Supplementary Information

Potential of *Pantoea dispersa* as an effective biocontrol agent for black rot in sweet potato

Lingmin Jiang^{1,4} • Jae Chul Jeong¹ • Jung-Sook Lee¹ • Jeong Mee Park² • Jung-Wook Yang³ • Myoung Hui Lee¹ • Seung Hee Choi¹ • Cha Young Kim¹ • Dae-Hyuk Kim⁴ • Suk Weon Kim^{1,*} • Jiyoung Lee^{1,*}

¹Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea ²Plant Systems Engineering Research Center, KRIBB, Daejeon,34141, Republic of Korea ³Crop Cultivation & Environment Research Division, NICS, Suwon, 16429, Republic of Korea ⁴Department of Bioactive Materials, Chonbuk National University, Jeonju, 54896 Republic of Korea

*Corresponding authors: Suk Weon Kim and Jiyoung Lee Email: (SWK) <u>kimsw@kribb.re.kr;</u> (JL) <u>jiyoung1@kribb.re.kr</u>

Primer name	Target	Sequence $(5' \rightarrow 3')$	No.
			bases
518 F	16S rRNA	CCA GCA GCC GCG GTA ATA C	19
805 R	16S rRNA	GAC TAC CAG GGT ATC TAA TC	20
21 F	16S rRNA	TTC CGG TTG ATC CYG CCG GA	20
1492 R	16S rRNA	TAC GGY TAC CTT GTT ACG ACT T	22
ITS1	5.8S rRNA	TCC GTA GGT GAA CCT GCG G	19
ITS4	5.8S rRNA	TCC TCC GCT TAT TGA TAT GC	20
gyrB3	gyrB	GCG TAA GCG CCC GGG TAT GTA	21
gyrB4	gyrB	CCG TCG ACG TCC GCA TCG GTC AT	23
gyrB3iseq	gyrB	AAC GCW ATC GAC GAA GC	17
gyrB4iseq	gyrB	TGG AAV CCR TCR TTC CAC	18
Vic3	rроВ	GGC GAA ATG GCW GAG AAC CA	20
Vic2	rроВ	GAG TCT TCG AAG TTG TAA CC	20

Supplementary Table S1	. The primers that were used in this	s study
Supplementary Table S1	. The primers that were used in this	s study

Supplementary Table S2. Molecular identification of the microorganisms that were isolated

Accession 16S/5.8S Isolate Tissue Closest species in Genbank Identity rRNA (bp) no. RO-1 MN428676 **Tuberous roots** 1341 Pantoea sp. XFZ20 99% RO-3 99% MN524106 1448 Enterobacter kobei DSM 13645 Tuberous roots RO-4 409 100% MN521826 **Tuberous roots** Papiliotrema laurentii RO-5 MN524107 Bacillus toyonensis PK5-10 99% **Tuberous roots** 1458 **RO-6** 99% MN525288 **Tuberous** roots 592 Neurospora crassa RO-7 MN519610 Tuberous roots 1431 Leclercia adecarboxylata 99% **RO-8** MN525289 **Tuberous roots** 537 Sakaguchia dacryoidea AFTOL-ID 98% RO-11 MN521827 Tuberous roots 672 Gongronella butleri JGS01 99% RO-12 MN521828 579 Rhodosporidium toruloides 99% Tuberous roots RO-13 MN524109 **Tuberous roots** 1405 Bacillus safensis SL-40 100% RO-14 Bacillus aerius JS-786 MN524110 Tuberous roots 1403 100% RO-15 MN524111 **Tuberous roots** 1417 Bacillus sp. FJAT-25810 100% RO-16 MN524112 **Tuberous roots** 1415 Bacillus sp. NT5 100% RO-17 MN524113 Tuberous roots 1413 Bacillus megaterium 100% **RO-18** MN428677 **Tuberous roots** Pantoea dispersa GTC 1472 99% 1467 **RO-19** MN524114 Tuberous roots 1415 Bacillus aerius 24K 99% **RO-20** Pantoea dispersa S10 MN428678 Tuberous roots 1403 100% RO-21 MN428679 Tuberous roots 1415 Pantoea dispersa strain DSM 30073 99% RO-22 Pantoea sp. XBGRY4 98% MN428683 Tuberous roots 1253 RO-23 MN524115 **Tuberous roots** 1411 Bacillus subtilis F6-2-31 100% RO-24 MN524116 **Tuberous roots** 1402 Bacillus thuringiensis FJAT-28888 100% RO-25 MN524108 Tuberous roots 1389 Enterobacter aerogenes QTYC24b 100% RO-26 MN524128 **Tuberous roots** 1408 Serratia marcescens FZSF01 100% RO-27 MN524117 **Tuberous roots** 1444 Bacillus subtilis CICC 10366 99%

from sweet potato tuberous roots

Supplementary Table S3. Molecular identification of the microorganisms that were isolated

Isolate	Accession no.	Tissue	16S/5.8S rRNA (bp)	Closest species in Genbank	Identity
SH-1	MN428659	Shoot	1391	Pantoea ananatis PP1	99%
SH-3	MN428680	Shoot	1411	Pantoea ananatis LMG 20103	99%
SH-4	MN521829	Shoot	609	Rhodotorula sp. CBS 10104	99%
SH-5	MN428674	Shoot	1401	Pantoea ananatis YJ76	99%
SH-6	MN521814	Shoot	508	Mucor circinelloides f. lusitanicus	100%
SH-8	MN521815	Shoot	600	Mucor irregularis CMFCCC B 50r	99%
SH-9	MN428673	Shoot	1394	Pantoea sp. BT-1	99%
SH-10	MN428682	Shoot	1408	Pantoea agglomerans DSM 3493	98%
SH-11	MN524118	Shoot	1403	Curtobacterium citreum H00109	99%
SH-12	MN521817	Shoot	526	Fusarium fujikuroi MF22418	99%
SH-13	MN428684	Shoot	1401	Pantoea ananatis AJ13355	99%
SH-14	MN519611	Shoot	1386	Microbacterium sp. HBUM178903	100%
SH-16	MN521812	Shoot	633	Rhizomucor variabilis CBS 103.93	98%

from sweet potato shoots

Supplementary Table S4. Molecular identification of the microorganisms that were isolated

from the soil

Isolate	Accession no.	Tissue	16S/5.8S rRNA (bp)	Closest species in Genbank	Identity
SO-1	MN525287	Soil	616	Papiliotrema laurentii JCM 28239	99%
SO-2	MN521811	Soil	519	Cryptococcus laurentii RY1	100%
SO-3	MN524129	Soil	1468	Serratia marcescens strain UMH12	99%
SO-4	MN521813	Soil	617	<i>Mortierella</i> sp. TR065	99%
SO-5	MN521816	Soil	615	Mucor circinelloides f. lusitanicus	100%
SO-6	MN519612	Soil	1456	Burkholderia lata FL-1-2-30-S1-D0	100%
SO-7	MN519613	Soil	948	Pseudomonas fluorescens CLW17	99%
SO-8	MN524119	Soil	1402	Bacillus safensis ADU20	100%
SO-9	MN519614	Soil	1413	Bacterium CDSHDTYG-6	100%
SO-10	MN524120	Soil	1409	Bacillus aerius JS-786	100%
SO-11	MN524121	Soil	1401	Bacillus sp. Suaeda B-003	100%
SO-12	MN519615	Soil	1399	Psychrobacillus psychrodurans NB-9	100%
SO-13	MN428681	Soil	1215	Pantoea dispersa Y08	100%
SO-14	MN519616	Soil	1385	Arthrobacter sp. THG-HS1V	99%
SO-15	MN524122	Soil	1469	Bacillus sp. Ag1.10	99%
SO-16	MN524123	Soil	1410	Bacillus sp. Suaeda B-003	100%
SO-17	MN519617	Soil	1104	Lysinibacillus sp. KR25	97%
SO-18	MN524124	Soil	1402	<i>Bacillus</i> sp. NT4	100%
SO-19	MN524125	Soil	1409	Lysinibacillus xylanilyticus FJAT-29968	99%
SO-20	MN519618	Soil	1369	Arthrobacter sp. THG-HS1V	99%
SO-21	MN519619	Soil	1437	Pseudomonas fluorescens FW300	100%
SO-22	MN519620	Soil	1391	Pseudomonas fluorescens	99%
SO-23	MN521820	Soil	541	Torula herbarum isolate G10	100%
SO-25	MN521821	Soil	532	Phoma herbarum G10	99%
SO-26	MN521822	Soil	587	<i>Penicillium</i> sp. 196F	99%
SO-27	MN519621	Soil	1431	Cupriavidus sp. TBSe5	99%
SO-28	MN521823	Soil	569	<i>Penicillium</i> sp. BE	100%
SO-29	MN519622	Soil	1429	Microbacteriaceae bacterium YR2-6	99%
SO-30	MN519711	Soil	537	Ascomycota sp. isolate SK2YWS-L	100%
SO-31	MN521824	Soil	587	Penicillium sp. 196F	99%
SO-34	MN524126	Soil	1436	Bacillus thuringiensis L14	99%
SO-35	MN521825	Soil	582	Penicillium sp. YZ02	99%
SO-36	MN521810	Soil	571	Aspergillus carneus W2-4	100%
SO-37	MN519623	Soil	1451	Streptomyces sp. Je36-6	99%
SO-38	MN524127	Soil	1442	Bacillus subtilis ZD-16	100%
SO-39	MN521809	Soil	533	Cladosporium subuliforme INIFAT	100%
SO-40	MN521818	Soil	533	Aspergillus chevalieri SRW9 18S	100%
SO-41	MN521819	Soil	569	Asperaillus versicolor WZ-2008-0062	100%

Supplementary Fig. S1. Phylogenetic analysis using the maximum-likelihood (ML) algorithm based on the *gyrB* gene of *Pantoea* isolates and all the *Pantoea* type strains. Bootstrap values (>50%) were calculated using the Neighbor-joining (NJ), and minimum-evolution (ME) algorithm probabilities. Filled circles on the nodes indicate that the relationships were also recovered by NJ and ME algorithms, whereas open circles indicate nodes recovered by either the NJ or the ME algorithm. Bootstrap values are shown on the nodes in percentages of 1000 replications only for values over 50%. The scale bar equals 0.050 changes per nucleotide position.

Supplementary Fig. S2. Phylogenetic analysis using the maximum-likelihood (ML) algorithm based on the *rpoB* gene of *Pantoea* isolates and all the *Pantoea* type strains. Bootstrap values (>50%) were calculated using the Neighbor-joining (NJ), and minimum-evolution (ME) algorithm probabilities. Filled circles on the nodes indicate that the relationships were also recovered by NJ and ME algorithms, whereas open circles indicate nodes recovered by either the NJ or the ME algorithm. Bootstrap values are shown on the nodes in percentages of 1000 replications only for values over 50%. The scale bar equals 0.020 changes per nucleotide position.

0.020

Supplementary Fig. S3. Bacterial cells of GFP-labeled RO-21 in the roots after inoculation for 18h. The images represent the micrographs of GFP filter (shown in green, **A** and **B**), autofluorescence of chlorophyll (shown in red, **C** and **D**) and the merged images from two micrographs (**E** and **F**). The red arrows point to the bacterial cells. Scale bars=50 μ M.

Supplementary Fig. S4. Colonization of GFP-labeled RO-21 in the sweet potato petiole tissue. The colonization of GFP-labeled RO-21 was observed in the cross-section of petiole after inoculation with GFP-labeled RO-21 for 7 d. Images were taken with the GFP filter (**A**) and bright filter (**B**), and combined image from two micrographs (**C**). The red arrows point to the bacterial aggregates. Scale bars=10 μ M.

Supplementary Fig. S5. Re-isolation of GFP-labeled strain RO-21 from sweet potato plants.
(A) The GFP-labeled strain RO-21 bacteria were streaked on selective medium. (B)
Detached leaf petiole from sweet potato plants after inoculation with GFP-labeled RO-21 for 7 d. (C-E) Sweet potato leaf petioles were surface-sterilized and obtained bacterial colonies on selective medium after 3 d.

Α

Supplementary Fig. S6. Inhibition effects of *Pantoea* isolates against the phytopathogenic fungus *C. fimbriata*. (**A**) Dual culture assay of *C. fimbriata* and *Pantoea* isolates (SH-1, SH-5, SH-10, SH-13, RO-1, and RO-22) at 16 d. *Escherichia coli* were used as controls (scale bar = 1 cm). (**B**) The diameter of *C. fimbriata* after co-incubation with *Pantoea* strains. The bars indicate the standard errors of triplicate samples. Values followed by a different letter are significantly different ($P \le 0.05$).

Supplementary Fig. S7. Interaction effect of *C. fimbriata* with *Pantoea* RO-18, RO-20, and SH-3. *C. fimbriata* cells were stained with Evans blue (dead cells stain blue) and Neutral red (viable cells stain red) after co-cultivation with strain RO-18, RO-20, and SH-3 for 10 d. Mycelia growing near to RO-18 and RO-20 stained blue (**A**, **B**), while those in the control zone on the other side only exhibited faint staining. By contrast, mycelia that were co-cultured with SH-3 did not stain blue in any region (**C**). Scale bars are 50 μm.