

σa+ b > c+ σd, (25)

for some structure coefficient σ that is independent of the game matrix.
Defining C = −1

2
(a + b − c − d) and B = 1

2
(a − b + c − d), we observe that

Supplementary Equation 25 becomes equivalent to

− (σ + 1)C + (σ − 1)B > 0. (26)
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The value of σ for a given graph and update rule can be determined by
comparing Supplementary Equation 25 to Supplementary Equations 22 and
24 in the case of the donation game (Supplementary Equation 19). Solving
for σ yields

σ =

{
κ̃+1−4κ̃/N

κ̃−1
dB or bD

(N − 2)/N Bd or Db.
(27)

Combining Supplementary Equations 25 and 27 gives Eqs. (4) and (9) of
the main text. Combining Supplementary Equations 26 and 27 and simpli-
fying gives the conditions{

−(N − 1)C −B > 0 Bd or Db

−C(N − 2) +B (N/κ̃− 2) > 0 dB or bD,
(28)

as stated in Eqs. (5) and (10) of the main text.

Supplementary Note 2: Bounds on effective

degree

Here we derive upper and lower bounds on the remeeting time τi from a
single vertex, in terms of the spectral gap g, and use these to obtain bounds
on the effective degree κ̃.

2.1 Background on hitting times

For a single random walk on G, let hij denote the expected hitting time
to vertex j when starting from vertex i. These hitting times satisfy the
recurrence equations {

hij = 1 +
∑

k wikhkj for i 6= j,

hii = 0 for all i.
(29)

Since the stationary distribution on isothermal graphs is uniform, it follows
from the return-time identity (e.g. [7, Lemma 2.5]) that the expected time
for a random walk to return to its initial vertex is N , regardless of which
initial vertex is used. Combining with Supplementary Equation 29, we have
the identity

1 +
∑
k

wikhik = N. (30)
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Let h∗j = 1
N

∑
i hij denote the expected hitting time to j from a vertex

chosen uniformly at random. Corollary 3.14 of Ref. [7] gives the identity

hij − h∗j = hji − h∗i. (31)

Proposition 3.17 of Ref. [7] gives bounds on h∗j in terms of the spectral
gap. In the case of an isothermal graph with no self-loops, these bounds are

(N − 1)2

N
≤ h∗j ≤

N − 1

g
, (32)

for all vertices j.

2.2 Spectral gap bounds on remeeting times

We ultilize the bounds in Supplementary Equation 32 to obtain bounds on
the remeeting times τi.

Theorem. For each i ∈ G,

2N − N − 1

g
− 2N − 1

N
≤ τi ≤

N − 1

g
+

2N − 1

N
. (33)

We note that the lower bound in Supplementary Equation 33 is not nec-
essarily positive.

Proof. Our proof is a variation on the proof of Proposition 14.5 of Ref. [7].
Consider the process of two random walkers (Xt, Yt)

∞
t=0 described in Supple-

mentary Note 1.3, where both walkers start at vertex i: (X0, Y0) = (i, i). We
define the real-valued stochastic process (St)

∞
t=0 by

St =

{
N − h∗i t = 0

t+ hXtYt − h∗Yt t ≥ 1
(34)

Supplementary Equations 29, 30, and 31 imply that St for 0 ≤ t ≤ M+
ii is a

Martingale. We then have

N − h∗i = S0

= E[SM+
ii

] by the Optional Stopping Theorem [8]

= E[M+
ii ]− E

[
h∗Y

M+
ii

]
by the construction of St

= τi − E
[
h∗Y

M+
ii

]
by definition of τi.
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Rearranging,

τi = N − h∗i + E
[
h∗Y

M+
ii

]
. (35)

The upper bound on τi is obtained by applying the lower bound in Supple-
mentary Equation 32 to the second term of Supplementary Equation 35, and
the upper bound in Supplementary Equation 32 to the third term of Supple-
mentary Equation 35. Applying these bounds in the opposite fashion gives
the lower bound on τi.

We note that the average of the upper and lower bounds in Supplemen-
tary Equation 33 is N , which is equal to the average value of τi according to
Supplementary Equation 9. We also observe that as N →∞, the lower and
upper bounds are asymptotically N(2−g−1)+O(1) and Ng−1+O(1), respec-
tively. Thus, in the N →∞ limit, the lower bound is relevant (i.e., positive)
for g > 1/2.

2.3 Quantile bounds for an arbitrary isothermal graph

Recall that κ̃ is a weighted harmonic average of the Simpson degrees κi.
The weights τi are bounded by Supplementary Equation 33. Upper and
lower bounds on κ̃ can therefore be obtained by placing the maximum weight
on vertices that have the largest or smallest Simpson degrees, respectively,
taking into account that the sum of the τi is constrained by Supplementary
Equation 9.

To formalize this idea, we introduce the quantity

ĝ =

(
N − 1

Ng
+

2N − 1

N2

)−1

, (36)

so that the bounds in Supplementary Equation 33 become

N(2− ĝ−1) ≤ τi ≤ Nĝ−1. (37)

We note that ĝ = g + O(N−1) as N → ∞, and also that ĝ > g as long as
g < 1/2.

We write the effective degree of G in the form

κ̃ =

(∑
i∈G

( τi
N2

)
κ−1
i

)−1

. (38)
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By Supplementary Equations 9 and 33, the weights, τi/N
2, are subject to

the constraints
τi
N2
≤ 1

Nĝ
,

∑
i∈G

τi
N2

= 1. (39)

Next we index the vertices in order of increasing Simpson degree, so that

κ1 ≤ κ2 ≤ · · · ≤ κN . (40)

We define H[0,ĝ][κ] to be the harmonic average over the fraction ĝ of vertices
with the smallest Simpson degree:

H[0,ĝ][κ] =

 1

Nĝ

bNĝc∑
i=1

κ−1
i +

(
1− bNĝc

Nĝ

)
κ−1
bNĝc+1

−1

. (41)

Above, bNĝc denotes the greatest integer less than or equal to Nĝ (i.e. the
floor function of Nĝ). In Supplementary Equation 41, the bNĝc vertices with
the smallest Simpson degree are each given weight 1/(Nĝ). The remainder of
the weight is placed on the vertex with next-smallest Simpson degree κbNĝc+1,
so that the total weights sum to one.

Similarly, we define H[1−ĝ,1][κ] to be the harmonic average over the fraction
ĝ of vertices with the largest Simpson degree:

H[1−ĝ,1][κ] =

(1− bNĝc
Nĝ

)
κ−1
N−bNĝc +

1

Nĝ

N∑
i=N−bNĝc+1

κ−1
i

−1

. (42)

H[0,ĝ][κ] and H[1−ĝ,1][κ] represent the smallest and largest values, respec-
tively, of the right-hand side of Supplementary Equation 38 that are achiev-
able under the constraints of Supplementary Equation 39. We therefore have

H[0,ĝ][κ] ≤ κ̃ ≤ H[1−ĝ,1][κ]. (43)

2.4 Isothermal expander graphs

We now consider a sequence of isothermal graphs {Gj}∞j=1 with corresponding
sizes Nj and spectral gaps gj. We define this to be a sequence of isothermal
expander graphs if limj→∞Nj = ∞ and lim infj→∞ gj > 0. By passing to a
subsequence if necessary, we can assume limj→∞ gj = g > 0. Notice that this
also entails limj→∞ ĝj = g.
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To obtain limiting values of the bounds in Supplementary Equation 43 for
such a sequence, we turn the degree sequence for graph Gj (Supplementary
Equation 40) into a quantile function—a nondecreasing piecewise-constant
function κj(x), defined for 0 < x ≤ 1. Let κi,j denote the ith smallest
Simpson degree among the vertices of Gj. We then define κj(x) = κdNjxe,j,
where d e denotes the ceiling function. Supplementary Equations 41 and 42
can then be rewritten as

H[0,ĝj ][κj] =

(
ĝ−1
j

∫ ĝj

0

(
κj(x)

)−1
dx

)−1

(44)

H[1−ĝj ,1][κj] =

(
ĝ−1
j

∫ 1

1−ĝj

(
κj(x)

)−1
dx

)−1

. (45)

Now suppose that as j → ∞, κj(x) converges pointwise to some real-
valued function κ(x) on the interval [0, 1). Then κ(x) is the quantile function
of the limiting Simpson degree distribution. That is, a fraction x of the
Simpson degrees lie below κ(x), for each 0 ≤ x < 1. We allow for the
possibility that limx→1 κ(x) =∞.

As j →∞, the bounds in Supplementary Equation 43 converge to

κ[0,g] ≤ κ̃ ≤ κ[1−g,1], (46)

with the limiting bounds given by the limits of Supplementary Equations 44
and 45, respectively:

κ[0,g] = lim
j→∞

H[0,ĝj ][κj] =

(
g−1

∫ g

0

(
κ(x)

)−1
dx

)−1

(47)

κ[1−g,1] = lim
j→∞

H[1−ĝj ,1][κj] =

(
g−1

∫ 1

1−g

(
κ(x)

)−1
dx

)−1

. (48)

Convergence is guaranteed by the Dominated Convergence Theorem, using

the fact that 0 <
(
κj(x)

)−1 ≤ 1 for all j ≥ 1 and all x ∈ [0, 1). Supplementary
Equation 46 is Eq. (6) of the main text.

2.5 Arithmetic and harmonic mean bounds

We can also obtain simpler, but looser, bounds that depend only on the
arithmetic and harmonic mean Simpson degree. We begin with a single
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isothermal graph G. For a lower bound, using Supplementary Equation 37,
we have

κ̃ =

(∑
i∈G

τi
N2

κ−1
i

)−1

≥

(
1

Nĝ

∑
i∈G

κ−1
i

)−1

= ĝκ̄H, (49)

where κ̄H denotes the (unweighted) harmonic average Simpson degree.
For the upper bound, we have the following series of inequalities:

H[1−ĝ,1][κ] ≤ A[1−ĝ,1][κ] ≤ 1

ĝ
κ̄A. (50)

Above, A[1−ĝ,1][κ] is the arithmetic average of the fraction ĝ of Simpson de-
grees that are the largest, defined similarly to H[1−ĝ,1][κ]. κ̄A = A[0,1][κ] is
the average Simpson degree over all vertices. The first inequality in Sup-
plementary Equation 50 is the arithmetic-harmonic means inequality, while
the second reflects the fact that 1

ĝ
κ̄A can be obtained by adding additional

positive terms to A[1−ĝ,1][κ].
Combining Supplementary Equations 46, 49, and 50, we have

ĝκ̄H ≤ κ̃ ≤ κ̄A

ĝ
. (51)

Turning now to a sequence of isothermal expander graphs {Gj}∞j=1, the
bounds in Supplementary Equation 51 converge to

gκ̄H ≤ κ̃ ≤ κ̄A

g
. (52)

This is Eq. (7) of the main text. We note that, for any given graph with
spectral gap g < 1/2, the bounds in Supplementary Equation 51 are stronger
than those in Supplementary Equation 52, since ĝ > g in this case. We also
note that κ̄A may diverge as j →∞; thus the upper bound in Supplementary
Equation 52 may be infinity.

2.6 Sharper bounds for large spectral gap

In the case that the lower bound on τi in Supplementary Equation 37 is pos-
itive, we can further sharpen the bounds on the effective degree by assigning
one bound in Supplementary Equation 37 to the lower half of Simpson de-
grees and the other bound to the upper half. Specifically, suppose the vertices

14



are ordered as in Supplementary Equation 40. Then a lower bound is given
by

κ̃ ≥

 ĝ−1

N

N/2∑
i=1

κ−1
i +

2− ĝ−1

N

N∑
i=N/2+1

κ−1
i

−1

, (53)

if N is even, and

κ̃ ≥

 ĝ−1

N

(N−1)/2∑
i=1

κ−1
i +

κ−1
(N+1)/2

N
+

2− ĝ−1

N

N∑
i=(N+3)/2

κ−1
i

−1

. (54)

if N is odd. Similarly, for an upper bound, we have

κ̃ ≤

2− ĝ−1

N

N/2∑
i=1

κ−1
i +

ĝ−1

N

N∑
i=N/2+1

κ−1
i

−1

, (55)

if N is even, and

κ̃ ≤

2− ĝ−1

N

(N−1)/2∑
i=1

κ−1
i +

κ−1
(N+1)/2

N
+
ĝ−1

N

N∑
i=(N+3)/2

κ−1
i

−1

. (56)

if N is odd.
If we now consider a family of isothermal expander graphs {Gj}∞j=1 as in

the previous section, with limiting spectral gap g > 0 and limiting degree se-
quence described by the real-valued function κ(x), the corresponding bounds
on the effective degree converge to(

1

2g
κ̄−1

low +

(
1− 1

2g

)
κ̄−1

high

)−1

≤ κ̃ ≤
((

1− 1

2g

)
κ̄−1

low +
1

2g
κ̄−1

high

)−1

,

(57)
where κ̄low = H[0, 12 ][κ] and κ̄high = H[ 12 ,1]

[κ] are the harmonic averages of

the smaller and larger half of Simpson degrees, respectively. The bounds in
Supplementary Equation 57 can also be written as

2gκ̄lowκ̄high

(2g − 1)κ̄low + κ̄high

≤ κ̃ ≤ 2gκ̄lowκ̄high

κ̄low + (2g − 1)κ̄high

. (58)
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Supplementary Note 3: Examples

3.1 Wheel graph

The isothermal wheel graph (Fig. 1B of the main text) has n wheel vertices
and one hub. Neighboring wheel vertices are joined by edges of weight (n−
1)/(2n), and each wheel vertex is joined to the hub by an edge of weight
1/n. Let τL,j denote the coalescence time for two leaves that are j apart,
0 ≤ j ≤ n. Clearly, τL,0 = τL,n = 0. Let τLH denote the coalescence time
between a leaf and the hub.

The recurrence relation for coalescence times (Supplementary Equation
7) becomes

τL,j = 1 +
n− 1

2n
(τL,j−1 + τL,j+1) +

1

n
τLH for 1 ≤ j ≤ n− 1, (59)

τLH = 1 +
n− 1

2n
τLH +

1

2n

n−1∑
j=0

τL,j. (60)

For convenience, we define τ ′L,j = τL,j−τLH . Then Supplementary Equations
59–60 become

τ ′L,j = 1 +
n− 1

2n

(
τ ′L,j−1 + τ ′L,j+1

)
for 1 ≤ j ≤ n− 1, (61)

τLH = 2n+
n−1∑
j=0

τ ′L,j. (62)

As an ansatz, we suppose the solution to Supplementary Equation 61 takes
the form

τ ′L,j = a+ b
(
γj + γn−j

)
, (63)

for some a, b, γ depending on n but not on j. Substituting into Supplementary
Equation 61 gives

a+ b
(
γj + γn−j

)
= 1 +

n− 1

2n

(
2a+ b

(
γj−1 + γn−j+1 + γj+1 + γn−j−1

))
= 1 +

n− 1

2n

(
2a+ b

(
γ + γ−1

) (
γj + γn−j

))
.

For this to hold for all 1 ≤ j ≤ n− 1 necessitates that

a = 1 +
n− 1

n
a and (n− 1)

(
γ + γ−1

)
= 2n.
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Solving the above equations yields a = n and

γ =
n−
√

2n− 1

n− 1
, γ−1 =

n+
√

2n− 1

n− 1
.

To solve for b, we substitute into Supplementary Equation 62,

τLH = 2n+
n−1∑
j=0

(
n+ b

(
γj + γn−j

))
= n(n+ 2) + b

(1 + γ)(1− γn)

1− γ
. (64)

Additionally, since τL,0 = 0, we have

τLH = −τ ′L,0 = −n− b(1 + γn). (65)

Combining Supplementary Equations 64 and 65 and solving for b yields

b = −n(n+ 3)

2

(
1− γ

1− γn+1

)
.

Substituting this value of b into Supplementary Equations 65 and 63, we
obtain the coalescence times

τLH =
n(n+ 3)

2

(
(1− γ)(1 + γn)

1− γn+1

)
− n,

τL,j = τ ′L,j + τLH

=
n(n+ 3)

2

(
(1− γ)(1− γj)(1− γn−j)

1− γn+1

)
.

In particular, for neighboring leaves (j = 1), we have

τL,1 =
n(n+ 3)

2

(
(1− γ)2(1− γn−1)

1− γn+1

)
. (66)

Turning now to remeeting times, we compute

τH = 1 + τLH

=
n(n+ 3)

2

(
(1− γ)(1 + γn)

1− γn+1

)
− (n− 1),

τL = 1 + 1
n
τLH + n−1

n
τL,1

=
n+ 3

2

(
(1− γ)(n(1 + γn)− (n− 1)(γ + γn−1))

1− γn+1

)
.
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The Simpson degrees are

κH = n, κL =

(
2

(n− 1)2

4n2
+

1

n2

)−1

=
2n2

(n− 1)2 + 2
.

Using the above values, the effective degree can be calculated as

κ̃ =
(n+ 1)2

τHκ
−1
H + nτLκ

−1
L

. (67)

Asymptotically, as n→∞, we have

τH ∼
n
√
n√
2
, κH ∼ n, τL ∼ n, κL ∼ 2,

where f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1. (The asymptotic ex-
pressions for τH and τL were obtained with the aid of Mathematica.) Substi-
tuting into Supplementary Equation 67 and simplifying gives limn→∞ κ̃ = 2.

3.2 Island model

Here we analyze the island model, shown in Fig. 1C of the main text and
discussed in ‘Promoters of cooperation with infinite average degree’ under
main text results. The model begins with n separate isothermal graphs
(“islands”) G1, . . . , Gn, of respective sizes N1, . . . , Nn. Each individual island
is vertex-transitive, but the size and graph structure may vary across islands.
Since each island is vertex-transitive, all vertices of a given island Gx have
the same Simpson degree κx (but the κx may differ of across islands).

The islands are joined into an overall isothermal graph G by adding an
edge of weight α � 1 between each pair of vertices on different islands.
To maintain a weighted degree of one, the edges within each island Gx are
rescaled by the factor 1− α(N −Nx).

Since each island is vertex-transitive, and each inter-island pair is equally
connected (by weight α), the coalescence time τij from different islands Gx

and Gy depends only on x and y, and not on the particular vertices i ∈ Gx

and j ∈ Gy. Accordingly, we let τGxGy denote the meeting time between a
vertex of Gx and a vertex of Gy, y 6= x.

From Supplementary Equation 7 we have the following recurrence for
coalescence times. For a pair i 6= j on a common island Gx, we have

τij = 1 +
1

2
(1− α(N −Nx))

∑
k∈Gx

(wikτjk + wjkτik) +
∑
y 6=x

αNyτGxGy . (68)
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For inter-island meeting times, we have that for x 6= y,

τGxGy = 1 +
α

2Nx

∑
i,j∈Gy

τij +
α

2Ny

∑
i,j∈Gx

τij

+
α

2

∑
z /∈{x,y}

Nz

(
τGzGy + τGxGz

)
+

(
1− (N −Nx)α

2
− (N −Ny)α

2

)
τGxGy . (69)

We seek an asymptotic solution as α→ 0. As an ansatz, we suppose{
τij = O(1) for i 6= j and i, j ∈ Gx for some x,

τGxGy = Txyα
−1 +O(1) for x 6= y,

(70)

for some collection of values Txy. Substituting in Supplementary Equation
69 and taking α→ 0, we find that the Txy satisfy

2N −Nx −Ny

2
Txy = 1 +

1

2

∑
z /∈{x,y}

Nz(Txz + Tyz). (71)

Defining Txx = 0 for all x = 1, . . . , n, we can rewrite Supplementary Equation
71 as

NTxy = 1 +
1

2

n∑
z=1

Nz(Txz + Tyz). (72)

We have not found a general closed-form solution to Supplementary Equation
72. However, if there are n = 2 islands, or if all islands have the same size,
N/n, the solution is Txy = n/N for all pairs x, y with x 6= y.

Taking α→ 0 in Supplementary Equation 68 yields

τij = 1 +
n∑
y=1

NyTxy +
1

2

∑
k∈Gx

(wikτjk + wjkτik). (73)

This is the same as the recurrence (Supplementary Equation 7) for coales-
cence times on island Gx alone, except the time increment is 1+

∑
y 6=xNyTxy

instead of 1. It follows that, when the islands are joined to form the overall
graph G, all coalescence times from pairs i, j ∈ Gx are scaled by the factor
1 +
∑n

y=1 NyTxy. This scaling applies to remeeting times as well, so that if τ̂i
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is the remeeting time from vertex i on graph Gx alone, the remeeting time
from i on the overall graph G is

τi =

(
1 +

n∑
y=1

NyTxy

)
τ̂i.

We check this solution by computing the overall sum of remeeting times,
which should equal N2 by Supplementary Equation 9:

∑
i∈G

τi =
n∑
x=1

(
1 +

n∑
y=1

NyTxy

)∑
i∈Gx

τ̂i

=
n∑
x=1

(
1 +

n∑
y=1

NyTxy

)
N2
x

=
n∑
x=1

N2
x +

∑
x,y

N2
xNyTxy. (74)

To show this is equal to N2, we multiply Supplementary Equation 72 by
NxNy and sum over all pairs x, y with x 6= y:

N
∑
x,y
x 6=y

NxNyTxy =
∑
x,y
x6=y

NxNy +
1

2

∑
x,y,z
x 6=y

NxNyNz(Txz + Tyz)

N
∑
x,y

NxNyTxy = N −
n∑
x=1

N2
x +

1

2

∑
x,y,z

NxNyNz(Txz + Tyz)−
∑
x,z

N2
xNzTxz

= N −
n∑
x=1

N2
x +N

∑
x,y

NxNyTxy −
∑
x,y

N2
xNyTxy.

This yields the identity

∑
x,y

N2
xNyTxy = N2 −

n∑
x=1

N2
x . (75)

Substituting in Supplementary Equation 74 yields
∑

i∈G τi = N2 as desired.
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We compute the effective degree κ̃ of G as

κ̃ = N2

(
n∑
x=1

∑
i∈Gx

τiκ
−1
i

)−1

= N2

(
n∑
x=1

(
1 +

n∑
y=1

NyTxy

)
κ−1
x

∑
i∈Gx

τ̂i

)−1

= N2

(
n∑
x=1

(
1 +

n∑
y=1

NyTxy

)
N2
xκ
−1
x

)−1

.

So the effective degree κ̃ is a weighted harmonic average of the Simpson de-

grees on the separate islands, with each κx weighted byN2
x

(
1 +

∑n
y=1NyTxy

)
.

In the case that all islands have equal size, (Nx = N/n for all x), the
islands are weighted equally. For n = 2 islands (not necessarily of equal
size), substituting the solution T12 = 2/N to Supplementary Equation 72,
we obtain

κ̃ = N2
(
N2

1 (1 + 2N2/N)κ−1
1 +N2

2 (1 + 2N1/N)κ−1
2

)
= N3

(
N2

1 (N1 + 3N2)κ−1
1 +N2

2 (3N1 +N2)κ−1
2

)−1
.

3.3 Power-law graphs

We now turn to the family of power-law isothermal expander graphs discussed
in ‘Promoters of cooperation with infinite average degree’ under the main
text results. Suppose that, for a family of isothermal expander graphs with
limiting spectral gap g > 0, the Simpson degree distribution converges to
the power-law density f(κ) = (γ − 1)κγ−1

0 κ−γ, valid for κ ∈ [κ0,∞), with
exponent γ ≥ 2.

3.3.1 Quantile bounds

To apply the quantile bounds (Supplementary Equation 46) to this family,
we must determine the quantile function κ(x). For this we solve the equation

x = (γ − 1)κγ−1
0

∫ y

κ0

κ−γ dκ

= 1− (y/κ0)1−γ.
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Solving for y yields the quantile function:

κ(x) = y = κ0(1− x)1/(1−γ). (76)

Now we calculate

H[0,g][κ] =

(
g−1

∫ κ(g)

κ0

f(κ)κ−1dκ

)−1

=

(
g−1(γ − 1)κγ−1

0

∫ κ0(1−g)1/(1−γ)

κ0

κ−γ−1 dκ

)−1

=

(
κ0γ

γ − 1

)
g

1− (1− g)γ/(γ−1)
.

(77)

Similarly,

H[1−g,1][κ] =

(
g−1

∫ ∞
κ(1−g)

f(κ)κ−1

)−1

=

(
g−1(γ − 1)κγ−1

0

∫ ∞
κ0g1/(1−γ)

κ−γ−1

)−1

=
κ0γ

γ − 1
g−1/(γ−1).

(78)

Thus we have the bounds(
γ

γ − 1

)
κ0g

1− (1− g)γ/(γ−1)
≤
(
b

c

)∗
≤
(

γ

γ − 1

)
κ0g

−1/(γ−1). (79)

Note that for all γ > 1, as g → 1, both bounds approach the harmonic
mean Simpson degree, which is κ̄H = κ0γ/(γ−1). These bounds are reported
in Eq. (8) of the main text, and depicted in main text Figure 5.

3.3.2 Sharper bounds for g > 1/2

In the case g > 1/2, we can use the bounds in Supplementary Equation 58.
From Supplementary Equations 77 and 78, we have

κ̄low =
γκ0

2(γ − 1)
(
1− 2−γ/(γ−1)

) ,
κ̄high =

γκ0

2(γ − 1)2−γ/(γ−1)
.
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Supplementary Figure 1: Upper and lower bounds on the effective degree
for graphs with power-law distribution of Simpson degrees: f(κ) ∝ κ−γ, for
κ ∈ [1,∞). For g < 1/2 we use the bounds in Supplementary Equation 79,
while for g > 1/2 we use the sharper bounds in Supplementary Equation 80,
showing also the bounds in Supplementary Equation 79 for comparison.

This leads to(
γ

γ − 1

)
gκ0

2g − 1 + (1− g)2−1/(γ−1)
≤
(
b

c

)∗
≤
(

γ

γ − 1

)
gκ0

1− (1− g)2−1/(γ−1)
.

(80)
Supplementary Figure 1 illustrates these bounds for γ = 2 and γ = 3, both
with κ0 = 1. In both cases, the improvement over the bounds in Supplemen-
tary Equation 79 is relatively small.

Supplementary Note 4: Diffusible public goods

Here we provide derivations for the model described in ‘Diffusible public
goods’ under main text results.

We begin as before with an undirected, connected isothermal graph G. In
a given state, the occupant of each vertex i ∈ G can be a producer (xi = 1)
or a nonproducer (xi = 0). Producers pay a cost C to produce a public good.
This public good diffuses according to a random walk from the producer, so
that the individual at the nth step of this random walk receives benefit bn, for
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all n ≥ 0. The sequence b0, b1, b2, . . . is constrained only by the requirement
that the total benefit B =

∑∞
n=0 bn be finite.

With this setup, the payoff to vertex i in state x is

fi(x) = −Cxi +
∞∑
n=0

bnx
(n)
i . (81)

The expected payoff at the end of an m-step random walk from i is

f
(m)
i (x) = −Cx(m)

i +
∞∑
n=0

bnx
(n+m)
i . (82)

The fraction of the total benefit that vertex j receives from a producer
at vertex i is

φij =
1

B

∞∑
n=0

p
(n)
ij bn. (83)

A key quantity will be the expected fraction of public good received at the
end of a k-step random walk from an initial vertex chosen proportionally to
remeeting time:

φ(k) =
∑
i∈G

τi
N2

∑
j∈G

p
(k)
ij φij. (84)

From Supplementary Equations 5 and 6 (which apply to this model as
well as to pairwise games) we find that the producer type is favored under
weak selection if and only if∑

i∈G

〈
xi

(
fi − f (m)

i

)〉
> 0, (85)

where m = 1 for Bd or Db updating, and m = 2 for dB or bD updating.
Substituting the payoffs from Supplementary Equation 81 and simplifying,
Supplementary Equation 85 becomes

− C
∑
i∈G

〈
xi

(
xi − x(m)

i

)〉
+
∞∑
n=0

bn
∑
i∈G

〈
xi

(
x

(n)
i − x

(n+m)
i

)〉
> 0. (86)

Applying Supplementary Equation 18, this condition becomes

− Cτ (m) +
∞∑
n=0

bn
(
τ (n+m) − τ (n)

)
> 0. (87)
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Let us evaluate the benefit term. Iterating Supplementary Equation 11,
we find

τ (n+m) − τ (n) =
1

N

∑
i∈G

τi

n+m−1∑
`=n

p
(`)
ii −m

=
1

N

∑
i∈G

τi

n+m−1∑
`=n

(
p

(`)
ii −

1

N

)
.

Substituting into the second term on the left-hand side of Supplementary
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Equation 87, we compute

∞∑
n=0

bn
(
τ (n+m) − τ (n)

)
=

1

N

∞∑
n=0

bn
∑
i∈G

τi

n+m−1∑
`=n

(
p

(`)
ii −

1

N

)

=
1

N

∑
i∈G

τi

∞∑
n=0

bn

n+m−1∑
`=n

(∑
j∈G

p
(n)
ij p

(`−n)
ji − 1

N

)

=
1

N

∑
i∈G

τi

∞∑
n=0

bn

m−1∑
k=0

(∑
j∈G

p
(n)
ij p

(k)
ji −

1

N

)

=
1

N

∑
i∈G

τi

∞∑
n=0

bn

m−1∑
k=0

∑
j∈G

p
(n)
ij

(
p

(k)
ji −

1

N

)

=
1

N

∑
i∈G

τi
∑
j∈G

∞∑
n=0

p
(n)
ij bn

m−1∑
k=0

(
p

(k)
ji −

1

N

)

=
B

N

∑
i∈G

τi
∑
j∈G

φij

m−1∑
k=0

(
p

(k)
ij −

1

N

)

=
B

N

∑
i∈G

τi

m−1∑
k=0

(∑
j∈G

p
(k)
ij φij −

1

N

)

= NB
m−1∑
k=0

∑
i∈G

τi
N2

(∑
j∈G

p
(k)
ij φij −

1

N

)

= NB
m−1∑
k=0

(
φ(k) − 1

N

)

= B

(
N

m−1∑
k=0

φ(k) −m

)
. (88)

In rearranging the above sums, we have used that
∑

j∈G p
(n)
ij =

∑
j∈G φij = 1

for all i ∈ G and n ≥ 0, that
∑

i∈G
τi
N2 = 1, and that p

(k)
ij = p

(k)
ji for all

i, j ∈ G and k ≥ 0.
Supplementary Equation 88 shows how the benefits of public goods shar-

ing are partially cancelled by spatial competition, depending on the scale m
at which this competition occurs (m = 1 for Bd or Db, m = 2 for dB or bD).
Only benefits that accrue at scales k = 0 through k = m − 1 contribute to
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the success of the producer type, as shown by the presence of the terms φ(k)

for 0 ≤ k ≤ m− 1, but for not k ≥ m, in Supplementary Equation 88.
The cost term of Supplementary Equation 87 becomes

−Cτ (m) = −C

(
1

N

∑
i∈G

τi

m−1∑
k=0

p
(k)
ii −m

)

= −C

(
N

m−1∑
k=0

p(k) −m

)
. (89)

Above, we have defined p(k) =
∑

i∈G
τi
N2p

(k)
ii to be the probability that a

random walk visits its initial vertex at the kth step, where the initial vertex
is chosen proportionally to remeeting time. In particular, we have p(0) =
1, p(1) = 0, and p(2) = 1/κ̃. Substituting the appropriate values of m in
Supplementary Equations 87, 88, and 89, we obtain the conditions

−C(N − 1) +B
(
Nφ(0) − 1

)
> 0 Bd or Db (90)

−C(N − 2) +B
(
N
(
φ(0) + φ(1)

)
− 2
)
> 0 dB or bD. (91)

Supplementary Note 5: Non-isothermalizable

topologies

We say that a given graph topology is isothermalizable if there exists a set
of edge weights {wij} consistent with the topology (in the sense that only
those edges present in the topology can have positive weight), such that the
resulting weighted graph is isothermal and connected.

Not all graph topologies have this property. For example, if a graph
topology contains a leaf (a vertex of topological degree one), then the edge
connecting this vertex to its neighbor must have weight one; consequently,
this neighbor cannot have any other neighbors of positive edge weight. Thus,
any topology of size N ≥ 3 that contains a leaf is non-isothermalizable. As
another example, a complete bipartite graph topology is isothermalizable
only if the two partite sets have the same size.

For the preferential attachment model, non-isothermalizable topologies
occurred in significant numbers occurred when the linking number m is small
and the shift parameter a is close to 1; see Supplementary Figure 2. We
removed such graphs from the ensemble.
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Supplementary Figure 2: Fraction of topologies generated by the shifted-
linear preferential attachment model for which no isothermal weighting exists.
Such non-isothermalizable topologies arise when the linking number m is
small, and the shift parameter a is close to 1.
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