
Supplementary Information: Magnetotactic bacteria in a droplet self-assemble into a
rotary motor

Benoit Vincenti,1 Gabriel Ramos,2 Maria Luisa Cordero,2 Carine Douarche,3 Rodrigo Soto,2 and Eric Clement1

1Laboratoire PMMH, UMR 7636 CNRS-ESPCI-Sorbonne Université-Université
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Supplementary Note 1. Hydrodynamic model of a sphere rotating in a fluid close to a surface

To estimate the torque exerted by a droplet of radius R on the oil, we use an hydrodynamic model of a sphere of
radius R rotating in a fluid of viscosity η = 3 × 10−3 Pa.s (value for hexadecane oil at 25○C). The droplets being sat
on the bottom plate of the pool, we have to take into account, in our model, the hydrodynamic image of the rotating
sphere with respect to the bottom plate (see Supplementary Fig. 1 (a-b)). The flow created by a sphere of radius R,
rotating thanks to a torque τ , reads, in the bulk :

V oil,1
θ (r, φ) = τ sinφ

8πηr2
, (1)

where φ is the azimuthal angle, φ = π/2 at the equator of the droplet.
The correction due to the bottom wall corresponds to the superimposition of the flow in Eq. (1) and the flow created

by the mirror image of the sphere with respect to the wall, which counter-rotates with respect to the real droplet
rotation. The flow created by the mirror droplet at the equatorial plane of the real droplet is :

V oil,2
θ (r′, φ′) = − τ sinφ′

8πη(r′)2 , (2)

with r′ =
√
r2 + 4R2 and φ′ = π − arcsin( r

r′
). Then, sinφ′ = r√

r2 + 4R2
and the total flow at the equatorial plane of

the droplet reads :

V oil
θ (r) = V oil,1

θ (r, φ) + V oil,2
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⇒ V oil
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τ

8πηR2
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, (3)

where the corrective term due to the bottom wall is emphasized.
The experimental flow field is very well captured by this hydrodynamic model, as shown on Supplementary Fig. 1 (b).

Supplementary Note 2. Alignment of magnetotactic bacteria with surfaces under constant magnetic field

We observed single bacteria inside droplets for dilute bacterial suspensions. We observed that bacteria align partially
with the droplet boundary in the presence of a magnetic field, wobbling between the magnetic field direction and
the local droplet interface. An image sequence (see Supplementary Movie 8) illustrates this particular motion and
Supplementary Fig. 2 shows the average motion of one bacterium along the droplet boundary.

Supplementary Note 3. MTB velocity distribution and emulsion preparation

The MTB are grown and prepared as indicated in the Methods part of the article. Here are some details of the
bacteria motion characteristics and of the emulsion preparation.
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Supplementary Figure 1. Hydrodynamic model of a rotating sphere - application to the estimation of
the torque exerted by one droplet on the oil. (a) Definition of the model and hydrodynamic correction due
to the presence of the bottom plate of the pool. (b) Test of the hydrodynamic model on experimental data. Dotted
line: model without corrective term accounting for the presence of the bottom plate. Solid line: model with corrective
term.

Supplementary Figure 2. Image sequence of bacteria motion along a droplet interface. A bacterium
moves along a droplet interface while a magnetic field of 2 mT is applied. The white scale bar is 10 µm and images
are separated by 0.2 s. In average, the bacterium moves with its body aligned with the droplet boundary. The
Supplementary Movie 8 shows details about this temporal sequence: the bacterium exhibits a wobbling motion,
aligning its body along the magnetic field direction and aligning with the local droplet tangent sequentially.

Before producing the emulsion, bacteria are always harvested after their growth to an optical density OD= 0.12±0.02.
Their motility are always checked quantitatively by performing tracking of single bacteria at ×40 magnification. The
velocity distribution (see Supplementary Fig. 3) is bimodal with two peaks located at 20 and 40 µm s−1, reminiscent
from their reversal motion sequence. This distribution is quantitatively reproducible using our growth protocol.

Concerning the emulsion preparation, we fill one 1.5 mL-eppendorf with 500 µL of hexadecane oil. A small amount
of bacteria suspension (typically 10 µL) is added to the oil. Then, the eppendorf is gently shaked and a part of the
emulsion (65 µL) is rapidly extracted and placed inside a pool composed by a double sided tape and a cover-glass.
The pool is then sealed with a top cover-glass in such a way to avoid bubble formations.
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Supplementary Figure 3. Ve-
locity distribution of the MTB af-
ter growth (these data are an av-
erage for a series of 6 growing
sequences corresponding to ∼6,000
tracked bacteria) .
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Supplementary Figure 4. Emulsion preparation protocol. We first stir
hexadecane oil and MTB suspension. Then, we harvest a sample of the
emulsion and transfer it into the experimental pool composed of two glass-
slides and a GeneFrame tape.

Supplementary Note 4. Proof that the total circulation produced by a torque-free swimmer vanishes:
detailed version

A torque and force free swimmer, produces on the far field (distances larger than the body length) a flow that is
well described by that of a force dipole. For a swimmer located at r0, with director n̂ and force dipole intensity p,
the produced velocity field is

ui(r) = −
p

8πη

xi
∣x∣3 (δjk −

xjxk

∣x∣2 )njnk, (4)

where η is the fluid viscosity, x = r − r0, δik is the Kronecker delta, and Einstein notation has been used for repeated
indices. Note that the velocity field is radial (u//x) with and intensity that depends on the angle. The circulation on
a path γ, which is entirely contained in a plane oriented in the ẑ direction (see Supplementary Fig. 6), is

Γz,γ = ∮
γ

u ⋅ dr = ∫
Aγ

dAωz, (5)

where we have used Stokes theorem, Aγ is the area enclosed by the path, and ω is the vorticity field

ω = ∇× u = 3p

4πη

(n̂ × x)(n̂ ⋅ x)
∣x∣5 . (6)

In general, Γz,γ will be different from zero (see Supplementary Fig. 5), but here we will show that if the paths are
organized in parallel circles around a sphere of radius R, the total circulation vanishes.

First, the total circulation can be written as the integral over the sphere volume of the vorticity. Indeed,

Γz = ∫ dz Γz,γ = ∫ dz∫
Aγ

dAωz = ∫
V
dV ωz. (7)

It is, then, direct to extend the definition for paths oriented on any direction

Γ = ∫
V
dV ω. (8)

Second, we transform the volume integral into one over the surface of the sphere. For this, we note that

ωi =
3p

4πη
εijknjnm

xkxm
∣x∣5 , (9)

= p

4πη
εijknjnm (

∂2

∂xk∂xm

1

∣x∣ +
δkm
∣x∣3 ) , (10)

= p

4πη
εijknjnm

∂2

∂xk∂xm

1

∣x∣ , (11)
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Supplementary Figure 5. Left panel: Representations of a force dipole located in a fixed point inside a sphere
and some of the circles used in the circulation calculations. The circles are chosen parallel to the (x, y) plane without
loss of generality and are of dimensions such that they altogether enclose a sphere of radius 1.2. The position and
the orientation of the swimmer were chosen randomly inside a sphere of radius 1. Right panel: Circulation computed
on each of the circles as a function of the vertical z position. The integral of the circulation along z is zero even if
the circulation can be locally non-zero. This indicates that the sphere of fluid enclosing the micro-swimmer does not
rotate globally, because no net torque is applied on it.

where εijk is the Levi-Civita tensor and from going form the second to the third line we use that the cross product of
equal vectors vanishes. It is possible to use the divergence theorem to obtain

Γi =
p

4πη
εijknjnm ∫

S
dSm

∂

∂xk

1

∣x∣ , (12)

= − p

4πη
εijknjnm ∫

S
dSm

xk
∣x∣3 . (13)

The integral Tij = ∫S dSj xi∣x∣−3 can be evaluated in spherical coordinates. Choosing integration axis such that
r0 = z0ẑ, it is direct to verify that Tij is diagonal. Furthermore, the diagonal components are

Txx = Tyy = R2 ∫
π

0
dθ

π sin3 θ

(1 + z20 − 2z0 cos θ)3/2 =
4πR2

3
, (14)

Tzz = R2 ∫
π

0
dθ

2π cos θ sin θ(cos θ − z0)
(1 + z20 − 2z0 cos θ)3/2 =

4πR2

3
, (15)

implying that it is an isotropic tensor, which can be expressed in any axes as Tij = 4πR2δij/3. Substituting this result
in (13) implies that Γi = 0, concluding the proof.

For a collection of swimmers, the total induced flow is the sum of those produced by each of them. This linearity,
valid for low Reynolds flows, implies that even though the circulation in a particular plane can be finite, its integral
on z must vanish. As a consequence, for any distribution of torque-free swimmers in the sphere, the circulation must
change sign when measured on different z planes.
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Supplementary Figure 6. Scheme used for the proof. The swimmer is located on any position r0 in the interior of
the sphere of radius R. The path γ is a circle, tangent to the sphere, encircling the area Aγ , which is oriented along
the z axis. The total circulation (7) is obtained integrating the circulation Γz,γ for all vertical positions of the path,
from −R to R. The integral in (13) is done over the surface of the sphere with area elements dS.


