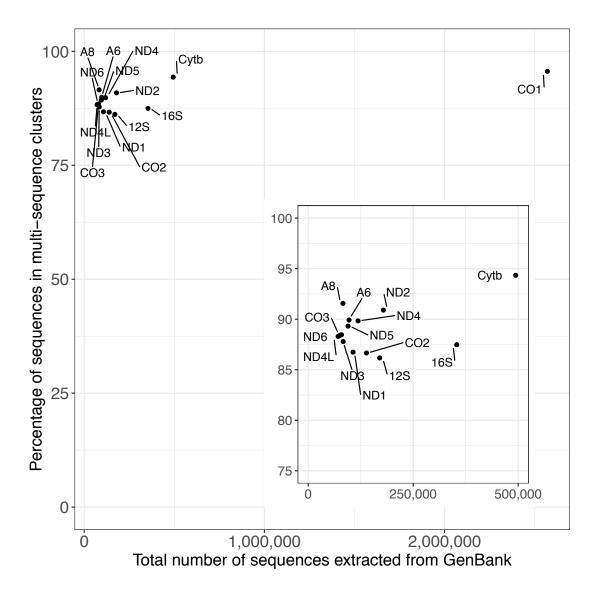
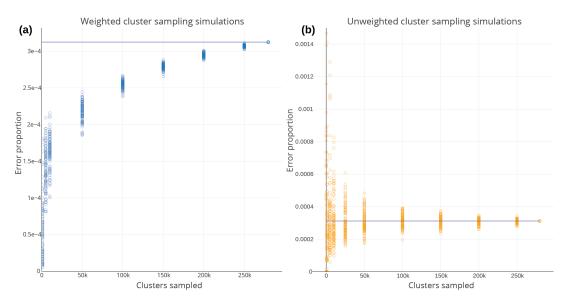


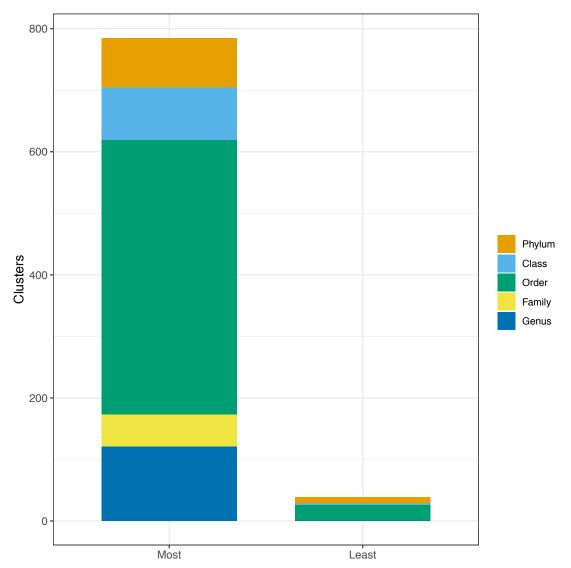
Supplementary Information for

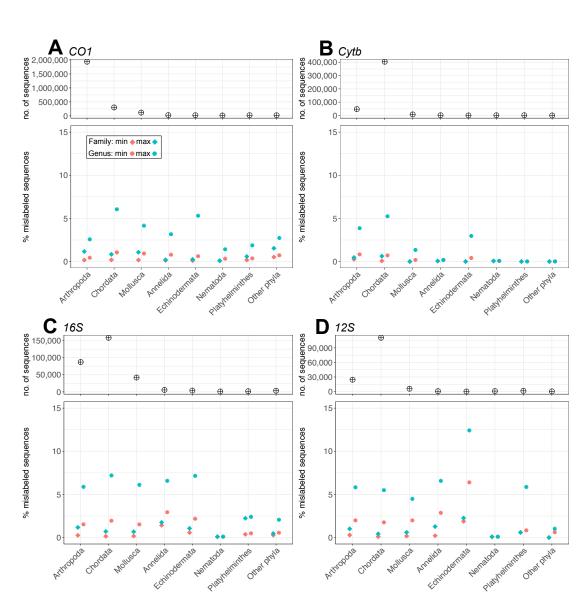

GenBank is a reliable resource for 21st century biodiversity research

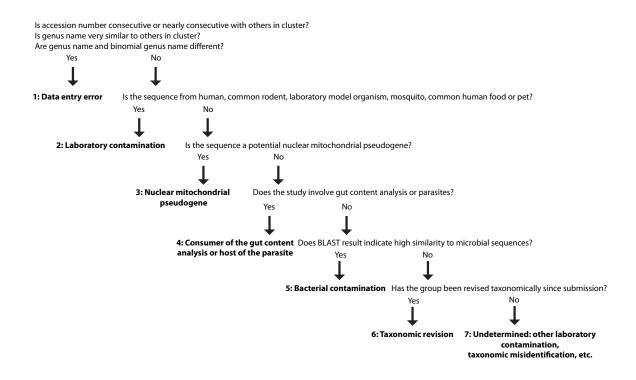
Matthieu Leray Nancy Knowlton Shian-Lei Ho Bryan N. Nguyen Ryuji J. Machida


Corresponding Authors Ryuji J. Machida; Biodiversity Research Centre, Academia Sinica, Taipei, 115-29, Taiwan; ryujimachida@gmail.com; Tel +886-2-2787-1585; Fax +886-2-2785-8059 Nancy Knowlton; National Museum of Natural History, Smithsonian, Washington, DC, USA; knowlton@si.edu; Tel +1-202-213 4587

This PDF file includes:


Figs. S1 to S6 Tables S1 to S2


Fig. S1. Proportion of metazoan sequences that clustered at 97% similarity threshold as a function of the total number of sequences present in the GenBank BLAST nucleotide database.


Fig. S2. Order-level error proportion estimates resulting from random weighted (a) and unweighted (b) subsampling of the data for 100 replicates at increasing sampling depths. The horizontal blue line represents the total order-level error proportion of the entire dataset. Subsampling clusters, weighting by cluster size, is equivalent to randomly sampling sequences for their corresponding clusters.

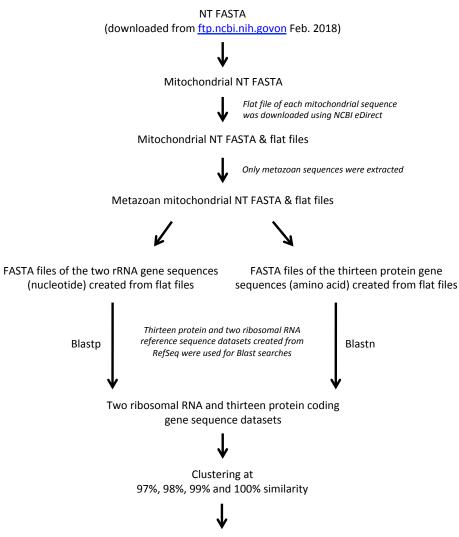

Fig. S3. Number of clusters for which the most or least common entries had correct taxonomic annotations. Clusters with equal number of entries belonging to the most and least common sequences were disregarded in this estimation.

Fig. S4. Estimated percentage of mislabeled sequences at the genus and family levels for *CO1* (A), *Cytb* (B), *16S* (C) and *12S* (D) across major metazoan phyla. We excluded phyla Porifera and Cnidaria clusters with their higher error estimates likely caused by slower rates of molecular evolution to facilitate visualization of lower error rates in the other groups. The category "Other phyla" includes sequences of Acanthocephala, Brachiopoda, Bryozoa, Chaetognatha, Ctenophora, Cycliophora, Entoprocta, Gastrotricha, Hemichordata, Kinorhyncha, Nematomorpha, Nemertea, Onychophora, Placozoa, Priapulida, Rhombozoa, Rotifera, Tardigrada and Xenacoelomorpha.

Fig. S5. Flowchart for determining causes of multiple taxa (genus, family, order, class, phylum) within clusters. For each potentially mislabeled sequence the questions shown were answered in sequence to determine the most likely reason.

Check clusters with multiple phyla, classes, orders, families and genera

Fig. S6. Flowchart describing the procedure used to classify mitochondrial gene sequences downloaded from GenBank.

Genes	Total number of clusters Count	Number of non-solitary clusters Count	Clusters with multiple phyla		Clusters with multiple classes		Clusters with multiple orders		Clusters with multiple families		Clusters with r genera		Total clusters with multiple taxa	
			Count	%	Count	%	Count	%	Count	%	Count	%	Count	%
12S	38287	14760	1	0.01	2	0.01	49	0.33	132	0.89	1011	6.85	1195	8.10
16S	77890	33615	16	0.05	10	0.03	80	0.24	354	1.05	2059	6.13	2519	7.49
A6	13895	4098	0	0.00	0	0.00	13	0.32	20	0.49	170	4.15	203	4.95
A8	10047	3070	0	0.00	0	0.00	10	0.33	22	0.72	204	6.64	236	7.69
Cytb	56805	28854	18	0.06	16	0.06	78	0.27	145	0.50	919	3.19	1176	4.08
COI	261345	148475	71	0.05	78	0.05	381	0.26	1409	0.95	3852	2.59	5791	3.90
<i>CO2</i>	26846	8345	1	0.01	2	0.02	12	0.14	51	0.61	383	4.59	449	5.38
CO3	11908	2778	0	0.00	0	0.00	10	0.36	35	1.26	147	5.29	192	6.91
ND1	19714	5561	0	0.00	1	0.02	7	0.13	34	0.61	192	3.45	234	4.21
ND2	28331	12045	0	0.00	1	0.01	14	0.12	43	0.36	328	2.72	386	3.20
ND3	13754	3608	0	0.00	0	0.00	7	0.19	25	0.69	158	4.38	190	5.27
ND4	18261	6209	1	0.02	0	0.00	7	0.11	24	0.39	189	3.04	221	3.56
ND4L	10660	2348	0	0.00	0	0.00	8	0.34	29	1.24	152	6.47	189	8.05
ND5	13814	3688	0	0.00	0	0.00	5	0.14	19	0.52	178	4.83	202	5.48
ND6	11176	2445	0	0.00	1	0.04	7	0.29	22	0.90	132	5.40	162	6.63
Total	612733	279899	108		111		688		2364		10074		13345	

Table S1. Observed number of clusters, non-solitary clusters, clusters with multiple phyla, classes, orders, families, and genera at 97% clustering. Percentages are calculated relative to the total number of non-solitary clusters. Clusters with multiple taxonomic groups were independently counted at each taxonomic level (i.e. multiple class counts were those in addition to those occurring via multiple phyla counts).

		12S	16S	A6	A8	Cytb	C01	<i>CO2</i>	СО3	ND1	ND2	ND3	ND4	ND4L	ND5	ND6	Total no. seqs	% seqs
	1: Data entry error	8	6	0	0	16	88	1	0	1	0	0	0	0	1	0	121	8.4
Phylum, class and order levels	2: Laboratory cont.	6	95	1	0	45	75	11	1	0	0	0	0	0	1	0	235	16.3
	3: Pseudogene	4	1	3	3	2	2	0	0	0	0	0	0	1	0	0	16	1.1
	4: Consumer or host	0	3	0	0	42	1	0	0	0	0	0	0	0	0	0	46	3.2
	5: Bacterial cont.	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0.1
	6: Taxonomic revision	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	7: Undetermined	44	103	9	55	124	622	16	8	3	10	5	10	3	2	5	1019	70.8
	Total	62	208	13	58	229	790	28	9	4	10	5	10	4	4	5	1439	100
		12S	16S	<i>A</i> 6	<i>A8</i>	Cytb	C01	<i>CO2</i>	СО3	ND1	ND2	ND3	ND4	ND4L	ND5	ND6	Total no. seqs	% seqs
	1: Data entry error	2	0	0	0	4	16	0	0	0	0	0	0	0	0	0	22	2.8
	2: Laboratory cont.	2	1	0	0	20	10	0	0	0	0	0	1	0	1	0	35	4.5
	3: Pseudogene	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
Family and genus	4: Consumer or host	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
levels	5: Bacterial cont.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	6: Taxonomic revision	0	0	0	0	421	9	1	0	0	0	0	0	0	0	0	431	55.0
	7: Undetermined	2	15	1	0	72	189	7	0	0	3	2	0	0	3	0	294	37.5
	Total	6	16	1	0	517	224	9	0	0	3	2	1	0	4	0	783	100

Table S2. Potential causes of sequence mislabeling at the phylum, class, order, family and genus levels for metazoan sequences belonging to 15 mitochondrial encoded genes. Only clusters where mislabeled sequences could be unequivocally identified were examined. Moreover, we only examined clusters with multiple families and genera when they contained at least 100 sequences. (cont. = contamination)