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Payoff function and one-shot game
For the payoff function in equation (4), we note that

∂Wi

∂a j
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1
g

B′(ā)− ∂K(ai,qi)

∂ai
δi j (S1)

and
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∂a j∂ak
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∂a2
i

δi jδik, (S2)

where δi j is the Kronecker delta, which is equal to one if i = j and zero otherwise. By our assumptions about the payoffs, the
matrix with elements given by equation (S2) for i = 1, . . . ,g, j = i, k = 1, . . . ,g is symmetric and negative definite. According
to [36], this implies that a one-shot game with this payoff function has a unique Nash equilibrium.

Approximate actor-critic process
Here we investigate the actor-critic learning dynamics in the vicinity of a one-shot Nash equilibrium, for low rates of learning
and small σ , and assuming that g > 1. With a∗i = a∗i (q·) the equilibrium from equation (13), i.e. (14, S21) for our special case
of equations (2, 3), we define the deviations

xit = wit −W ∗i
yit = θit −a∗i
zit = ait −θit = ait − (a∗i + yit),

where W ∗i =Wi(a∗i ,a
∗
−i,qi). Because ∂Wi(a∗i ,a

∗
−i,qi)/∂ai = 0 at the Nash equilibrium, we have the Taylor expansion

Rit =Wi(a∗i + yit + zit ,a∗−i + y−it + z−it ,qi) (S3)

=W ∗i +∑
j 6=i

∂Wi(a∗i ,a
∗
−i,qi)

∂a j

(
y jt + z jt

)
+

1
2

g

∑
j=1

g

∑
k=1

∂ 2Wi(a∗i ,a
∗
−i,qi)

∂a j∂ak

(
y jt + z jt

)(
ykt + zkt

)
+ · · ·

=W ∗i +ω1 ∑
j 6=i

(
y jt + z jt

)
+ω11 ∑

j
y jtzit +ω22yitzit + · · · .

For convenience we used the notation
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1
g

B′(ā∗) =
1
g

(
B1 +B2ā∗

)
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∂a2
i

=−K11,

where the expressions on the right-hand side are for the special case. The reason for writing out second order terms like y jtzit in
equation (S3) is that they contribute to the covariance below. Because the z jt are (independent and) normal with mean zero and



standard deviation σ , the expectation of the TD error in equation (8), conditional on the x jt and y jt , j = 1, . . . ,g, is

E
[
δit |x·t ,y·t

]
= E

[
Rit |x·t ,y·t

]
− (W ∗i + xit) (S4)

=−xit +ω1 ∑
j 6=i

y jt + · · · ,

which gives the deterministic part of the increment in equation (7). For equations (10, 11), we need the (conditional) covariance
of δit with the eligibility ζit in order to compute the deterministic part of the increment in the learning parameter θit . We get the
covariance
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σ2 |x·t ,y·t
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= ∑
j 6=i

ω11y jt +(ω11 +ω22)yit + · · · .

Because the eligibility from equation (9) is equal to zit/σ2, which has variance 1/σ2, becoming big for small σ , terms
containing zit , like ω11yitzit in equation (S3), contribute to lowest order to the covariance.

To approximate the actor-critic learning dynamics as a vector autoregressive process, we introduce the vector ξt =
(x1t , . . . ,xgt ,y1t , . . . ,ygt)

T , with elements ξlt , l = 1, . . . ,2g (and if we approximate time to be continuous, we obtain a multivariate
Ornstein-Uhlenbeck process). We then have a VAR(1) process given by

ξt+1 = Aξt + εt , (S6)

where the matrix A is expressed using the approximate deterministic dynamics, given in equation (S10) below, and εt is a vector
of zero-mean, serially uncorrelated stochastic increments. The process is stable (stationary and ergodic) if the eigenvalues of
A have modulus less than one (see a textbook on multivariate time series analysis, e.g., [9]. From equations (7, 10, S3), the
stochastic increments are given by

εit = αwω1 ∑
j 6=i

z jt + · · · (S7)

εg+i,t = αθ ω1 ∑
j 6=i

z jt
zit

σ2 + · · ·

for i = 1, . . . ,g. Except for the special case g = 1, which we do not consider here, the first of these, involving z jt , is normally
distributed to lowest order, but the second, involving products z jtzit of two independent normally distributed variables, has a
leptokurtic distribution. Nevertheless, for g > 1, numerical simulation of the learning dynamics shows that the equilibrium
distribution of the process is approximately multivariate normal. Let P be the variance-covariance matrix of the increment
vector εt to lowest order, which is given in equation (S11) below. The equilibrium variance-covariance matrix Q of the process
ξt satisfies

Q = AQAT +P, (S8)

which is sometimes called the discrete-time Lyapunov equation. This is readily solved, as the linear system in equation (S12)
below, or numerically through iteration. The solution Q was used to generate the comparison in Fig. S1, showing that the
approximation is at least reasonable for low rates of learning, which is also illustrated in Fig. S2. We write the matrix A in
equation (S6) as a block matrix

A =

(
A11 A12
A21 A22

)
, (S9)

with g×g matrices as blocks. From equations (7, 10, S4, S5), the blocks are given by

A11 = (1−αw)Ig (S10)
A12 = αwω1(1− Ig)

A21 = 0
A22 = Ig +αθ (ω111+ω22Ig),
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where Ig is the g×g identity matrix and 1 and 0 in the last three equations indicate g×g matrices with all elements 1 and 0,
respectively. The variance-covariance matrix P of the stochastic increments in equation (S7) is also expressed as a block matrix

P11 = α
2
wω

2
1 σ

2((g−2)1+ Ig
)

(S11)
P12 = 0
P21 = 0

P22 = α
2
θ ω

2
1
(
(g−2)Ig +1

)
,

where 0 and 1 in the different equations indicate g×g matrices with all elements 0 and 1, respectively. Using the vectorization
operator and the Kronecker product, equation (S8) can be written(

I4g2 −A⊗A
)

vec(Q) = vec(P). (S12)

For a stable process, the 4g2×4g2 matrix I4g2 −A⊗A can be inverted, providing the solution Q from
(
I4g2 −A⊗A

)−1 vec(P).

Comparative statics of the Nash equilibrium
Here we show that, for a Nash equilibrium a∗i (q·), i = 1, . . . ,g, satisfying equation (13), the equilibrium actions depend on the
qualities in the following way:

∂a∗i
∂qi

> 0,
∂a∗i
∂q j

< 0, (S13)

where j 6= i. To show this we note that equation (13) holds for all qualities, so we can take the partial derivative with respect to
q j, leading to

1
g2 B′′(ā∗)

g

∑
k=1

∂a∗k
∂q j

=
∂ 2K(a∗i ,qi)

∂a2
i

∂a∗i
∂q j

+
∂ 2K(a∗i ,qi)

∂ai∂qi
δi j, (S14)

for i, j = 1, . . . ,g. If we let A be the matrix with elements Ai j = ∂a∗i /∂q j, we can write this as

(G+H)A = F , (S15)

where G and F are diagonal matrices with

Gii =
∂ 2K(a∗i ,qi)

∂a2
i

> 0 (S16)

Fii =−
∂ 2K(a∗i ,qi)

∂ai∂qi
> 0,

and H = βJ where J is a matrix with all elements equal to one and

β =− 1
g2 B′′(ā∗)> 0. (S17)

Noting that H has rank 1, we can use a result from [37] to write the inverse of G+H as

(G+H)−1 = G−1− 1
1+ γ

G−1HG−1, (S18)

where

γ = tr(HG−1) = β

g

∑
i=1

1
Gii

> 0. (S19)

The solution to equation (S15) is then

A = G−1F− β

1+ γ
G−1JG−1F . (S20)
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Figure S1. Illustration of how the limiting variance-covariance matrix from equations (S8, S12) is approached by the multivariate
distribution of the learning parameters wi and θi after many rounds of learning, for successively smaller rates of learning. The rate of learning
is expressed through a time constant, 1/(1−λ ), where λ is the leading eigenvalue of the matrix A from equations (S9, S10). Panel A shows
the SD of w1 (blue) and θ1 (red) for g = 2, shifted slightly left and right to avoid overlap. The lighter coloured symbols are the limiting
predictions from equation (S12) and the bolder symbols show values from individual-based simulations. Approach to the limit means that
bold symbols come closer to the corresponding lighter coloured symbols. The different symbol shapes indicate different values of q̄, for
group compositions as in Fig. 2 (q̄ = 0, circle; q̄ = 1/2, triangle; q̄ = 1, plus). Panel B shows correlations between w1 and w2 (blue) and
between θ1 and θ2 in the same way (q̄ = 0, circle; q̄ = 1/3, triangle; q̄ = 1, plus). Note that the limiting distribution is degenerate when
g = 2, with the limiting correlation between θ1 and θ2 equal to 1. Panels C and D illustrate the same thing for g = 3.
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Figure S2. A snapshot of the the values of the mean actions θ1 and θ2 from simulations of many groups of size g = 2. The individual
qualities in each group are q1 = q2 = 1. Panel A has the same parameters as the leftmost red plus symbol in Fig. S1B, which corresponds to
the highest rates of learning, and panel B has the same parameters as the rightmost red plus symbol in Fig. S1B, which corresponds to the
lowest rates of learning. In each panel the line, with slope 1 and intercept 0, shows the limiting relation of a correlation equal to 1. The plus
symbol at θ1 = θ2 = 1 shows the location of the Nash equilibrium.

As G−1F is a diagonal matrix, we see directly that ∂a∗i /∂q j < 0 for j 6= i, and then it follows from equation (S14) that
∂a∗i /∂qi > 0.

For our special case of equations (2, 3), one readily solves equation (13), yielding equation (14) with

e0 =
B1−gK1

gK11−B2
(S21)

e1 =−
K12
(
g2K11− (g−1)B2

)
gK11(gK11−B2)

e2 =−
B2K12

gK11(gK11−B2)
.

We note that e1 > 0 and e2 < 0, so that

∂a∗i
∂qi

= e1 > 0,
∂a∗j
∂qi

= e2 < 0, (S22)

with j 6= i, which agrees with equation (S13). Also, g = 1 is a special case where e2 is not relevant, but e0 and e1 above apply
to this case. The sensitivity of the equilibrium actions to differences in quality between group members can be written

a∗i −a∗j =−
K12

K11
(qi−q j). (S23)

Evolution of cognitive bias
First, if the true qualities of group members are qi, an evolutionary equilibrium for the perceived qualities pi should satisfy

dWi

d pi
= B′(ā∗(p·))

∂ ā∗

∂ pi
− ∂K

∂ai
(a∗i (p·),qi)

∂a∗i (p·)
∂ pi

= 0, (S24)

for i = 1, . . . ,g, where Wi is the Darwinian reproductive value from equation (4). Note that this expression for the derivative
takes into account that a Nash equilibrium a∗(p·) depends and the perceived qualities of the group members. Using equation
(15), this becomes the condition for the derivative in equation (16). Next, replacing the true qualities qi with the perceived
qualities pi, equation (14) for the Nash equilibrium becomes

a∗i (p·) = e0 + e1 pi + e2 ∑
j 6=i

p j = e0 + e1 pi + e2(g−1)p̄−i. (S25)
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It follows that

ā∗(p·) =
1
g

g

∑
i=1

a∗i (p·) =
1
g

g

∑
i=1

(
e0 + e1 pi + e2(g−1)p̄−i

)
(S26)

= e0 +
(
e1 +(g−1)e2

)
p̄ = e0 + e12gp̄,

where we introduced the notation

e12 =
1
g

(
e1 +(g−1)e2

)
=− K12

gK11−B2
, (S27)

and used equation (S21) for the right-hand side. With

∂a∗i (p·)
∂ pi

= e1,
∂a∗j(p·)

∂ pi
= e2, (S28)

for j 6= i, and using equation (16), equation (S24) becomes

K12(pi−qi)e1 +
1
g

(
B1 +B2ā∗(p·)

)
(g−1)e2 = 0.

This can be developed as

pi−qi =−
(g−1)e2

gK12e1

(
B1 +B2ā∗(p·)

)
(S29)

=− (g−1)B2

gK12
(
g2K11− (g−1)B2

)(B1 +B2(e0 + e12gp̄)
)
= γ0 + γ1 p̄,

where we introduced the notation γ0 and γ1. Averaging over the group we get that p̄ = (γ0 + q̄)/(1− γ1), so we can write

pi−qi = β0 +β1q̄,

with β0 = γ0/(1− γ1) and β1 = γ1/(1− γ1). This is then the evolutionary equilibrium in equation (17). After some tedious
calculation we also get the expressions

β0 =−
(g−1)B2(B1K11−B2K1)

gK11K12
(
g2K11− (2g−1)B2

) (S30)

β1 =
(g−1)B2

2

gK11
(
g2K11− (2g−1)B2

) .

We can note that β0 < 0 and β1 > 0 for g > 1. Also, for large group size g the coefficients β0 and β1 approach 0, so that pi
approaches qi as g becomes large.
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