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Section S1: Supplemental Methods 

 

HLP19 model definition 

 

We begin with the HLP17 substitution model (1), in which instantaneous rates of codon 

substitution are parameterized by the nonsynonymous/synonymous mutation rate ratio (w), 

transition/transversion mutation rate ratio (k), a vector of codon frequencies (p), and a vector of 

modified substitution rates h = (hWRC, hGYW … , h(a))  where a is an SHM hot- or cold-spot motif, 

such as WRC (2); W=A/T, R=A/G). We modify the HLP17 model by removing codon 

frequencies from the Q matrix, and parameterize the instantaneous rate of change from codon i 

to j, where i ≠ j, as: 

 

𝑞"# = 	

				0																																		𝑖 → 𝑗	𝑚𝑜𝑟𝑒	𝑡ℎ𝑎𝑛	1	𝑛𝑢𝑐𝑙𝑒𝑜𝑡𝑖𝑑𝑒	𝑐ℎ𝑎𝑛𝑔𝑒									

1 + 𝑏"#
(;)ℎ(;)

;

											𝑖 → 𝑗	𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛																		

𝜅 1 + 𝑏"#
(;)ℎ(;)

;

								𝑖 → 𝑗	𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛																								

𝜔 1 + 𝑏"#
(;)ℎ(;)

;

								𝑖 → 𝑗	𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛											

𝜔𝜅 1 + 𝑏"#
(;)ℎ(;)

;

					𝑖 → 𝑗	𝑛𝑜𝑛𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛																	

 

 

where 𝑏"#
(;) is the probability that a mutation from i to j involves the underlined base in motif a 

(e.g. WRC, where W = A/T, R = A/G, and C experiences an altered substitution rate). The values 
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of 𝑏"#
(;) are calculated by marginalizing over all possible 5’ and 3’ flanking sense codons as 

follows: 

𝑏"#
(;) = 	 𝜋C

DE

FGE

DE

CGE

𝜋F𝐼 𝑖, 𝑗, 𝑘, 𝑔, 𝑎  

where I(𝑖, 𝑗, 𝑘, 𝑔, 𝑎) is the indicator function: 

𝐼 𝑖, 𝑗, 𝑘, 𝑔, 𝑎 = 	 1							𝑘𝑖𝑔 → 𝑘𝑗𝑔	𝑖𝑠	𝑎	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑓𝑟𝑜𝑚	𝑚𝑜𝑡𝑖𝑓	a					
0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																													

 

Importantly, although the p values are not used explicitly in the definition of the substitution 

matrix, Q does depend on p through 𝐁(;)= 𝑏"#
(;) and through matrix calibration (see next section). 

Diagonal elements of the Q matrix (i.e. i = j) are equal to the negative sum of the off-diagonal 

elements of the same row. More explicitly, for each codon i: 

𝑞"" = − 𝑞"#

DE

#GE,#P"

 

This ensures that the rows of the Q matrix sum to zero. 

 

Rate matrix calibration 

 

Q matrices are typically calibrated using equilibrium frequencies such that branch lengths are 

equal to the expected number of substitutions per site (3). Namely, the expected number of 

substitutions per site and per unit of time (𝜇) at equilibrium for a Q matrix is calculated as: 

𝜇 = − 𝜋"𝑞""

DE

"GE
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Each element in the Q matrix is then divided by 𝜇, such that for the resulting calibrated Q 

matrix, 𝜇 = 1. This calibration makes phylogenetic branch lengths interpretable as the expected 

number of substitutions per site, assuming codon frequencies have converged to a stationary 

distribution. Codon frequencies (π) are an important part of this calculation, and if they do not 

accurately reflect the composition of the sequence at a particular time point this may lead to 

inaccurate branch length estimates. Typically, codon frequencies are assumed to have reached 

their stationary distribution, and π is set to the equilibrium codon frequency distribution. This 

assumption is made in virtually all substitution models, including HLP17 (1), which estimates 

state frequencies using maximum likelihood. 

 

Calibrating Q matrices using equilibrium frequencies is likely a poor choice for B cell lineages 

because B cells are known to begin out of sequence equilibrium and change over time (4). 

Because the germline sequence of B cell lineages is predicted or specified before phylogenetic 

estimation, it is possible to use either the empirical codon frequencies of the germline sequence 

(π(g)) or the empirical codon frequencies of the tip sequences (π(t)) to calibrate the Q matrix. 

However, both of these reflect codon frequencies at only the beginning and end of the affinity 

maturation evolutionary process. Because codon frequencies are modelled as changing from π(g) 

to π(t) using the substitution process described in Q, we can use π(g) and Q to predict the codon 

frequency change over a defined interval. We use this to calibrate our Q matrix using predicted 

codon frequencies at the midpoint of the tree (π(m)). To predict these values, we first calibrate the 

Q matrix using π(g) to give Q(g) and calculate the transition probability matrix 𝐏(S) =

exp	(𝐐(X)𝑚), where m is half the mean root-tip divergence of all sequences in the initial tree – 
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which we estimate using the GY94 (5, 6) model on the same data. From these pieces of 

information, we calculate π(m) using:  

𝜋"
(S) = 𝜋#

(X)𝑃#"
(S)

#

 

and use these values to calibrate Q to give Q(m), which is scaled such that branch lengths are 

equal to the expected number of codon substitutions per site at the midpoint of the starting tree, 

and is used for all likelihood calculations. Intuitively, 𝜋#
(X)𝑃#"

(S)
 is the probability that the Markov 

chain begins in codon j at the germline and is in codon i after interval m has elapsed. In this way, 

𝜋"
(S) is computed by marginalizing over all possible ways the Markov chain could be in codon i 

after interval m given the starting frequencies π(g). This gives the predicted frequency of codons 

over an interval equal to the average midpoint between the root and each tip. Because this 

procedure does not use codon frequencies from the tips, the accuracy of the predicted midpoint 

frequencies depends on how well the substitution process is described by the Q matrix. 

 

In addition to being used in the calibration of branch lengths, codon frequencies are also used to 

calculate 𝑏"#
(;) values. To solve for the latter, we use π(g) values to create the 𝐁(;) matrices used in 

constructing Q(g). Ideally, we would then use the estimated π(m) values to construct the matrices 

𝐁(;)	used in Q(m). However, doing so would require recalculating all 𝑏"#
(;) values each time any 

parameter is updated. This is computationally expensive, requiring 614 computations rather than 

612 computations for simply updating the Q matrix. We therefore calculate each element of 𝑏"#
(;) 

once using the values of π(g) and keep the 𝐁(;) matrices constant throughout remaining parameter 

estimation. This dramatically improves runtime. In this way, Q(m) depends on π(m) through 

calibration and on π(g) through 𝐁(;) matrix values.  
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Further, in many of our analyses, we partition our sequences into complementarity determining 

regions (CDRs) and framework regions (FWRs), and estimate separate values of w for each. In 

these cases, π(g) and π(m) estimation is the same as described above but performed on the separate 

partitions independently: each tree has two Q matrices, which are identical except that 𝐐Z[\
(S)  uses 

wCDR and is calibrated using codon frequencies in the CDRs, while 𝐐]^\
(S)  uses wFWR and is 

calibrated using codon frequencies in the FWRs. Likelihood calculations involving ambiguous 

codons in the root sequence are averaged over all compatible codons, weighted by their 

frequencies in either CDRs or FWRs obtained from an empirical dataset of four healthy subjects 

(7). 

 

Overall, compared to HLP17, the updated model defined above, which we refer to as HLP19, 

uses less than half the number of free parameters and models the non-equilibrium nature of 

affinity maturation in a more interpretable manner. It is also more formally similar to previous 

nonreversible phylogenetic model forms (8, 9). 

 

 
Repertoire dataset processing 
 

The “Age” dataset consists of samples taken from 27 healthy individuals in two consecutive 

years (10). Subjects varied in age from 20 to 81 years old, and both male and female subjects 

were included. Sequencing was performed in three replicates: two using genomic DNA and one 

using mRNA. Raw bulk-sequencing reads using the 454 (Roche) platform from PBMCs as 

described in (10) were preprocessed using pRESTO v0.4.1. Briefly, reads were quality controlled 
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by filtering reads with length shorter than 250 nucleotides and those with a mean Phred quality 

score below 20. Reads were aligned against V and C region primers, allowing for a maximum 

error rate of 0.2. Duplicate reads and reads that were observed only once (singletons) were 

removed. Following preprocessing, V(D)J assignment was performed using IgBLAST v1.7.0 

(11) against the IMGT human germline reference database (IMGT/GENE-DB v3.1.16; retrieved 

June 19th, 2017) (12). Default IgBLAST parameters were used. Postprocessing of IgBLAST 

output and clonal clustering were performed using Change-O v0.3.7 (13). Putative non-

productively rearranged sequences were filtered. To infer clonal lineages, sequences were first 

partitioned based on common IGHV gene annotation, IGHJ gene annotation, and junction region 

length. IGHV and IGHJ gene annotations for each partition were determined by the union of 

ambiguous assignments within each junction length partition having at least one overlapping 

gene annotation among all gene assignments. Within these larger groups, sequences differing 

from one another by a normalized Hamming distance of 0.1 within the junction region were 

clustered as clones via single-linkage hierarchical clustering (14). The clonal distance threshold 

was determined by manual inspection to identify the local minima between the two modes of the 

bimodal distance-to-nearest histogram produced using SHazaM v0.1.8)(15). The V and J genes 

of unmutated germline ancestors of each clone were predicted using Change-O, with D segment 

and N/P regions masked by “N” nucleotides. Clonal clustering was performed using all three 

sequencing replicates (two obtained from genomic DNA and one mRNA) pooled together; 

however, after this mRNA sequences were separated and exclusively used for subsequent 

analysis. 
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The “Vaccine” dataset consists of samples from three male donors at 10 time points: -8 days, -2 

days, -1 hour, +1 hour, +1 day, +3 days, +7 days, +14 days, and +28 days relative to seasonal 

influenza vaccination (16). The sample collection protocol is available in (16); sequencing, as 

well as data preprocessing for read quality and inference of clonal clusters is described in (14). 

Briefly, samples were re-sequenced from mRNA using 5’RACE with unique molecular 

identifiers (UMIs) and sequenced using the Illumina MiSeq platform. Using pRESTO v0.4 (17), 

low quality bases in reads (Phred score < 5) were masked with Ns, paired-end reads were 

matched and assembled, and assembled sequences with the same UMI were collapsed into a 

consensus sequence (14). Following preprocessing, V(D)J assignment was performed using 

IgBLAST v1.4.0 (11) against the IMGT human germline reference database (IMGT/GENE-DB 

v3.1.16; retrieved June 19th, 2017) (12). Default IgBLAST parameters were used. Putative non-

productively rearranged sequences were filtered. As with the Age dataset, clonal lineages were 

inferred by grouping sequences based on common IGHV gene, IGHJ gene, and junction length. 

Within these groups, sequences differing from one another by a normalized Hamming distance 

of 0.1 within the junction region were clustered into clones via single-linkage hierarchical 

clustering (14). The V and J genes of the unmutated germline ancestors for each clone were 

predicted using Change-O v0.4.3 (13), with D segment and N/P regions masked by ‘N’ 

nucleotides. 

 

For HLP17/19 phylogenetic analysis it is necessary for all sequences within a particular clone to 

be placed in a codon alignment with the correct reading frame. To achieve this, sequences from 

each clone were multiple aligned using the IMGT numbering scheme, which was also used to 

determine the locations of CDRs and FWRs (18). It is possible that BCRs will accumulate 
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insertion mutations relative to their germline precursor over the course of affinity maturation. In 

this case, Change-O removes insertions in its IMGT sequence alignment in order to preserve 

numbering. However, frame-preserving insertions occasionally occur mid-codon. Removing 

these insertions brings together nucleotides that do not actually form an observed codon in the 

sequence, creating a potentially false codon substitution. We detected these events by comparing 

input sequences to IMGT aligned sequences in Change-O files, and masking them using “N” 

nucleotides. We then trimmed all gap-only columns in IMGT alignments within each clone. This 

functionality, as well as converting Change-O files to IgPhyML inputs, is now included in the 

BuildTrees tool as part of Change-O v0.4.3+ (13).  

 

Sequences from both years within the same patient were pooled together in the Age dataset, 

resulting in a single repertoire sample per subject. From both datasets, lineages with fewer than 2 

unique sequences (not including the predicted germline) were discarded. Due to the large number 

of sequences per sample in the Vaccine dataset, and the computational complexity of our 

parameter estimation procedure, these repertoires were subsampled at each subject and time 

point combination. Sequences from each sample were subsampled without replacement until 

either the sample contained at least 3,000 unique sequences within clones of at least 2 unique 

sequences (occasionally this resulted in some datasets having up to 3,001 sequences), or all 

sequences were used. This cutoff was chosen because all samples from subject hu420139 and 

420IV, and 5/10 samples from PGP1 had >3000 unique sequences in non-singleton clones. 
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Section S2: Simulating under the HLP19 model 

 

We performed multiple simulation analyses to validate our parameter estimation procedure under 

a fully context-dependent version of the HLP19 model (Sections S3, S4, and S6). These were 

performed under different parameter values, tree topologies, and initial sequences as detailed in 

their respective files, but they share a common means of simulating sequence changes along a 

given tree. These processes require a starting tree topology, branch lengths, a germline sequence, 

and substitution parameters to be specified in advance. For a given lineage tree, the starting 

germline progenitor sequence is specified as either a random naïve B cell sequence (Sections S3 

and S4) or the previously identified germline sequence in the empirical data (see Section S6). 

For each branch in the tree we simulated the number of nucleotide substitutions by drawing from 

a Poisson distribution whose mean equals the branch length divided by three and multiplied by 

the number of codons in the germline sequence. Branch lengths were divided by three because 

branches lengths estimated under all substitution models used in this paper are in units of 

expected codon substitutions per site, while the simulation procedure operates on single 

nucleotides. For a given sequence we then calculated the probability of all single substitutions 

under the HLP19 Q matrix (Section S1) based on their full nucleotide context (rather than the 

mean field approximation; described by parameters hWRC, hGYW, hWA, hTW, hSYC, and hGRS), 

whether the substitution was synonymous or non-synonymous (described by parameters wFWR 

and wCDR depending on whether the site was in the FWRs or CDRs), and whether the substitution 

was a transition or transversion (described by k). This process began at the specified germline 

progenitor and continued down the tree to the tips. We then masked the CDR3 of the germline 

sequence to mimic the behavior of the CreateGermlines prediction program, which is unable to 
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reliably predict germline D segment and N/P regions (13). We also removed the CDR3 regions 

of all sequences in each dataset to avoid potential issues generated with our inability to properly 

predict this region. This process repeated for all clonal lineage trees in a dataset. These 

simulations were performed using custom Perl scripts, which are available at 

https://bitbucket.org/kleinstein/projects. 

 

Issues with the simulation approach in Hoehn et al 2017 

 

Hoehn et al. (1) used a similar approach to simulate sequences under the HLP17 substitution 

model. However, the simulations in Hoehn et al. (1) differ from the approach described above; 

specifically, in Hoehn et al. (1) the relative substitution probabilities for each site were computed 

by calibrating the Q matrix of the HLP17 model with its codon frequencies so that branch 

lengths could be interpreted as substitutions per site (discussed in Section S1), and then 

exponentiating this matrix to give the P matrix of substitution probabilities for each codon. 

Codon substitutions were then introduced based on these probabilities at each site. However, 

because Q matrices are calibrated using codon frequencies, the degree to which branch lengths 

can be accurately interpreted as substitutions per site depends on how accurately the codon 

frequencies used reflect the composition of the sequences being simulated. For the HLP17 

model, these frequencies are estimated through maximum likelihood as free parameters – they 

are not necessarily tied to the composition of the sequences. This results in branch lengths that 

less accurately reflect the expected substitutions per site than standard models (this inaccuracy is 

confirmed in Section S3). Unfortunately, because the simulations performed in that paper used 

calibrated, exponentiated Q matrices, this inaccuracy was present in the simulated data itself, 
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leading to simulated datasets with fewer substitutions than expected given their branch lengths. 

This resulted in the HLP17 model outperforming the GY94 model in branch length estimation 

when compared to the original branch lengths of the trees used in simulations. While an accurate 

description of the simulation procedure used, this result is likely specific to this particular 

simulation approach and not general, and does not hold up in the fairer trials presented in this 

paper. The approach taken here (outlined above) avoids this issue by simply weighting all 

possible single nucleotide substitutions for all sites in a sequence by their values in the 

substitution matrix, randomly choosing a substitution, and then repeating this process on the new 

sequence for a given number of substitutions. This simulation process makes no explicit 

assumptions regarding codon frequencies – they change as a result of the substitution parameters, 

starting sequence, and lineage tree length. Further, the simulation analyses used in this paper 

explicitly define the number of nucleotide substitutions added on each branch. This means 

branch length estimates in the analyses presented in this paper (Section S3) are scored for 

accuracy based on the actual number of substitutions per codon site used in the simulation 

procedure, rather than the branch lengths of the original tree topology as done in Hoehn et al. (1).  
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Section S3: Performance of GY94, HLP17, and HLP19 substitution models 

 

The goal of this simulation analysis is to compare the parameter estimation performance of the 

GY94 (5, 6), HLP17 (1), and HLP19 substitution models. Simulations were performed on two 

trees with identical topologies and total tree length (i.e. expected number of substitutions), but 

different branch length distributions (split and long; see Figure S3a below). We created artificial 

datasets by simulating sequences using 200 copies of either split or long tree topologies. 

Simulations were performed as described in Section S2. In these analyses, we selected a random 

naïve heavy chain sequence from a dataset of two healthy individuals (7) for each tree in each 

dataset. We further used two sets of substitution parameters. In the first, named hot, k = 2, wFWR 

= 0.4, wCDR = 0.7,  hWRC = 2, hGYW = 3, hWA = 2, hTW = 1, hSYC = -0.6, and hGRS = -0.6. In the 

second, hotter, k = 2, wFWR = 0.4, wCDR = 0.7,  hWRC = 4, hGYW = 6, hWA = 4, hTW = 2, hSYC = -0.6, 

and hGRS = -0.6. Overall, we created 50 datasets for each combination of tree topology and 

substitution model.  

 

To compare model performance, for each simulated dataset we used maximum likelihood to 

estimate tree topology, branch lengths, k, wFWR, and wCDR the GY94, HLP17 and HLP19 models. 

We also estimated hWRC, hGYW, hWA, hTW, hSYC, and hGRS for HLP17 and HLP19. All of these 

parameters were estimated at the repertoire level. Codon frequencies (π) shared among all 

lineages within the repertoire were estimated using maximum likelihood for the HLP17 model, 

as empirical frequencies within each lineage (pooled across FWR and CDRs) for GY94, and 

using the procedure detailed in Section S1 for HLP19. The CDR3 region was removed for all 

sequences after simulation. For each parameter, we calculated bias as the mean (true–
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estimated)/true value across all 50 datasets of each type. True branch lengths for each simulated 

lineage were defined as the number of substitutions that occurred outside of the CDR3 along a 

particular branch, divided by the number of codon sites outside of the CDR3 in the simulated 

alignment. The results of these tests are shown in Figures S3b and S3c below.  

 

 

 
 

 
 
Figure S3a: Trees used in simulation analyses described in Section S3. Repertoires specified as 
“split” used the tree in a, and repertoires specified as “long” used the tree in b. Branch lengths 
are in codon substitutions per site. All branches with unlabeled lengths are equal to zero. 
“Germline” is the germline progenitor sequence of the lineage, while Sequence 1 and Sequence 2 
are the data sequences produced by the simulation process.  

Germline

0.240.24

Sequence 1 Sequence 2

Germline

0.48

Sequence 1 Sequence 2

a. “Split” tree b. “Long” tree
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Figure S3b: Mean bias in parameter estimation for different substitution models. Y axis labels 
show the parameter estimated, as well as the tree type and model used in simulation. X axis 
labels show the substitution model used to estimate parameters. See Section S3 for full details. 
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Figure S3c: Mean absolute bias in substitution parameter estimation for different substitution 
models. Mean error was calculated as the mean absolute value all parameters shown in Figure 
S3b. h values were not estimated for GY94, so were not included in this calculation.  
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Section S4: Performance of individual versus repertoire-wide model parameter estimation 

 

The goal of this simulation analysis was to quantify the performance of parameter estimation 

using the repertoire-wide phylogenetic approach vs. individual lineages using the HLP19 

substitution model. We used lineage trees from a single repertoire (subject 97 in the Age dataset) 

which was chosen due to its greater number of large lineages compared to other samples in the 

Age dataset. As described in Methods: Phylogenetic model parameter and topology estimation, 

we first estimated maximum likelihood tree topologies, branch lengths, and shared values of w, 

and k for all lineages within each repertoire under the GY94 model. Codon base frequencies 

were set to their empirical estimates across all lineages within the repertoire using a CF3X4 

model (19). As in Section S3, we selected a random heavy chain sequence from a dataset of 

naïve B cells from two healthy individuals (7) to act as the germline sequence for each tree in 

each dataset. The CDR3 region was removed for all sequences after simulation. Simulations 

were then performed using the procedure outlined in Section S2, using substitution parameters k 

= 2, hWRC = 4, hGYW = 6, hWA = 3, hTW = 1, hSYC = -0.6, and hGRS = -0.6. These were chosen to be 

similar to those estimated from the Age dataset (Figure 2). We then repeated the parameter 

estimation procedure in Methods: Phylogenetic model parameter and topology estimation by 

(briefly) first estimating tree topologies, branch lengths, and values of w, and k under the GY94 

model, and then estimating substitution parameters under the HLP19 model. For GY94 

estimations, codon base frequencies were set to their empirical estimates across all lineages 

within the repertoire using a CF3X4 model (19). We repeated this process both for each lineage 

individually, and for each repertoire using a repertoire-wide model. For individual trees, all 

parameters were estimated for each individual lineage. 
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Two types of simulations were performed. In the first simulation, parameters were identical 

among lineages, and wFWR = 0.5, wCDR = 0.7. We compared the accuracy of parameter estimates 

at the repertoire level versus the mean parameters of individual lineages containing at least 2, 10, 

and 30 sequences (Table S4b). In the second simulation, the k and h parameters were identical 

among lineages, but w parameters were allowed to vary. This is motivated by the expectation 

that the strength of selection may vary among lineages but the mutational biases of SHM (i.e. 

hot-spots and cold-spots) are expected to be constant. For each lineage, the k and h parameters 

were identical to previous simulations, but wCDR was drawn from a gamma (shape=10, 

scale=0.07) distribution (mean = 0.7), and wFWR was drawn from a gamma (shape=10, 

scale=0.05) distribution (mean = 0.5). These are shown in Figure S4a. The results of these 

simulation analyses are shown in Table S4c. We performed 50 repetitions of each type of 

simulation. 
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Figure S4a: Gamma distributions used to sample wCDR (purple) and wFWR (orange) values for 
each lineage for the simulations performed for Table S4b. The dotted lines indicate the mean of 
each distribution.  
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Parameter Estimate Bias Variance MSE 

ωCDR 

Repertoire-wide 0.0059 0.00072 0.00072 
Mean individual, ≥ 2 seqs 210 440 22000 

Mean individual, ≥ 10 seqs 17 340 480 
Mean individual, ≥ 30 seqs 0.052 0.018 0.019 

ωFWR 

Repertoire-wide -0.0096 0.000095 0.00012 
Mean individual, ≥ 2 seqs 20 27 120 

Mean individual, ≥ 10 seqs 0.039 0.00047 0.00083 
Mean individual, ≥ 30 seqs -0.012 0.0018 0.0018 

𝜅 

Repertoire-wide -0.0069 0.0013 0.0015 
Mean individual, ≥ 2 seqs 4.1 20 87 

Mean individual, ≥ 10 seqs 0.02 0.005 0.0064 
Mean individual, ≥ 30 seqs -0.0084 0.023 0.022 

hWRC 

Repertoire-wide -0.062 0.025 0.086 
Mean individual, ≥ 2 seqs 2.8 29 160 

Mean individual, ≥ 10 seqs 0.019 0.1 0.1 
Mean individual, ≥ 30 seqs -0.088 0.48 0.6 

hGYW 
Repertoire-wide -0.15 0.031 0.84 

Mean individual, ≥ 2 seqs 2.4 43 250 
Mean individual, ≥ 10 seqs -0.081 0.16 0.39 
Mean individual, ≥ 30 seqs -0.17 0.55 1.6 

hWA 

Repertoire-wide -0.033 0.012 0.021 
Mean individual, ≥ 2 seqs 4 30 170 

Mean individual, ≥ 10 seqs 0.061 0.07 0.1 
Mean individual, ≥ 30 seqs -0.021 0.19 0.19 

hTW 
Repertoire-wide -0.071 0.005 0.01 

Mean individual, ≥ 2 seqs 4.7 8.7 30 
Mean individual, ≥ 10 seqs 0.048 0.04 0.041 
Mean individual, ≥ 30 seqs -0.092 0.089 0.095 

hSYC 
Repertoire-wide -0.017 0.00071 0.00081 

Mean individual, ≥ 2 seqs -2.7 2.9 5.5 
Mean individual, ≥ 10 seqs -0.1 0.0038 0.0074 
Mean individual, ≥ 30 seqs -0.1 0.024 0.027 

hGRS 

Repertoire-wide 0.016 0.0019 0.002 
Mean individual, ≥ 2 seqs -6 7.9 21 

Mean individual, ≥ 10 seqs -0.059 0.01 0.011 
Mean individual, ≥ 30 seqs -0.0046 0.021 0.021 

Mean 
Repertoire-wide -0.04 0.01 0.11 

Mean individual, ≥ 2 seqs 27 68 2500 
Mean individual, ≥ 10 seqs 1.9 38 53 
Mean individual, ≥ 30 seqs -0.05 0.16 0.29 

	
Table S4b: Performance of repertoire-wide and individual estimates in simulations with 
identical substitution parameters across lineages. Bias, variance, and mean squared error (MSE) 
of each substitution model parameter, or the mean across all parameters, were estimated using 
repertoire-wide estimates or the means of individual lineages containing at least 2, 10 and 30 
sequences as indicated. The lowest (i.e. best) value of each comparison is shown in bold. 
Numbers are rounded to two significant digits. 
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True 

value(s) Parameter Estimate Bias Variance MSE 

Mean 
parameter 

value 

ωCDR 

Repertoire-wide -0.024 0.0015 0.0017 
Mean individual, ≥ 2 seqs 200 380 21000 

Mean individual, ≥ 10 seqs 8.9 150 180 
Mean individual, ≥ 30 seqs 0.035 0.046 0.045 

ωFWR 
Repertoire-wide -0.05 0.00021 0.00083 

Mean individual, ≥ 2 seqs 20 17 110 
Mean individual, ≥ 10 seqs 0.033 0.00082 0.0011 
Mean individual, ≥ 30 seqs -0.000011 0.0066 0.0064 

      

Individual 
parameter 

values 

ωCDR 

Repertoire-wide 0.086 0.0015 0.05 
Individual, ≥ 2 seqs 220 110000 140000 

Repertoire-wide 0.093 0.0015 0.051 
Individual, ≥ 10 seqs 8.3 6000 6000 

Repertoire-wide 0.14 0.0015 0.047 
Individual, ≥ 30 seqs 0.082 0.11 0.062 

ωFWR 

Repertoire-wide 0.06 0.00021 0.026 
Individual, ≥ 2 seqs 21 8000 9800 

Repertoire-wide 0.066 0.00021 0.024 
Individual, ≥ 10 seqs 0.044 0.048 0.022 

Repertoire-wide 0.047 0.00021 0.026 
Individual, ≥ 30 seqs -0.0062 0.028 0.0062 

 
Table S4c: Performance of repertoire-wide and individual estimates in simulations where w 
varies across lineages. In the first eight rows, the mean of the true parameter distribution (Figure 
S4a; dotted lines) was compared to the repertoire-wide estimate and mean individual estimate 
obtained from lineages with sequence counts at or above 2, 10 and 30 sequences. The last twelve 
rows show how repertoire-wide and individual estimates compared to the true parameter values 
of individual lineages (Figure S4a; distributions). Namely, for all lineages containing at least the 
specified number of sequences, that lineage’s true parameter value was compared to the 
repertoire-wide estimate (using all lineages regardless of size), and the estimate obtained from 
that lineage individually. The mean of bias, variance, and mean squared error (MSE) across all 
comparisons in all repetitions is reported in the last three columns. The lowest (i.e. best) value 
for each comparison shown in bold. Numbers are rounded to two significant digits.  
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Figure S4d: Scaled proportional error of repertoire-wide and individual lineage estimates across 
their full range. Proportional error was scaled using the formula ln(proportional error + 2) – 
ln(2) to account for the fact that proportional error of w could range from -1 to ∞. (a) Scaled 
proportional error in estimates of the wCDR parameter under the HLP19 model. (b) Scaled 
proportional error in estimates of the wFWR parameter under the HLP19 model. In both panels, 
the black dots show the values estimated from each individual lineage B cell lineage and the red 
lines shows the estimate obtained from all lineages combined using a repertoire-wide model. 
Data were generated from a simulated repertoire using tree topologies from subject 97 in the Age 
dataset and identical parameters among lineages. Note that this figure is the same data as in 
Figure 1, but plotted across its full range.    
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Section S5: Comparison of model fit on empirical datasets 

 

The Akaike information criterion (AIC) is a means of scoring the quality of model fit to data that 

compares the number of freely estimated parameters to the maximum log likelihood calculated 

using the model (20). Lower AIC values indicate a better model fit. Here, we calculate AIC for 

GY94 (5, 6), HLP17 (1), and HLP19 (Section S1) models when our parameter estimation 

procedure (Methods: Phylogenetic model parameter and topology estimation) was applied to 

each subject of the Age dataset (Table S5). Because GY94 and HLP17 are expected to 

overestimate wCDR (Section S3), we also report ML estimates of wCDR for each model. In all 

subjects, both AIC and wCDR followed the pattern GY94 > HLP17 > HLP19, indicating HLP19 

had both a better fit to the datasets and lower estimates of wCDR. 

 

The GY94 model used 3 free parameters (k, wFWR, and wCDR), HLP17 used 18 (k, wFWR, wCDR,  

hWRC, hGYW, hWA, hTW, hSYC,  hGRS, and three free base frequencies for each of three codon sites 

under the CF3X4 model (19), and HLP19 used 9 (k, wFWR, wCDR,  hWRC, hGYW, hWA, hTW, hSYC,  

hGRS). To make AIC values comparable among the three models, we altered the HLP17 and 

HLP19 models slightly by multiplying the partial likelihood of each possible codon at the root by 

the frequency of that codon (π), as is typically done for reversible models (21). For GY94 these 

frequencies were the empirical estimates of codon frequencies under a CF3X4 model for each 

lineage within the repertoire, for HLP17 these frequencies were estimated by ML using the 

CF3X4 model and shared across all lineages within the repertoire, while for HLP19 these 

frequencies were estimated from the root sequence of each lineage (πg for FWR or CDR, Section 

S1).  
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  AIC wCDR 

Subject GY94 HLP17+π HLP19+π GY94 HLP17+π HLP19+π 
1 363603 360109 309005 0.99 0.77 0.69 
3 607461 602820 513667 1.04 0.80 0.70 
4 243193 241238 206345 1.03 0.83 0.74 
8 733364 727169 619748 0.99 0.77 0.67 
11 573867 567545 490976 0.86 0.67 0.60 
13 472848 469177 398199 1.14 0.88 0.79 
14 171315 170651 142884 1.00 0.77 0.67 
15 247645 245197 208959 0.79 0.60 0.55 
16 363741 360629 307737 1.07 0.86 0.75 
18 453782 448849 387236 0.91 0.68 0.60 
21 264276 261115 226276 0.79 0.59 0.52 
23 108222 107762 90691 1.18 0.93 0.87 
25 354698 351053 302490 1.00 0.78 0.69 
26 461696 457367 392300 1.04 0.78 0.69 
33 494143 488992 419978 1.02 0.78 0.69 
34 434464 430241 369880 0.93 0.72 0.64 
49 402052 398526 340069 0.98 0.77 0.69 
54 532664 526649 455190 1.01 0.79 0.67 
63 202962 201174 171439 0.95 0.72 0.63 
64 281633 279516 237513 0.99 0.78 0.69 
65 337095 333429 288345 0.99 0.76 0.69 
73 217224 215238 186094 1.06 0.85 0.70 
74 274756 272262 233127 1.06 0.79 0.67 
83 312956 309557 266105 0.99 0.75 0.66 
93 249065 247057 210139 1.09 0.83 0.72 
95 216803 215498 181918 1.22 0.95 0.82 
97 313170 308940 271512 0.77 0.61 0.53 

 
Table S5: AIC values (rounded to the nearest integer) and wCDR estimates of all subjects in the 
Age dataset using the GY94, HLP17 and HLP19 substitution models, modified as detailed in 
Section S5.  
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Section S6: Simulation analyses based on empirical datasets 

 

The goal of these simulation analyses is to test whether differences in the underlying tree 

topology and branch lengths of samples within the Age and Vaccine dataset could be responsible 

for observed trends between substitution model parameters and age in the Age dataset and time 

in the Vaccine dataset. As described in Methods: Phylogenetic model parameter and topology 

estimation, we first estimated maximum likelihood tree topologies, branch lengths, and shared 

values of w, and k for all lineages within each repertoire under the GY94 model. Codon base 

frequencies were set to their empirical estimates across all lineages within the repertoire using a 

CF3X4 model (19). For each lineage tree within each repertoire, we used the predicted germline 

sequence (see Repertoire dataset processing in Section S1) of the empirical data as the 

progenitor of each lineage. Masked codons (specified by ‘NNN’) were replaced with codons 

drawn from a random uniform distribution. These were primarily in the CDR3 region which was 

removed after simulations. Simulations were then performed using the procedure outlined in 

Section S2, using substitution parameters k = 2, wFWR = 0.5, wCDR = 0.7,  hWRC = 4, hGYW = 6, hWA 

= 3, hTW = 1, hSYC = -0.6, and hGRS = -0.6. These were chosen to be similar to those estimated 

from the Age dataset (Figure 2). We simulated 20 repertoire datasets for each sample in both 

datasets using this procedure and removed the CDR3 regions of all simulated sequences. We 

then repeated the parameter estimation procedure in Methods: Phylogenetic model parameter 

and topology estimation by first estimating tree topologies, branch lengths, and shared values of 

w, and k for all lineages within each repertoire under the GY94 model, and then estimating 

substitution parameters across all lineages using a repertoire-wide HLP19 model. For GY94 
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parameter estimation, codon base frequencies were set to their empirical estimates across all 

lineages within the repertoire using a CF3X4 model (19). 

 

We first investigated whether our simulations could reproduce the observed negative relationship 

between age, sex, and estimates of hWA. For each repetition of our Age dataset of 27 subjects, we 

fitted a multiple linear regression model with age and sex as interaction variables against 

substitution rate biases of WA motifs (i.e. hWA). We compared the slope coefficients estimated 

from each of our simulated datasets to those observed in our empirical data. For all 20 repetitions 

the hWA slope coefficents for males and females were closer to zero than their respective 

empirical estimates (Figure S6a). 

 

We next investigated whether our simulations could reproduce the behavior of wCDR over the 

time course of influenza vaccination in our Vaccine dataset. As shown in Figure S6c, estimates 

of wCDR varied fairly constantly around a mean slightly above the true value (0.7) for the entire 

time course for all three subjects. For subjects 420IV and hu420139, we calculated the fold 

change in wCDR at day +7 compared to the pre-vaccine sample (-1 hour) for each simulation, and 

compared it to the empirical estimate. No simulation reproduced the observed fold change at day 

+7 in either subject (Figure S6b). As expected given its low sequence count, PGP1 day +14 had 

wide variation in wCDR estimate between repetitions. Figure S6c confirms that the simulation 

procedure reliably reproduced differences in mean tree length among repertoire datasets with 

little variation among repetitions. 
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We then tested whether our results in either the Age or Vaccine dataset could reproduce our 

observed negative relationship between w and mean tree length. For each repetition of our Age 

and Vaccine datasets, we fit a log-linear regression model in which either wCDR or wFWR are 

modelled against the natural logarithm of mean tree length. We compared the slope coefficients 

estimated from each of our simulated datasets to those observed in our empirical data. For all 20 

repetitions, slopes of both w parameters from both the Age and Vaccine dataset were far lower 

than any slope parameters observed in the empirical Age or Vaccine datasets (Figure S6d). 

These results are further shown in Figure S6e, which shows these simulation results plotted as 

regressions and scatterplots.  
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Figure S6a: Slope coefficients between hWA and age for 20 null simulation repetitions of the Age 
dataset. Coefficients are colored by sex. Vertical dashed lines show the values observed in 
empirical data for their respective parameter and sex.  
 
 

 
 
Figure S6b: Fold change in wCDR between day +7 and -1 hour (pre-vaccination) estimated for 20 
null simulation repetitions for subjects hu420139 and 420IV (histograms) and empirical data 
(vertical lines).   
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Figure S6c: a-c: plots of wCDR over time for each subject in the Vaccine dataset. Each line 
represents a repetition of the simulation procedure for a subject. The dashed black line shows the 
mean value across repetitions at a time point. The true value of wCDR in these simulations was 
0.7, shown by the solid horizontal black line in each plot. d: plots of mean tree length over time 
for all subjects in the Vaccine dataset. Each line represents a repetition of the simulation 
procedure for a subject. These lines are closely overlaid due to the lack of variance in this 
parameter among repetitions.  
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Figure S6d: Slope coefficients of log-linear regressions between w and mean tree length in both 
the Age and Vaccine datasets among 20 simulation repetitions. Coefficients are colored by 
region (i.e. whether they represent wCDR or wFWR). Vertical dashed lines show the values 
observed in their respective empirical datasets. 
 
 

 
Figure S6e: Log-linear regressions between w and mean tree length among 20 simulation 
repetitions of the Age and Vaccine datasets. These represent the same data as in Figure S6c. 
Coefficients are colored by region (i.e. whether they represent wCDR or wFWR). The true value for 
all simulations wCDR = 0.7 and wFWR = 0.5. The y axis is scaled identically between the two plots.  
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Section S7: Additional simulations using an empirical SHM model 

 

As an additional validation, we also performed simulations based on the Age dataset using the 

S5F model within SHazaM (15). Simulations were performed under a modified version of 

Alakazam v0.2.11 (13) and SHazaM v1.9.0 (15) which are noted below and are available at: 

https://bitbucket.org/kleinstein/projects. These simulations for each clone were performed as 

follows: 

1. For a given set of clonal sequences of at least two unique sequences, maximum 

parsimony lineage tree topology and branch lengths were estimated using dnapars from 

PHYLIP v3.697 (22), implemented in Alakazam v0.2.11(13). In contrast to the default 

behavior in Alakazam of estimating branch lengths using the Hamming distance between 

reconstructed intermediate sequences, branch lengths were estimated from PHYLIP as 

the estimated substitutions per site. Trees are also kept strictly binary and do not collapse 

zero-length branches in internal nodes. 

2. Alakazam uses ‘N’ nucleotides to place all sequences within a clone into alignment with 

respect to IMGT numbering, which adds uninformative sites to the alignment. This 

means branch lengths taken directly from dnapars output – in units of substitutions per 

site –  will be artificially low (this is not a problem in the default setting since dnapars 

branch lengths are not used directly). To correct for this, we re-scale branch lengths; 

namely, we multiply each branch length by the number of sites in the full alignment, and 

divide by the number of informative sites (codon sites with any non-N nucleotides in any 

data sequence) in the alignment. 
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3. Branch lengths are converted into the number of substitutions between nodes by 

multiplying each branch length by the number of informative sites in the germline 

sequence, and randomly rounding up or down based on difference from the nearest 

integer. 

4. In contrast to the default behavior of SHazaM v1.9.0 (15), simulations begin with the 

clone’s predicted germline sequence (GERMLINE_IMGT_D_MASK) from 

CreateGermlines.py from Change-O v0.4.3 (13). Mutations are added to the starting 

sequence based on their relative probability under the S5F model (15). Starting from the 

germline sequence at the root node of the tree, this process is repeated for each 

descendent node in the tree, with the number of mutations added between ancestor and 

child nodes equal to the branch length between them.  

5. This process is repeated for all clones within a subject in the Age dataset. 

6. These simulated datasets are converted into an IgPhyML-readable format using 

BuildTrees.py in Change-O v0.4.5 (13). We then repeat our parameter estimation 

procedure (see Methods:Phylogenetic model parameter and topology estimation) by first 

estimating maximum likelihood tree topologies, branch lengths, and repertoire-wide 

substitution parameters using the GY94 model, and then using these tree topologies to 

estimate maximum likelihood branch lengths and substitution model parameters under 

the HLP19 model. 

 

For each simulation repetition of all 27 subjects, we fit a log-linear regression model in which 

either wCDR or wFWR are modelled against ln(mean tree length). We compared the slope 

coefficients estimated from each of our simulated datasets to those observed in our empirical 



	 33	

data. Of the 50 simulation repetitions performed, none showed a slope as negative as that 

observed between either wCDR or wFWR and mean tree length (Figure S7a). These results are 

further shown in Figure S7b, which shows these simulation results plotted as regressions and 

scatterplots. From this we conclude that even under this different simulation framework, which 

uses a model of SHM not fully captured by the HLP19 model, that the observed trend is not the 

result of model bias between tree length and w, or selection of germline sequence. 

 

We also compared performance of HLP17 and GY94 models on each of these simulated 

datasets. We repeated the parameter estimation procedure in Methods: Phylogenetic model 

parameter and topology estimation by first estimating tree topologies, branch lengths, and shared 

values of w, and k for all lineages within each repertoire under the GY94 model. For this initial 

GY94 parameter estimation, codon base frequencies were set to their empirical estimates across 

all lineages within the repertoire using a CF3X4 model (19). We then estimated substitution 

parameters across all lineages under repertoire-wide HLP19, HLP17, and GY94 models with 

separate w parameters for FWR and CDRs (wCDR and wFWR, respectively). Our results largely 

reproduce those of Section S3. As expected, both HLP19 w estimates are roughly centered at 1 

(mean wCDR = 1.01 , mean wFWR = 1.01), while HLP17 tended to overestimate wCDR (mean wCDR 

= 1.11, mean wFWR = 1.0). GY94 tended to overestimate wCDR even more than HLP17, and 

underestimate wFWR (mean wCDR = 1.29, mean wFWR = 0.88). Overall, these confirm that HLP19 

estimates of w are not severely affected by alternative models of SHM context sensitivity, while 

estimates using HLP17 and GY94 models are more biased.  
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Figure S7a: Slope coefficients of log-linear regressions between HLP19 estimated w (wCDR 
=purple, wFWR =orange) and mean tree length among 50 simulation repetitions of the Age dataset. 
Vertical dashed lines show the values observed in their respective empirical datasets. 
 
 

 
Figure S7b: Log-linear regressions between HLP19 estimated w (wCDR =left panel, wFWR =right 
panel) and mean tree length among 50 simulation repetitions of the Age dataset. These represent 
the same data as in Figure S7a. The Y axis is scaled identically in the two plots. 
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Figure S7c: Estimates of wCDR (left panel) and wFWR (right panel) among 50 simulation 
repetitions of the Age dataset. These represent the same data as in Figure S7a and S7b. The 
parameters wCDR and wFWR were estimated for each simulated dataset using the GY94 (purple), 
HLP17 (green), and HLP19 (orange) models. Mean estimates for each model are shown as solid 
lines. A separate solid black line shows the expected value w=1.0.  
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Section S8: Streams plots of clone sizes over time 

 

 

Figure S8: Stream plots showing sequence count of large (≥1% of total repertoire sequences) 
clonal lineages at multiple time-points pre- and post-influenza vaccination of three individuals 
(PGP1, hu420143 and 420IV). Counts are defined by the number of unique sequences 
determined using the full V(D)J sequence of the BCR.  
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Section S9: Estimates of wCDR for lineages of different sizes 

 
 
Figure S9: Estimates of wCDR for lineages of different sizes from the same repertoire (subject 
420IV, day +7 post-vaccination). Samples on the x-axis show approximate quartiles of sequence 
count in the repertoire, with larger lineages on the right and smaller lineages on the left. Lineages 
within their respective size constraints were grouped together and wCDR was estimated for each 
group using the HLP19 model and the same parameter estimation procedure described in 
Methods: Phylogenetic model parameter and topology estimation. These results show that 
lineages with more sequences tended to have lower wCDR estimates compared to lineages with 
fewer sequences, though this trend is not monotonic. Sequence counts represent number of 
unique sequences in a lineage before the CDR3 region is masked.  
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Section S10: 95% confidence intervals of estimates of wCDR and wFWR for subjects in the 
Age dataset 
 

 
 
Figure S10: Maximum likelihood estimates (points) and 95% confidence intervals of wCDR 
(purple) and wFWR (orange) for each subject in the Age dataset, ordered within sex by age (in 
years) at the time of sampling.  
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