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Supplemental Figures 
 

 

 
SI Figure 1: Network variants are present in all individuals. Network variants are present in 
each individual included in the study. The figure displays binarized variants (light blue) for all 
MSC individuals and 81 randomly selected HCP subjects. Variants were created by use of a 
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conservative fixed threshold of spatial correlations less than 0.15 (rather than lowest decile as 
used in the main text, to determine if low similarity locations were present in all individuals). Size 
and SNR exclusion criteria were also applied, as described in the methods.  
 
 
 
 

 
SI Figure 2: Reliability of binarized network variants. The figure shows the session-to-
session reliability of binarized network variants within each MSC individual. (A) Binary variants 
for all 10 sessions from MSC02 are displayed. Most variants are consistent across sessions, 
with a few missing variants highlighted (red circle; note that these often still showed relatively 
low spatial correlations, as in Fig. 2, but did not pass the threshold to be in the lowest decile for 
that session). (B) We quantified the reliability of variant locations across sessions within an 
individual using the dice coefficient instead of the intraclass correlation (ICC), since the data are 
binary. The mean and standard error of within-subject variant reliability (i.e., mean +/- SE across 
all 10 sessions) is shown for each individual. The open black circles represent the null 
distribution of variant reliability. To create the null, we performed 1000 random permutations of 
pairs of sessions drawn from two different MSC individuals (with replacement). Only MSC08 
shows a dice coefficient in the range of between subject variant dice. 
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SI Fig 3: Stability of network variants over a year. Using data from MyConnectome, we 
tested the stability of network variants over a year in a single individual. The correlation matrix 
on the left demonstrates that the individual’s network variants (i.e., the spatial correlation maps) 
are quite stable from month-to-month (data from all sessions within a 3 week block are 
concatenated together). The brains on the right show that the individual’s network variants are 
extremely similar (r = 0.85) at the beginning and end of the year. 
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SI Figure 4: Sampling variability affects identification of network variants. To quantify the 
effects of sampling variability on network variants, data from both the MSC and MyConnectome 
individuals were used. Split-halves of the data were generated, and the BOLD time series in one 
of the split-halves was sampled consecutively in 5-minute increments. Network variants were 
identified via a spatial correlation between the individual and the group-average data (as in 
Figure 1). Then, at each 5-minute increment, both the spatial correlation map (top) and the map 
of binarized network variants (bottom; lowest decile of spatial correlation map, SNR and size 
exclusion applied) were compared to the corresponding map generated from the remaining 
“true” half of the data (as in (Evan M. Gordon et al., 2017; Laumann et al., 2015)). Spatial 
correlation maps were compared via Pearson correlation and binarized maps were compared 
via dice overlap. To prevent an artificial inflation of the dice coefficient due to the large number 
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of vertices that did not contain variants, only vertices that were classified as variants in at least 
one of the split-halves were considered. 
 

 

 
SI Figure 5: Overlap of network variants and surface registration deformations. The 
distribution (top) displays the dice coefficient overlap between an individual’s network variants 
and large deformations (both contractions and expansions) that occurred during surface 
registration, a proxy measure of anatomical variability, across the HCP dataset. Large 
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deformations are defined as the top decile of the absolute value of the areal distortion map, an 
output from the HCP registration procedure (registering the individual’s FreeSurfer defined-
surface to the Conte69 atlas; (Glasser et al., 2013)). There is little to no overlap between 
network variants and registration deformations within individuals. Common regions of 
registration deformations across HCP individuals (>30% of individuals) are displayed as blue 
borders on the brains (bottom), with the scale bar showing the overlap of network variants 
across HCP subjects (reproduced from Figure 3A). There is minimal overlap between common 
locations for network variants and common locations for large deformations across individuals 
(black arrows). 
 
 
 
 
 

 
SI Figure 6: Task-rest alignment of DMN variants. (A) Alignment of a DMN variant from 
MSC02 to task activations from all other subjects. Note that while MSC02 shows deactivations 
in this variant, other participants and the group show primarily activations. (B) DMN variants in 
other participants also align with deactivations during mixed design tasks. (C) DMN variants 
from a given subject show significantly lower activations than the same location from other 
subjects (each line represents a single subject). 
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SI Figure 7: Sustained activation in cinguloopercular variants. Task-evoked activations 
during a mixed design task are displayed for network variants. The mean and standard error 
across the 9 included highly sampled subjects reveals that sustained activations (all conditions 
– baseline) are stronger in cinguloopercular variants specifically. Example sustained activations 
(t > 0) are displayed for subject MSC02 with outlines of the subject’s variants overlaid (as in 
Figure 4). Note that there is strong activation in the cinguloopercular variant near the angular 
gyrus (purple arrow), whereas there is no activation in the frontoparietal variant near the 
superior frontal gyrus (yellow arrow). The group-average functional networks with the same 
variants overlaid are displayed below for reference (variants shown with black outlines). 
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SI Figure 8: Clustering via anatomical location of network variants. The matrix displays the 
dice coefficient overlap between the locations of network variants in all pairs of individuals (i.e., 
the degree to which two individuals both have variants 1, 2, and 3 and both do not have variants 
4, 5, and 6). The matrix is sorted by clusters, with unlabeled subjects in the first portion of the 
matrix. Across InfoMap thresholds (see Methods), individuals cluster into one large group (solid 
black line). Thus, we did not find evidence for sub-groups of individuals with similar anatomical 
distributions of network variants. 
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SI Figure 9: Validation of the sub-group clustering. We validated the clustering of individuals 
in two sub-groups (Fig 5 in the main text) via two methods: (1) modularity versus a null model 
that preserves the degree distribution and (2) hierarchical clustering. (A) The number of clusters 
found by InfoMap (see Methods in the main text) varies as a function of edge density. Thus, for 
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each edge density we tested the modularity of the real solution against a null model. The null 
model is a random network (at that specific edge density) with the same degree distribution as 
the real network (generated via the Brain Connectivity Toolbox function null_model_und_sign.m; 
(Rubinov and Sporns, 2010)). The two sub-group solution was the most robust across edge 
density thresholds and split-halves, as indicated by the numbers near the lines. (B) The 
dendrograms produced by hierarchical clustering (created via MATLAB functions dendrogram 
and linkage, Ward’s minimum variance method) are displayed for each split-half. The cophentic 
correlation coefficient was greater than 0.8 for each split-half. (C) A confusion matrix was 
generated for the two- and four-group hierarchical clustering solutions to test their reliability 
across each split-half. If split-half 1 is the ‘true answer,’ then the confusion matrix represents the 
degree to which split-half 2 matches the true answer (in terms of sub-group labeling). In order to 
align sub-group labels across each split-half (e.g., to ensure that individuals in the default sub-
group are labeled with a 1 in each split-half), the average network template match was used 
(i.e., the line graphs in Figure 5 in the main text). The two sub-group solution had a much higher 
percentage of true positives and a much lower percentage of false positives and false negatives 
than the four sub-group solution. 
 
 

 
SI Figure 10: The four sub-group solution. The four sub-groups of individuals from the HCP 
dataset, identified via patterns of network variants, are displayed. Individuals in these sub-
groups have variants that are more like the frontoparietal, dorsal attention, and cinguloopercular 
networks (top left), the default mode, frontoparietal, and ventral attention networks (top right), 
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the motor, auditory, ventral attention, and cinguloopercular networks (bottom left), or a mixed 
pattern (bottom right). 
 
 

 
SI Figure 11: Group-wise differences in the size of each network. The solid line 
represents the mean expansion or contraction of each functional network in individuals 
in the two sub-groups identified in the main results (black = control and processing, red 
= default). The specific measure is the number of surface vertices assigned to each 
network in the individual minus the same number for the group-average. A positive 
number means more vertices assigned to that network than the group-average (an 
expansion), a negative number means fewer vertices assigned to that network than the 
group-average (a contraction), and zero means an identical number of vertices 
assigned to that network as the group-average. The pattern is partially consistent with 
that observed in Fig 5B, but sub-group differences are driven by the dorsal and ventral 
attention networks versus the default mode, salience, and frontoparietal networks. 
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SI Figure 12: Group-wise differences in neuropsychological measures. Factor scores 
derived from the HCP behavioral measures are displayed (mean and standard error) for the two 
larger sub-groups from the HCP dataset (Fig 5B). Factor scores for the control and processing 
sub-group were significantly higher in the Positive Life Experience factor (t(344) = 2.038) and 
significantly lower in the History of Drug Abuse factor (t(344) = -2.039) than scores for the 
default sub-group. Two-sample t-tests were performed with subjects from both split-halves 
grouped together.  
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Supplemental Methods 
 
Acquisition details 
 
Three datasets are included in this manuscript: the first contains five hours of resting-state data 
from each of 10 highly-sampled individual subjects, referred to as the Midnight Scan Club or 
MSC dataset; the second includes 14 hours of resting-state data from a single individual 
collected over the course of a year, referred to as the MyConnectome dataset; and, the third 
includes one hour of resting-state data from 384 unrelated individuals from the Human 
Connectome Project  1200 subject release, referred to as the HCP dataset.  
 
Briefly, for the MSC and WashU 120, high-resolution T1-weighted, T2-weighted, and resting-
state BOLD data were collected on a Siemens 3T Magnetom Tim Trio with a 12-channel head 
coil (gradient-echo EPI sequence, isotropic 4 mm3 voxels, TE of 27ms, and TR of 2.2s and 2.5s, 
respectively; (Evan M Gordon et al., 2017; Power et al., 2013)). The MyConnectome dataset 
was acquired on a Siemens 3T Skyra with a 32-channel head coil (multi-band sequence with 
MB factor 4, isotropic 2.4 mm3 voxels, TE of 30ms, and TR of 1.16s; (Laumann et al., 2015; 
Poldrack et al., 2015)). The HCP was collected on a custom Siemens 3T Skyra with a custom 
32-channel head coil (multi-band sequence with MB factor 8, isotropic 2 mm3 voxels, TE of 
33ms, and TR of 0.72s (Van Essen et al., 2012)). 
 
We excluded all subjects whose resting-state BOLD runs contained large to moderate amounts 
of head motion in order to ensure reliable identification of network variants. Thus, we excluded 
data from one MSC individual with a substantial amount of head motion and drowsiness (Evan 
M. Gordon et al., 2017; Laumann et al., 2016). We included all high-quality (low-motion) 
MyConnectome sessions after the schedule shift to Tuesday and Thursday acquisitions, 
following Laumann and colleagues (Laumann et al., 2015). A total of 84 sessions were included. 
Exclusion criteria for individuals from the full HCP 1200-subject HCP release were as follows: 
(1) we removed duplicates and subjects who did not complete the study; (2) we required 
subjects to have >75% of their data, i.e. 45 minutes, retained post motion censoring (see 
description of censoring procedures below); (3) we required that all subjects be unrelated (if 
more than one family member passed the previous criteria, the subject with the most data was 
selected). Thus, 384 HCP subjects were included. From these 384 individuals, two split-halves 
were created for within-dataset replication of our findings. Split-halves were balanced on the 
factors of age, sex, handedness, race, mean frames retained post motion censoring, and years 
of education. See SI Table 1 for full details. 
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SI Table 1: HCP exclusion criteria and split-halves. The flow diagram at the top shows the exclusion 
criteria applied to obtain the final set of 384 HCP subjects. The table shows demographic variables on 
which the split-halves were balanced, as well as t-tests for each variable.  

 
 
Functional preprocessing 
 
For each subject, the volumetric BOLD time series from each run were concatenated together. 
Slice timing correction was applied first (but not in the HCP dataset, per recommendation from 
Glasser et al., 2013). Then, all functional data were aligned to the first frame of the first run 
using rigid body transforms, after which they were normalized to a whole-brain mode of 1000 
(Miezin et al., 2000). For the WashU 120 and HCP, the functional data were registered to the 
high-resolution T1 image. Following this, a one-step operation (Smith et al., 2004) was applied 
to resample (3 cubic mm) and register the data to the 711-2B atlas (Ojemann et al., 1997). For 
the MSC, the functional data were first registered to the T2 image and then to the T1 image, 
which was separately registered to the template space. Finally, field inhomogeneity distortion 
correction was applied using the mean field map applied to all sessions (Evan M. Gordon et al., 
2017; Laumann et al., 2015). Distortion correction was not applied to the WashU 120 because 
field maps were not collected. 
 
In order to remove further artifacts additional preprocessing was applied (Power et al., 2014). 
Frame-wise displacement (FD) was calculated (Power et al., 2012), and frames with FD greater 
than 0.2 mm were flagged for censoring for the MSC and WashU 120 datasets. However, the 
increased temporal resolution of the HCP acquisition (0.72s TR) caused respiration artifacts to 
alias into the FD trace (Siegel et al., 2017). Thus, the 6 realignment (motion) parameters were 
filtered with a lowpass filter at 0.1 Hz before calculating FD values. The filtered FD threshold for 
frame censoring was 0.1 mm. Uncensored segments with fewer than 5 contiguous frames were 
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also flagged for censoring as well. First, the aligned and registered BOLD data were demeaned 
and detrended. Multi-linear nuisance regression was implemented with 36 regressors: the 
whole-brain mean, individually defined white matter and ventricular CSF signals, the temporal 
derivatives of each of these regressors, and an additional 24 movement regressors derived by 
expansion (Friston et al., 1996; Satterthwaite et al., 2013). Then, the previously flagged frames 
were removed and interpolated over using least squares spectral estimation (Power et al., 
2014). Finally, the data were bandpass filtered from 0.009-0.08 Hz. The MyConnectome data 
were processed identically to the MSC data, except the FD threshold was 0.25 mm. 
 
 
Volume-to-surface mapping and functional connectivity processing 
 
Unsmoothed (but otherwise completely processed) BOLD data were mapped to each 
individual’s native midthickness surface via the ribbon-constrained sampling procedure 
(Connectome Workbench v1.0) (Marcus et al., 2013). Then, the mapped data were registered to 
the fsaverage surface in one step using the deformation map generated from the 
aforementioned shape-based spherical registration. Afterwards, a geodesic Gaussian 
smoothing kernel was applied (FWHM = 6 mm, sigma = 2.55) to the surface registered data 
(Gordon et al., 2016). Subcortical and cerebellar data were not considered in any further 
analyses due to substantial signal-to-noise issues in HCP data.  
 
Before computing correlations (functional connectivity), the first 30 seconds of each functional 
run (14, 41, and 12 frames, for the MSC, HCP, and WashU-120, respectively) were discarded to 
account for magnetization equilibrium and an auditory evoked response to the start of the EPI 
sequence in addition to frame censoring (Laumann et al., 2015). For the MyConnectome data, 
the first 60 seconds of each run (52 frames) were discarded due to an amplified evoked 
response as a function of noise cancelling headphones. 
 
 
Task data processing 
 
In this study, we focus on activations in the two mixed design (Petersen and Dubis, 2012) tasks 
from the MSC dataset: the semantic task and the coherence task. Briefly, the semantic task 
required a noun or verb judgment on a series of presented words, while the coherence task 
required a yes/no judgment regarding whether an array of dots was arranged concentrically on 
the screen (Glass, 1969). Blocks of each task consisted of start cues signaling the beginning of 
the block, followed by a series of randomly intermixed trials in each condition (nouns and verbs 
in the semantic task, 0% and 50% coherence arrays in the coherence task). 
 
Task activations were modeled with in-house imaging analysis software (IDL) using a general 
linear model (GLM) approach as previously described (Evan M. Gordon et al., 2017; Gratton et 
al., 2018). Eight time-points were modeled for cues and each trial type in each condition. In 
addition, block regressors for sustained activations were included across the full task block. 
MSC individuals completed two runs of each task in each of their 10 sessions; each individual 
was analyzed separately. 
 
 
Behavioral measures 
 
Demographic variables included education recoded into fewer categories to avoid small cell 
sizes (≤high school graduate, some college, ≥4-year college graduate), employment (not 
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working, part time, full time), family income, also recoded into fewer categories (bottom quartile 
≤$29,999, median $30,000-49,999, 3rd quartile $50,000-74,999, 4th quartile >$75,000), and 
whether the respondent was still in school or taking courses for a degree (Yes/No), was married 
or in a live-in relationship (Yes/No), and was born in Missouri (Yes/No). Race/ethnicity was 
recoded per NIH guidelines – not Hispanic White (n=814, 67.5%), Black/African American 
(n=191, 15.84%), Asian (n=68, 5.64%), American Indian/mixed/unknown (n=28, 2.32%; there 
were only n=2 American Indian individuals), and Hispanic/Latino (n=105, 8.71%) – and dummy 
coded (not Hispanic White vs all others, Black/African American vs all others, etc). 
 
Cognitive variables included all measures from the NIH Toolbox Cognition Battery (Picture 
Vocabulary, Oral Reading Recognition, the Flanker Task, Dimensional Change Card Sort, List 
Sorting, Picture Sequence Memory, and Pattern Completion Processing Speed; (Weintraub et 
al., 2013)) in addition to the number of correct responses from the Penn Progressive Matrices 
(Bilker et al., 2012), the Variable Short Penn Line Orientation, the Penn Word Memory Test, true 
positives from the Short Penn Continuous Performance Test (Gur et al., 2010), and Delay 
Discounting Area Under the Curve for $200 and $40,000 (Estle et al., 2006; Myerson et al., 
2001). Cognitive variables were Z-score normalized across all HCP subjects and were not 
adjusted for age or sex to allow flexibility in covariate adjustment in other analyses.  
 
Emotion variables included all NIH Toolbox surveys (Anger-Affect, Anger-Hostility, Anger-
Physical Aggression, Fear-Affect, Fear-Somatic Arousal, Sadness, General Life Satisfaction, 
Meaning and Purpose, Positive Affect, Friendship, Loneliness, Perceived Hostility, Perceived 
Rejection, Emotional Support, Instrumental Support, Perceived Stress, and Self-Efficacy). They 
were Z-score normalized and also not adjusted for age or sex. Drug use variables were derived 
from SSAGA interviews on lifetime use and captured lifetime quantity/severity of use: history of 
alcohol abuse or dependence (Yes/No); number of cigarettes smoked: never smoked (0 
cigarettes), experimented (1-19 cigarettes), occasional use (20-99 cigarettes), regular use (≥100 
cigarettes); number of times used cannabis (never, 1, ≥2); and number of times used each of 
cocaine, hallucinogens, opiates, sedatives, or stimulants (never, ≥1). 
 
For each behavior category, relationships between variables were examined using Pearson or 
polychoric/tetrachoric correlations for continuous and categorical variables, respectively. If a 
variable did not have a correlation of ≥0.32 with at least one other variable, which would suggest 
~10% shared variance, that variable was excluded from consideration. Oblique rotation was 
always tested first and was retained if inter-factor correlations were significantly different from 
zero at p<0.05 (uncorrected). Final EFA structure was determined based on a combination of 
indicators including: (1) factor eigenvalues and scree plot; (2) variables had high loadings 
(≥0.32, accounting for approximately 10% of factor variance) on at least one factor; (3) variables 
had high loadings on one factor and relatively low loadings on all other factors, i.e., cross-
loading was minimal; (4) at least two variables had high loadings on a factor; and (5) 
interpretability (Tabachnick and Fidell, 2007). Factor scores were output for use in subsequent 
analyses. Internal consistency of the factors was assessed using estimates of the squared 
multiple correlations (SMCs) of variables with each factor, where factor scores are predicted 
from the observed variables. SMCs vary from 0 to 1 and high SMCs (≥0.7) indicate that 
observed variables account for significant factor score variance. All data manipulation and EFA 
analysis was conducted in SAS 9.2 (SAS Institute Inc., 2008, Cary, NC, USA).  
 
 
EFA results 
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Demographic variables (final n=1199): Whether a respondent was born in Missouri did not 
correlate with other variables and was not further considered. Being Black/African American 
was related to three other demographic variables and this dummy variable was retained for 
analysis. EFA resulted in a single factor. Being in school or employed had low factor loadings 
and these variables were dropped from analysis. The four remaining variables (income, 
education, relationship status, and Black/African American) had inadequate internal consistency 
(SMC=0.59) suggesting that as a group, these variables are poor indicators of an underlying 
construct. We suggest that these variables be considered separately. 
 
Cognitive variables (final n=1193): The two delay discounting variables correlated only with 
each other (r=0.675) and not with any other variables. In addition, the partial correlation 
remained high (r=0.65) after controlling for all other variables suggesting that delay discounting 
does not share variance with the other cognitive measures and was therefore not considered 
further. Likewise, Penn continuous performance and word memory tests did not correlate with 
any other variables and were not considered further. The picture sequence task had low 
loadings on all factors and was excluded. The final EFA consisted of two factors (SI Table 2). 
Variables that loaded highly on the first factor reflected fluid intelligence, reading and 
comprehension, spatial orientation and working memory; we named this factor General IQ. 
Processing speed variables loaded highly on the second factor which we named Processing 
Speed. The inter-factor correlation was 0.40 suggesting that higher general IQ is related to 
higher processing speed. The General IQ and Processing Speed factors had good to fair 
internal consistency (SMCs=0.80 and 0.65, respectively).  
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SI Table 2. Exploratory factor analysis of HCP behavioral variables. Factor loadings for the cognition, 
emotion, and substance use variables are displayed. Loadings of at least 0.32 (accounting for 
approximately 10% of factor variance) are bolded. Internal consistency of the factors is shown at the 
bottom of each factor loading vector, and inter-factor correlations are shown where applicable.  

 
 
Emotion variables (final n=1204): The variables anger-hostility and anger-physical aggression 
had low factor loadings and were excluded. The final EFA solution consisted of three factors (SI 
Table 2). Fear, anger, sadness, perceived social hostility and stress loaded on the first factor 
which we call Negative. Life satisfaction, meaning and purpose, social support, and self-efficacy 
loaded on the second factor which we call Positive. The third factor was characterized by 
positive loadings of loneliness and perceived social hostility and rejection, and negative loadings 
of social support and social relationship and we call this factor Loneliness. Higher score on the 
Negative factor was related to higher score on the Loneliness factor and higher score on the 
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Positive factor was related to lower scores on both Negative and Loneliness factors. All three 
factors had good internal consistency (SMCs=0.87, 0.83, and 0.82, respectively).  
 
Drug use variables (final n=1204): Drug use variables comprised a single factor that captured 
overall quantity and heaviness of use. This factor had good internal consistency (SMC=0.82). 
 
 
Statistical analysis of behavior 
 
Analysis of the variance of behavioral factor scores explained by network variant group 
assignment was conducted in MATLAB R2012a using the Statistics and Machine Learning 
Toolbox multi-linear regression (MathWorks Inc., 2012, Natick, MA, USA). Factor scores were 
modeled as dependent variables and variant group as the independent variable of interest. 
Regressions were performed both including and excluding other covariates, which included age, 
sex, handedness, and number of frames retained post-scrubbing. Further, t-tests were used to 
compare differences in factor scores between sub-groups, with an FDR correction for multiple 
comparisons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 20 

Supplemental References 

Bilker, W.B., Hansen, J.A., Brensinger, C.M., Richard, J., Gur, R.E., Gur, R.C., 2012. 
Development of Abbreviated Nine-Item Forms of the Raven’s Standard Progressive 
Matrices Test. Assessment 19, 354–369. doi:10.1177/1073191112446655 

Estle, S.J., Green, L., Myerson, J., Holt, D.D., 2006. Differential effects of amount on temporal 
and probability discounting of gains and losses. Mem. Cogn. 34, 914–928. 
doi:10.3758/BF03193437 

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R., 1996. Movement-related 
effects in fMRI time-series. Magn. Reson. Med. 35, 346–355. 
doi:10.1002/mrm.1910350312 

Glass, L., 1969. Moiré effect from random dots. Nature 223, 578–580. doi:10.1038/223578a0 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, 
J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. The 
minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–
124. doi:10.1016/j.neuroimage.2013.04.127 

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 2016. 
Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. 
Cereb. Cortex 26, 288–303. doi:10.1093/cercor/bhu239 

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J., Ortega, 
M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S., Nguyen, A.L., 
McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Nelson, 
S.M., Dosenbach, N.U.F., 2017. Precision Functional Mapping of Individual Human Brains. 
Neuron 95, 791–807.e7. doi:10.1016/j.neuron.2017.07.011 

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Petersen, S.E., Nelson, S.M., Dosenbach, 
N.U.F., Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., 2017. 
Precision Functional Mapping of Individual Human NeuroResource Precision Functional 
Mapping of Individual Human Brains. Neuron 95, 1–17. doi:10.1016/j.neuron.2017.07.011 

Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson, 
S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 
2018. Functional Brain Networks Are Dominated by Stable Group and Individual Factors, 
Not Cognitive or Daily Variation. Neuron. doi:10.1016/j.neuron.2018.03.035 

Gur, R.C., Richard, J., Hughett, P., Calkins, M.E., Macy, L., Bilker, W.B., Brensinger, C., Gur, 
R.E., 2010. A cognitive neuroscience-based computerized battery for efficient 
measurement of individual differences: Standardization and initial construct validation. J. 
Neurosci. Methods 187, 254–262. doi:10.1016/j.jneumeth.2009.11.017 

Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.-Y., Gilmore, 
A.W., McDermott, K.B., Nelson, S.M., Dosenbach, N.U.F., Schlaggar, B.L., Mumford, J.A., 
Poldrack, R.A., Petersen, S.E., 2015. Functional System and Areal Organization of a 
Highly Sampled Individual Human Brain. Neuron 1–14. doi:10.1016/j.neuron.2015.06.037 



 21 

Laumann, T.O., Snyder, A.Z., Mitra, A., Gordon, E.M., Gratton, C., Adeyemo, B., Gilmore, A.W., 
Nelson, S.M., Berg, J.J., Greene, D.J., McCarthy, J.E., Tagliazucchi, E., Laufs, H., 
Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 2016. On the Stability of BOLD fMRI 
Correlations. Cereb. Cortex 1–14. doi:10.1093/cercor/bhw265 

Marcus, D.S., Harms, M.P., Snyder, A.Z., Jenkinson, M., Wilson, J.A., Glasser, M.F., Barch, 
D.M., Archie, K.A., Burgess, G.C., Ramaratnam, M., Hodge, M., Horton, W., Herrick, R., 
Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J., Coalson, T., Schindler, 
J., Elam, J.S., Curtiss, S.W., Van Essen, D.C., 2013. Human Connectome Project 
informatics: Quality control, database services, and data visualization. Neuroimage 80, 
202–219. doi:10.1016/j.neuroimage.2013.05.077 

Miezin, F.M., Maccotta, L., Ollinger, J.M., Petersen, S.E., Buckner, R.L., 2000. Characterizing 
the hemodynamic response: Effects of presentation rate, sampling procedure, and the 
possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759. 
doi:10.1006/nimg.2000.0568 

Myerson, J., Green, L., Warusawitharana, M., 2001. Area under the curve as a measure of 
discounting. J. Exp. Anal. Behav. 76, 235–243. doi:10.1901/jeab.2001.76-235 

Ojemann, J.G., Akbudak, E., Snyder, A.Z., McKinstry, R.C., Raichle, M.E., Conturo, T.E., 1997. 
Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI 
susceptibility artifacts. Neuroimage 6, 156–167. doi:10.1006/nimg.1997.0289 

Petersen, S.E., Dubis, J.W., 2012. The mixed block/event-related design. Neuroimage. 
doi:10.1016/j.neuroimage.2011.09.084 

Poldrack, R.A., Laumann, T.O., Koyejo, O., Gregory, B., Hover, A., Chen, M.Y., Gorgolewski, 
K.J., Luci, J., Joo, S.J., Boyd, R.L., Hunicke-Smith, S., Simpson, Z.B., Caven, T., Sochat, 
V., Shine, J.M., Gordon, E., Snyder, A.Z., Adeyemo, B., Petersen, S.E., Glahn, D.C., 
Mckay, D.R., Curran, J.E., Göring, H.H.H., Carless, M.A., Blangero, J., Dougherty, R., 
Leemans, A., Handwerker, D.A., Frick, L., Marcotte, E.M., Mumford, J.A., 2015. Long-term 
neural and physiological phenotyping of a single human. Nat. Commun. 6. 
doi:10.1038/ncomms9885 

Power, J., Schlaggar, B., Lessov-Schlaggar, C., Petersen, S., 2013. Evidence for hubs in 
human functional brain networks. Neuron 79, 798–813. doi:10.1016/j.neuron.2013.07.035 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but 
systematic correlations in functional connectivity MRI networks arise from subject motion. 
Neuroimage 59, 2142–2154. doi:10.1016/j.neuroimage.2011.10.018 

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2014. 
Methods to detect, characterize, and remove motion artifact in resting state fMRI. 
Neuroimage 84, 320–341. doi:10.1016/j.neuroimage.2013.08.048 

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: Uses and 
interpretations. Neuroimage 52, 1059–1069. doi:10.1016/j.neuroimage.2009.10.003 



 22 

Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E., 
Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H., 2013. An improved 
framework for confound regression and filtering for control of motion artifact in the 
preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256. 
doi:10.1016/j.neuroimage.2012.08.052 

Siegel, J.S., Mitra, A., Laumann, T.O., Seitzman, B.A., Raichle, M., Corbetta, M., Snyder, A.Z., 
2017. Data quality influences observed links between functional connectivity and behavior. 
Cereb. Cortex 27, 4492–4502. doi:10.1093/cercor/bhw253 

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, 
H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., 
Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M., 2004. Advances in 
functional and structural MR image analysis and implementation as FSL, in: NeuroImage. 
doi:10.1016/j.neuroimage.2004.07.051 

Tabachnick, B.G., Fidell, L.S., 2007. Using Multivariate Statistics, 5th ed. Allyn and Bacon, 
Boston, MA. 

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E.J., Bucholz, R., Chang, A., 
Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, 
N., Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., 
Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E., 
2012. The Human Connectome Project: A data acquisition perspective. Neuroimage 62, 
2222–2231. doi:10.1016/j.neuroimage.2012.02.018 

Weintraub, S., Dikmen, S.S., Heaton, R.K., Tulsky, D.S., Zelazo, P.D., Bauer, P.J., Carlozzi, 
N.E., Slotkin, J., Blitz, D., Wallner-Allen, K., Fox, N.A., Beaumont, J.L., Mungas, D., 
Nowinski, C.J., Richler, J., Deocampo, J.A., Anderson, J.E., Manly, J.J., Borosh, B., Havlik, 
R., Conway, K., Edwards, E., Freund, L., King, J.W., Moy, C., Witt, E., Gershon, R.C., 
2013. Cognition assessment using the NIH Toolbox. Neurology 80, S54–S64. 
doi:10.1212/WNL.0b013e3182872ded 

 
 

 


