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SUPPLEMENTARY METHODS  

 
E2f-GFP, EdU, and PI readouts for cell cycle re-entry 
Serum-stimulated cells were harvested at the indicated time points by trypsinization. For 
the E2f-GFP readout, harvested cells were fixed with 1% formaldehyde in DPBS. For the 
EdU assay, 1 μM EdU was included in culture medium throughout the serum-stimulation 
experiment; harvested cells were subjected to the Click-iT EdU reaction according to the 
manufacture’s protocol (Invitrogen, C10418/C10340). For the PI assay, harvested cells 
were lysed in Nuclear Isolation Medium (0.5% bovine serum albumin, 0.1% NP-40, and 
1% RNase A in DPBS) containing 5 µg/ml PI. E2f-GFP, EdU, and PI signal intensities in 
individual cells (~10,000 cells per sample) were measured using a BD LSRII or 
Invitrogen Attune Acoustic Focusing flow cytometer; the acquired data were analyzed 
using FlowJo software (v. 10.3).  
 
Assays for lysosomal mass, proteolytic activity, and mitochondrial ROS  
To assess lysosomal mass, cells in serum-starvation medium were incubated with 50 nM 
LysoTracker Deep Red (Invitrogen, L12492) for 30 minutes. Subsequently, cells were 
either trypsinized and processed for flow cytometry, or washed with DMEM, placed back 
in serum-starvation medium, and observed under a Deltavision Elite Microscope (GE 
Healthcare). To count LysoTracker foci, images from a Cy5 filter were stacked across the 
Z-axis and binary processed to define foci. Cellular boundaries were manually 
determined based on images obtained from both POL and Cy5 filters. The foci number 
within each cell was determined using the particle analysis function in Fiji (1). To assess 
lysosomal proteolytic degradation, cells were incubated with 10 µg/ml DQ-Red BSA 
(Invitrogen, D12051) for an hour and subsequently incubated with or without lysosomal 
inhibitor for 5.5 hours. Cells were then stained with 2 μM CellTrace Violet (Invitrogen, 
C34557) for 20 minutes to stain the cell body, washed twice with DMEM, and placed 
back in serum-starvation medium for Deltavision imaging. To assess mitochondrial ROS 
level, serum-starved cells were stained with 3.25 μM MitoSox Red (Invitrogen, M36008) 
for 20 minutes and subsequently trypsinized and processed for flow cytometry. 
 
Modulation of lysosomal/autophagic function and lysosome biogenesis  
To inhibit lysosomal/autophagic function, cells were treated with CQ (chloroquine; 
Sigma, C6628), Baf (bafilomycin A1; LC Laboratories, B-1080), nocodazole (Sigma, 
M1404), or vinblastine (CAYMAN, 11762) at the indicated concentrations. To inhibit 
lysosomal biogenesis, cells were treated with ML-SI3 or ML-SI4 (2) (a gift from Dr. 
Haoxing Xu) at the indicated concentrations. To enhance lysosomal/autophagic function, 
cells were transfected with a human MITF expression vector pEGFP-N1-MITF-A 
(Addgene, #38132) or control vector (pd2EGFP-N1 from Clontech, or pCMV-mCherry, 
a gift from Dr. Lingchong You) using Neon electroporation (Invitrogen). Briefly, 
approximately 106 cells with 10 µg plasmid DNA were electroporated in a 100-µl Neon 
tip with a 20-ms pulse at 1900 V. Cells were plated in 6-well plates or 100-mm dishes at 
~50% confluence and incubated in growth medium for 30 hours to allow recovery. Cells 
were further cultured in serum-starvation medium for 4 days before assessing the 
modulation of lysosomal function and quiescence depth by Mitf expression. To confirm 
ectopic MITF expression, cells transfected with pEGFP-N1-MITF-A or pd2EGFP-N1 
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were processed for immunoblot with anti-MITF antibody (abcam, ab20663), anti-beta 
Actin antibody (Thermo Scientific, MA5-15738), and secondary antibody (LI-COR, 926-
68023, 926-32210). 
 
Autophagy flux assay 
Autophagy flux was measured by a LC3-II turnover assay, similar to Ref (3). Briefly, 
cells were incubated with or without 40 µM CQ for 3-6 hours, washed once with DPBS, 
snap-frozen in liquid nitrogen, and stored in -80 °C until cell lysis. Frozen cells were 
lysed on ice by RIPA lysis buffer (Cell Signaling, 9806S) and processed for immunoblot 
with anti-LC3B antibody (Sigma, L7543), anti-Tubulin alpha antibody (Thermo 
Scientific, RB-9281-P0), anti-GAPDH antibody (Thermo Scientific, MA1-140), and 
secondary antibody (LI-COR, 926-68023, 926-32210). Immunoblots were imaged using 
a LI-COR Odyssey Scanner and analyzed with Fiji software (1). The LC3-II Δ between 
CQ-treated and non-treated samples was quantified to reflect autophagy flux (3).   
 
β-galactosidase activity assay 
β-galactosidase activity was measured using a CellEvent Senescence Green Detection Kit 
(Invitrogen, C10850) according to the manufacturer’s protocol. Briefly, REF cells were 
harvested by trypsinization, washed once with PBS, fixed with 2% formaldehyde for 10 
minutes, washed further with 1%BSA PBS, and incubated with the β-galactosidase 
staining solution (containing a fluorescein-based substrate for β-galactosidase) for 2 
hours at 37° C without CO2. Cells were further washed three times with DPBS, 
resuspended in 1% BSA DPBS, and green fluorescence emitted from the enzyme-leaved 
product was measure by a BD LSRII flow cytometer. 
 
Cell size measurement 
Cell size was measured using a Moxi Z Mini Automated Cell Counter Kit (MXZ001, 
ORFLO) according to the manufacture’s protocol. Briefly, cells were harvested by 
trypsinization, centrifuged, re-suspended in DPBS, and added to Moxi Z Cell Count 
Cassettes Type M (MXC001, ORFLO), which is then inserted into a Moxi Z Mini cell 
counter. The cell size measurement is based on the Coulter Principle: changes in 
electrical impedance are proportional to the volume of nonconductive particles (e.g., cells 
suspended in an electrolyte) passing through an aperture in the device. 
 
Cytotoxicity assay  
Cytotoxicity was determined by comparing the live cell counts in drug-treated samples 
and vehicle control samples, using a PI-fluorescence assay as described in Ref (4). 
Briefly, cells cultured in 96-well plates were incubated with 50 µg/ml of PI (propidium 
iodide, Biotium, 40016) for 10 min in the dark at room temperature. PI signal in each 
well was measured by a BioTek Synergy2 plate reader, and the signal intensity indicated 
the count of dead cells (that became permeable and incorporated PI). Cells were 
subsequently subjected to freezing and thawing; PI signal was measured again, and the 
signal intensity then indicated the total cell count (as all cells became permeable after 
freezing/thawing and incorporated PI). The difference of PI signal before and after 
freezing/thawing indicated the live cell count.  
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cDNA library preparation, RNA-seq, and data preprocessing 
Total RNA was isolated with a Quick-RNA kit (Zymo Research, R1050). The quality of 
the RNA (RQN score ≥ 7.5) was confirmed using the Fragment Analyzer platform 
(Advanced Analytical Technologies). Libraries were prepared using the NEBNext 
Poly(A) mRNA Magnetic Isolation Module (NEB, E7490S) and NEBNext Ultra RNA 
Library Prep Kit for Illumina (NEB, E7530L) according to the manufacturer's 
instructions. The final quality-ensured libraries were pooled and sequenced on an 
Illumina HiSeq 2500 for 100 bp paired-end sequencing. Paired-end cleaned reads were 
aligned to the rat reference genome rn6 (UCSC) using TopHat (v2.1.1) with default 
parameters (5). Transcript annotation and normalization to FPKM were handled using 
Cufflinks (v2.2.1) (5). Differentially expressed genes between two time points were 
identified based on fold difference > 2 in FPKM, after filtering out low (FPKM < 8) or 
inconsistent expression (fold difference > 2 between replicates). Raw data of RNA-seq 
can be accessed in the Gene Expression Omnibus (GEO) under the accession number 
GSE124109. 
 
Gene expression and pathway enrichment analysis of RNA-seq data 
To visualize the sequential transition of transcriptome, the expression matrix of 
differentially expressed genes was log2 transformed and subjected to Principal 
Component Analysis using the R function “prcomp”, with the result visualized using the 
R package rgl. For gene expression clustering analysis, FPKM was log2 transformed and 
mean-centered on each gene. K-means clustering was performed by Cluster 3.0 (6) and 
the optimal cluster number was decided by silhouette width. Hierarchical clustering was 
performed by Cluster 3.0 using the average linkage method. Clustering results were 
visualized as heat maps using Java Treeview (7). 
 
Pathways enriched in K-means clusters were analyzed with the DAVID functional 
annotation tool (8). Significantly enriched KEGG pathways (p.adj < 0.05) were 
determined in the KEGG over-representation test using the R package clusterProfiler (9). 
Gene Set Enrichment Analysis (GSEA) (10) was performed to identify gene sets 
significantly correlated with quiescence depth, run in the “continuous phenotype” mode 
using the gene set “c2.all.v6.0.symbols.gmt.geneset” from MSigDB (10) with the sample 
label corresponding to serum-starvation days (e.g., 2 for 2-day serum starvation). Genes 
were ranked by Pearson correlation. Identified significant gene sets (FDR ≤ 0.1) were 
visualized by NetworkX (11) and Gephi (12) in a network to resolve gene sets 
redundancy; two gene sets with a Jaccard index > 0.5 were connected by an edge, and 
node size was set to reflect the normalized enrichment score (NES). 

 
TF-target and lysosomal co-expression network construction 
To construct a TF-target network, TF-target interactions were downloaded from 
RegNetwork (13) and PAZAR (14) (mouse interactions were used as rat data were 
unavailable), based on which differentially expressed genes were connected into a 
directional graph using the Python package NeworkX (11) and visualized using Gephi 
(12) with the Force Atlas mode. The size and color of a node were determined by its 
betweenness centrality and expression level, respectively.  
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To construct a lysosomal co-expression network, differentially expressed genes in the 
form of a log2-transformed expression matrix were clustered into co-expression modules 
using the blockwiseModules function in the R package WGCNA (15), with the soft-
thresholding power and mergeCutHeight set to 20 and 0.25 respectively. The co-
expression module containing the largest number of lysosomal genes up-regulated with 
quiescence deepening was chosen as the lysosomal co-expression network. Genes in the 
network were connected based on their co-expression degree (i.e., pairwise correlation) 
with an adjacency threshold of 0.25. Lysosomal genes and TFs were identified using 
KEGG (16) and the DBD transcription factor database (17), respectively. The network 
was visualized using Cytoscape (18).  
 
Quiescence-depth signature model 
To identify a gene expression signature reflecting quiescence depth, linear regression 
with an elastic net penalty was performed on the time-course RNA-seq data (2- to 16-day 
serum starvation) using the R package penalized (19), with the sample label set to 
indicate serum-starvation days (e.g., 2 for 2-day serum starvation). The optimal tuning 
parameters for L1 and L2 penalties were determined by maximizing the cross-validated 
log-likelihood across the λ1 and λ2 combinations (0.01 ≤ λ1 ≤ 200, 1 ≤ λ2 ≤ 100,000). A 
gene signature reflecting quiescence depth was identified in the resultant regression 
model. When applied to analyze a given RNA-seq dataset, this regression model 
generates a corresponding “quiescence depth score” (QDS). See the section below for 
detailed procedures and scripts.  
 
Calculate QDS 
 
a) The RNA-seq data corresponding to quiescence deepening of REF cells (Qui-REF 

data) was converted to FPKM log2 transformed mean-centered expression matrix. See 
below for the first 5 genes by alphabetical order in the matrix, with a sample label 
row (G0_depth corresponding to the days of serum starvation) added on the top of the 
gene rows. GA_n, growing cell sample replicate n; XNA_n, quiescent cell sample 
replicate n under serum starvation for N days. Note that only quiescent cell samples 
(X2As to X16As) but not growing cell samples (GAs) were used to build the linear 
regression quiescence-depth model and calculate QDS values in the subsequent steps. 
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b) The Penalized package (https://cran.r-project.org/web/packages/penalized) and 
expression matrix in a were loaded in R (see #1 and #2 respectively in the script 
below), transposed (#3), and converted into a dataframe (#4). See the R package 
manual and vignette for detailed descriptions of the used functions in the script. 

 
> library(penalized) #1 load the penalized package 
Loading required package: survival 
Welcome to penalized. For extended examples, see vignette("penalized"). 
> setwd("the path to your preferred directory") 
> data1 = read.table(file="QuiREFdata.txt",header=T,row.names=1,sep="\t")   #2 load Qui-REF data 
> data2 <- t(data1)  #3 transpose the data 
> ncol(data2) 
[1] 17350 
> nrow(data2) 
[1] 30 
> data2 <- as.data.frame(data2) #4 convert it into dataframe 
> is.data.frame(data2) 
[1] TRUE 

 
c) The optimal lambda1 (λ1) was searched to perform linear regression. First, we 

sparsely searched a broad range (0.01 to 200, r1) of λ1 values in log scale (#5-6 in the 
R script below). We then decide a λ1 range (r2) that gave greater cross-validated log 
likelihoods (cvl) than did the other parts of r1 (#7-8).  

 
> lseqBy <- function(from=1, to=100000, by=1, length.out=log10(to/from)+1) { 
+   tmp <- exp(seq(log(from), log(to), length.out = length.out)) 
+   tmp[seq(1, length(tmp), by)]   
+ }      #5: create a sequence of numbers in log2 scale  
> set.seed(1) 
> foldid <- sample(rep(seq(9),length=27)) 
> L1list <- lseqBy(0.01,200,by=1)  #6: create a sequence of λ1 
> L1list 
[1]   0.01000000   0.07247797   0.52530556   3.80730788  27.59459323 200.00000000 
> elasticnet <- lapply(L1list, function(a){ 
+  profL2(data2[(nrow(data2)-26):nrow(data2),1], data2[(nrow(data2)-26):nrow(data2),2:ncol(data2)], fold=foldid, minl = 1, 
maxl = 100000, log=TRUE, standardize=TRUE, lambda1 = a, steps=10) 

+ })       #7: calculate cvl for each fixed λ1. The Standardize parameter is set True.  
lambda= 1e+05  cvl= -70.76947  
lambda= 27825.59  cvl= -61.01386  
lambda= 7742.637  cvl= -73.51967  
lambda= 2154.435  cvl= -290.543  
lambda= 599.4843  cvl= -2523.886  
…………… 
lambda= 1  cvl= -81.74782  
> 
> for (i in 1:length(L1list)) {print(max(elasticnet[[i]]$cvl))}   #8: print out cvls for the list of λ1, and decide the range r2 that 
gives the greater cvl values. 

[1] -61.01386  #when λ1 = 0.01000000 
[1] -61.03069  #when λ1 = 0.07247797 
[1] -61.11649  #when λ1 = 0.52530556 
[1] -59.93934  #when λ1 = 3.80730788 
[1] -59.80203  #when λ1 = 27.59459323 
[1] -81.74782  #when λ1 = 200.00000000 

 
d) Next, we searched for the optimal λ1 within the decided r2 in c (3.80730788 < λ1 < 

50) in a finer linear scale. Briefly, a sequence of λ1 was created in linear scale (#9 in 
the R script below); cvl was calculated for each λ1 value (#10); the λ1 that gave the 
maximum cvl was determined (#11). 

 
> set.seed(1) 
> foldid <- sample(rep(seq(9),length=27)) 
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> L1list <- seq(3.80730788,50,by=1) #9: create a sequence of λ1 (3.80730788 < λ1 < 50)  
> L1list 
 [1]  3.807308  4.807308  5.807308  6.807308  7.807308  8.807308  9.807308 10.807308 11.807308 12.807308 13.807308 14.807308 
15.807308 16.807308 

[15] 17.807308 18.807308 19.807308 20.807308 21.807308 22.807308 23.807308 24.807308 25.807308 26.807308 27.807308 
28.807308 29.807308 30.807308 

[29] 31.807308 32.807308 33.807308 34.807308 35.807308 36.807308 37.807308 38.807308 39.807308 40.807308 41.807308 
42.807308 43.807308 44.807308 

[43] 45.807308 46.807308 47.807308 48.807308 49.807308 
> elasticnet <- lapply(L1list, function(a){ 
+  profL2(data2[(nrow(data2)-26):nrow(data2),1], data2[(nrow(data2)-26):nrow(data2),2:ncol(data2)], fold=foldid, minl = 1, 
maxl = 100000, log=TRUE, standardize=TRUE, lambda1 = a, steps=10) 

+ })     #10: calculate cvl with each fixed value of λ1 
lambda= 1e+05  cvl= -71.46391  
lambda= 27825.59  cvl= -61.80161  
lambda= 7742.637  cvl= -59.93934  
lambda= 2154.435  cvl= -73.48978  
lambda= 599.4843  cvl= -94.69094  
…………… 
lambda= 1  cvl= -71.00383  
>  
> for (i in 1:length(L1list)) {print(max(elasticnet[[i]]$cvl))} 
[1] -59.93934 
[1] -58.67292 
[1] -57.88228 
[1] -57.4384 
[1] -57.04895 
[1] -55.94346 
[1] -55.31691 
[1] -55.02455 
[1] -54.96632 #11: the maximum cvl with λ1 = 11.807308  
[1] -55.08132 
…………… 
 [1] -67.61579 
[1] -67.94743 

 
e) The optimal lambda2 (λ2) was determined given the optimal λ1 in d (#12-13 below).  
 
> opt2 <- optL2(data2[(nrow(data2)-26):nrow(data2),1], data2[(nrow(data2)-26):nrow(data2),2:ncol(data2)], fold=foldid, lambda1 = 
11.807308, standardize=TRUE)  #12: determine the optimal λ2. Note that the standardize parameter is set True. 
lambda= Inf  cvl= -81.74782  
lambda= 1  cvl= -103.5782  
…………… 
lambda= 2079.757  cvl= -54.96309  
> opt2$lambda  
[1] 2079.644 #13: print out the optimal λ2 (λ2 = 2079.644) 
> opt2$cvl 
[1] -54.96309  

 
f) Build a gene expression signature to indicate quiescence depth, using the optimal 

lambdas decided above (λ1 = 11.807308, λ2 = 2079.644). QDS was calculated for 
each quiescent cell sample (#14-15 below) and shown in the “mu” column of the 
output file (#16). 3,157 out of 17,349 genes in the Qui-REF data were included in the 
developed quiescence depth signature.  

 
> pen <- penalized(G0_depth, penalized = data2[(nrow(data2)-26):nrow(data2),2:ncol(data2)], data = data2[(nrow(data2)-
26):nrow(data2),], lambda1 = 11.807308, lambda2 = opt2$lambda, standardize=TRUE) #14: again, the GA growing cell 
samples are omitted from building a quiescence depth signature. 

# nonzero coefficients: 3157            
> result <- predict(pen, data2[1:nrow(data2),2:ncol(data2)], data = data2[1:nrow(data2),]) #15: predict QDS for input samples 
> write.table(result, file="L1L2_cooptimized_centered_penalized.txt",sep="\t")  #16: write the result to a table 
> show(pen) 
Penalized linear regression object 
17350 regression coefficients of which 3157 are non-zero 
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Loglikelihood =  -33.28762  
L1 penalty =  57.40157  at lambda1 =  11.80731  
L2 penalty =  22.05085  at lambda2 =  2079.644 
> result 
              mu    sigma2 
GA_1    1.675209 0.6892662 
GA_0    2.346847 0.6892662 
GA_2    1.766918 0.6892662 
…………… 
X16A_0 14.249556 0.6892662 
X16A_1 14.578862 0.6892662 
X16A_2 14.437392 0.6892662 

 
g) The quiescence-depth regression model above was then applied to calculate QDS in 

other datasets (e.g., quiescence (20), senescence (21, 22), and aging (23, 24)), by 
executing #14-16 in f with the new input samples (FPKM normalized with the R 
package edgeR (25) if not previously normalized, log2 transformed, mean-centered as 
in a). In cases that not all of the 3,157-genes in the signature in f were included in the 
new dataset, common genes between the Qui-REF data and new dataset were 
identified; steps a-e above were repeated with this common gene set in training 
samples (X2As to X16As in a); the accordingly updated quiescence-depth signature 
was applied to the new dataset. If the new dataset was from another species (not rat), 
gene symbols were converted using NCBI HomoloGene. The resultant QDS reflects 
the relative “quiescence depth” of the cell type or tissue studied in the new dataset. 
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Fig. S1. Deep quiescence model as a reversibly arrested cellular state. (A) Model of 
quiescence deepening. The potential sequential transition of cells from shallow to deep 
quiescence, and eventually into senescence, is discussed later in the paper. (B) REF cells were 
serum starved from 2 to 16 days and then either kept in starvation medium (0.02% serum) or 
stimulated with 20% serum. Cells were subsequently harvested after 41 hours for E2f-GFP or 
EdU-incorporation profiling (~10,000 cells per sample, with the highest frequency set to 100% at 
the y-axis of each histogram). A repeated experiment performed at different time with the E2f-
GFP readout is also shown. The EdU negative fraction upon serum stimulation (20%, 41 hours) 
was 2.2%, 4.9%, 3.1%, and 7.4% in cells previously under serum starvation for 2, 6, 10, and 16 
days, respectively. (C) A repeated experiment of Fig. 1A. REF cells were serum starved from 2 to 
14 days, stimulated with 20% serum for 19, 22, or 25 hours, and assayed for EdU incorporation 
(n = 2). Lines were fitted using the smooth.spline function in R. 
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Fig. S2. Pro- and anti-proliferative genes are down- and up-regulated, respectively, in 
serum-starved quiescent cells. (A) Time-course expression of E2f1, Cdk2, Cdk4, Rb1, Cdkn1a, 
and Cdkn1b in RNA-Seq analysis (0- to 16-day serum-starved cells). Dashed line, s.e.m of fitted 
line. (B) Putative transcription factor (TF)-target network of proliferating (day0) and 2-day serum-
starved (day2) REF cells. Node color intensity indicates relative gene expression (white to dark 
red, lowest to highest expression level). Node size indicates the betweenness centrality of the 
given node in the network. Color of an edge (TF  target) is the same as the color of the target 
node. (C) Pathways significantly enriched in K-means clusters from DAVID functional annotation 
analysis (8). Gene expression dynamics in each cluster (same as Fig. 2 B) is shown at the top.  
Y-axis, adjusted p-value calculated by Benjamini-Hochberg correction. (D) Time-course 
expression of Cdkn2a (p16INK4A) in RNA-Seq analysis (0- to 16-day serum-starved cells). Dash 
lines, same as in A. 

  

A

Day0

E2f1 E2f1

Day2

0 5 10 15

2.
5

3.
5

4.
5 Cdk2

0 5 10 15

7.
5

8.
0

8
.5

Cdk4

0 5 10 15
3

.0
4.

0
5.

0

E2f1

0 5 10 15

3.
5

4.
0

4
.5

Rb1

0 5 10 15

7
.0

7
.5

8
.0

8
.5

Cdkn1a (p21)

0 5 10 15

5
.4

5
.8

6.
2

Cdkn1b (p27)

Days of starvation

Lo
g 2

 F
P

K
M

B

K-means clusters

S
ta

tis
tic

al
 s

ig
ni

fic
an

ce
 (

-l
o

g 1
0)

0
5

1
0

15
M

et
ab

ol
ic

 p
at

hw
ay

s
Ly

so
so

m
e

G
ly

co
ly

si
s 

/ G
lu

co
ne

og
en

es
is

B
io

sy
nt

he
si

s 
of

 a
nt

ib
io

tic
s

P
ha

go
so

m
e

S
yn

ap
tic

 v
es

ic
le

 c
yc

le

C
ol

le
ct

in
g 

du
ct

 a
ci

d 
se

cr
et

io
n

O
xi

da
tiv

e 
ph

os
ph

or
yl

at
io

n

G
ly

co
sa

m
in

og
ly

ca
n 

bi
os

yn
th

es
is

 - 
he

pa
ra

n 
su

lfa
te

 / 
he

pa
rin

B
io

sy
nt

he
si

s 
of

 a
m

in
o 

ac
id

s
S

pl
ic

eo
so

m
e

Fo
ca

l a
dh

es
io

n

R
eg

ul
at

io
n 

of
 a

ct
in

 c
yt

os
ke

le
to

n

P
ro

te
og

ly
ca

ns
 in

 c
an

ce
r

Ly
so

so
m

e

E
C

M
-r

ec
ep

to
r i

nt
er

ac
tio

n

Fo
ca

l a
dh

es
io

n
A

m
oe

bi
as

is

F
ox

O
 s

ig
na

lin
g 

pa
th

w
ay

P
at

hw
ay

s 
in

 c
an

ce
r

P
an

cr
ea

tic
 c

an
ce

r

S
te

ro
id

 b
io

sy
nt

he
si

s

T
er

pe
no

id
 b

ac
kb

on
e 

bi
os

yn
th

es
is

B
io

sy
nt

he
si

s 
of

 a
nt

ib
io

tic
s

Fo
ca

l a
dh

es
io

n

Fa
tty

 a
ci

d 
m

et
ab

ol
is

m

M
et

ab
ol

ic
 p

at
hw

ay
s

P
at

hw
ay

s 
in

 c
an

ce
r

cA
M

P
 s

ig
na

lin
g 

pa
th

w
ay

D
N

A
 re

pl
ic

at
io

n
C

el
l c

yc
le

M
is

m
at

ch
 re

pa
ir

N
uc

le
ot

id
e 

ex
ci

si
on

 re
pa

ir

P
yr

im
id

in
e 

m
et

ab
ol

is
m

H
om

ol
og

ou
s 

re
co

m
bi

na
tio

n

Fa
nc

on
i a

ne
m

ia
 p

at
hw

ay

B
as

e 
ex

ci
si

on
 re

pa
ir

M
ic

ro
R

N
A

s 
in

 c
an

ce
r

H
TL

V
-I 

in
fe

ct
io

n

p5
3 

si
gn

al
in

g 
pa

th
w

ay
S

pl
ic

eo
so

m
e

P
ur

in
e 

m
et

ab
ol

is
m

S
pl

ic
eo

so
m

e

R
N

A
 tr

an
sp

or
t

R
ib

os
om

e 
bi

og
en

es
is

 in
 e

uk
ar

yo
te

s

P
ur

in
e 

m
et

ab
ol

is
m

B
io

sy
nt

he
si

s 
of

 a
m

in
o 

ac
id

s
R

ib
os

om
e

M
et

ab
ol

ic
 p

at
hw

ay
s

B
io

sy
nt

he
si

s 
of

 a
nt

ib
io

tic
s

B
as

e 
ex

ci
si

on
 re

pa
ir

C
ar

bo
n 

m
et

ab
ol

is
m

P
yr

im
id

in
e 

m
et

ab
ol

is
m

R
N

A
 d

eg
ra

da
tio

n

B
as

al
 tr

an
sc

rip
tio

n 
fa

ct
or

s
C

el
l c

yc
le

D
N

A
 re

pl
ic

at
io

n

O
oc

yt
e 

m
ei

os
is

P
ro

ge
st

er
on

e-
m

ed
ia

te
d 

oo
cy

te
 m

at
ur

at
io

n

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

D

C

Days of starvation

0 5 10 15

4
.0

4
.5

5
.0

5.
5

6.
0

Cdkn2a

lo
g 2

 F
P

K
M

-4

-2

0

2

4

-4

-2

0

2

4

-6

-4

-2

0

2

-2

0

2

4

-4

-2

0

2

-4

-2

0

2

4

-2

0

2

4

-4

-2

0

2

4

-2

0

2

4

6



 
 

11 
 

 

Fig. S3. Lysosomal genes are up-regulated in deep quiescence. (A) Up- or down-regulation 
of various categories of lysosomal genes in 16-day serum-starved cells compared to 2-day 
serum-starved cells are shown in red or green, respectively, with the degree of changes (log 
transformed) indicated by the color gradient bar. (B) Differentially expressed endosomal and 
lysosomal genes in RNA-Seq analysis (2- to 16-day serum-starved cells). (C) Multiple pairwise 
comparison (Tukey Honest Significance Differences, Tukey HSD) of gene expression means at 
different time points. *, **, and *** indicate adjusted p-value < 0.05, 0.01, and 0.001 in Tukey 
HSD, respectively. Endosomal and lysosomal genes in A-C are defined by MGD database (26). 
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Fig. S4. Inhibiting autophagy does not increase lysosomal number. Cells were serum 
starved for 2 days and treated with nocodazole (Noc) and vinblastine (Vin) at the indicated 
concentrations for 6 hours (A, C) or 24 hours (B, D). Following LysoTracker staining, cells were 
imaged and quantified for the number of lysosomes (LysoTracker foci) per cell. (A, B) 
Representative microscopy images. (C, D) Quantifications of lysosomal number per cell (~40 
cells per sample). ns, p-value > 0.05 (compared to the DMSO control, two-tailed t-test); * and ***, 
p-value < 0.05, and  < 0.001 (one-tailed t-test), respectively. Note that with 24-hour vinblastine 
treatment, quantified lysosomal number may be an underestimate due to lysosomes 
concentrating in the perinuclear region. 
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Fig. S5. Inhibiting lysosomal/autophagic function deepens quiescence.  (A) The effects of 
CQ and Baf on proteolytic degradation. Drug low and Drug high: for CQ, 5 µM and 15 µM, 
respectively; for Baf, 10 nM and 50 nM, respectively. The degree of proteolytic degradation was 
indicated by DQ-BSA signal intensity (red puncta); cells were co-stained with CellTrace (gray 
background stain, see Methods for details). Quantifications of DQ-BSA signal intensity per cell in 
CQ-treated cells are shown on the right; ns and ***, p > 0.05 and < 0.001 (two-tailed t-test), 
respectively, compared to the DPBS vehicle control. (B) Cells serum-starved for indicated 
durations were treated with Baf or CQ as in Fig. 4A. Cells were stimulated with serum at indicated 
concentrations for 40-42 hours and subjected to EdU assay.  
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Fig. S6. Enhancing lysosomal function pushes cells toward shallower quiescence. (A) REF 
cells were serum starved for 4 days and further cultured in serum starvation medium (DMEM 
containing 0.02% BGS) or nutrient and serum starvation condition (DPBS) for the indicated 
durations (x-axis). Cells were stimulated with 1% serum (in DMEM) for 24 hours and measured 
for E2f-GFP activity (y-axis). Error bar, s.e.m from triplicates.; ns and *, p-value > 0.05 and < 0.05 
(one-tailed t-test), respectively. (B) Cells were treated as in A, except that the nutrient/serum 
starvation duration = 320 min and serum stimulation concentration = 1%, 2%, and 4% as 
indicated, followed by EdU assay (n = 2). *, p-value < 0.05 (one-tailed t-test). (C) Lysosomal co-
expression network associated with deep quiescence. Highly co-expressed lysosomal genes 
(blue) and TFs (purple) are connected based on the degree of co-expression. See Methods for 
details. Mitf is highlighted by a red arrow. (D) Immunoblot of ectopic Mitf expression. Mitf-GFP- or 
dGFP-transfected or mock-transfected cells were subjected to Western Blot using anti-Mitf and 
anti-β actin. Red arrow indicates ectopic Mitf-GFP band. (E) LysoTracker staining and lysosomal 
number quantification. Mitf-GFP- or dGFP-transfected cells were serum starved for 2-days and 
stained with LysoTracker. Representative microscopy images are shown to the left and 
quantifications of lysosomal number are shown to the right (~50 cells per sample). *, p-value < 
0.05 (one-tailed t-test). (F) mCherry intensity indicates the expression level of co-transfected Mitf-
GFP. REF cells were co-transfected with Mitf-GFP and mCherry expression vectors and 
subsequently serum starved for 4 days. mCherry intensity (x-axis) was found positively correlated 
with GFP intensity (y-axis) and thus ectopic Mitf expression (Pearson correlation coefficient = 
0.97). Cells were grouped according to their mCherry intensity (log transformed) into 29 even-
width bins (bins with cell number < 10 were filtered out).  
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Fig. S7. Effects of tBHP and MPy on quiescence depth. (A) 2-day serum-starved cells were 
treated with tBHP at indicated concentrations for 1 hour and stimulated with serum at indicated 
concentrations for 24 hours, followed by E2f-GFP assay. (B, C) Effects of MPy supplement. 2-day 
serum-starved cells were further serum starved with daily supplementation of MPy at indicated 
concentrations (0-0.25 mM, B; 0-10 mM, C) for 4 days (B) or 2 days (C). Cells were stimulated 
with 2% or 4% serum (B) or 1% serum (C) for 24 hours and subjected to EdU assay (triplicates). 
Error bar in B, s.e.m. Box plot in C, same as in Fig. 2H. 
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Fig. S8. Inhibiting lysosome biogenesis deepens quiescence. Cells were serum starved for 
2-days, treated with Mcoln1 inhibitor ML-SI3 or ML-SI4 for 24 hours at indicated concentrations. 
Cell were then stained with LysoTracker (A, B), or stimulated with serum at indicated 
concentrations for 24 hours and subjected to EdU assay (C). (A) Representative microscopy 
images of LysoTracker staining.  (B) Quantifications of lysosomal number per cell (~40 cells per 
sample). (B, C) ns, *, **, and ***, p-value > 0.05, < 0.05, < 0.01, and < 0.001 (one-tailed t-test), 
respectively. Error bar in C, s.e.m (n = 2). 
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Table S1. Lysosomal genes in Figure 2E. 

Cluster A 
Ap1m1, Ap4m1, Ap3m1, Ap1b1, Ap1s1, Ctsz, Ap4b1, Ap4s1, Clta, Cd63, 
Arsb, Ctsl, Ap3s2, Gusb, Ctsb, Dnase2 

Cluster B 
Ap3b1, Cltc, Ap1g1, Atp6v0a2, Ap4e1, Igf2r, Gga3, Litaf, Ap1s2, Cln5, Lipa, 
Laptm4a, Smpd1, Pla2g15 

Cluster C 

Galns, Arsg, Acp2, Nagpa, Ap3m2, Gnptg, Atp6v0b, Gga1, Ap3d1, Ctns, 
Atp6v0a1, Cltb, Arsa, Ctsf, Glb1, Atp6v1h, Ap3s1, Aga, Sumf1, Ppt1, Fuca1, 
Lgmn, Naga, Abca2, Idua, Ctsd, Atp6v0d1, Ctsa, Psap, Gba, Lamp1, Npc2, 
Asah1, Tpp1, Lamp2, Slc17a5, Atp6ap1, Man2b1, Atp6v0c, Gla, Entpd4, Gaa, 
Hexb, Hexa, Neu1, Npc1, Mcoln1, Ctsh, Gm2a, Scarb2, Sort1, Hyal1, Gga2, 
Tcirg1, Cd164, Ppt2, Laptm4b, Mcpt8l2, Slc11a2 

Note: genes are listed according to their order (top to bottom) in each cluster of Figure 2E. 
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Table S2. Gene sets enriched in down-regulated lysosomal genes in deep quiescence by 
GSEA. 

Gene set MSigDB  FDR 

GO_TRANS_GOLGI_NETWORK C5 <0.0001 

GO_COATED_MEMBRANE C5 <0.0001 

GO_ORGANELLE_SUBCOMPARTMENT C5 <0.0001 

GO_GOLGI_MEMBRANE C5 0.0003 

GO_GOLGI_APPARATUS_PART C5 0.0004 

REACTOME_MEMBRANE_TRAFFICKING C2 0.0005 

GO_CLATHRIN_COAT C5 0.0006 

REACTOME_TRANS_GOLGI_NETWORK_VESICLE_BUDDING C2 0.0006 

GO_GOLGI_APPARATUS C5 0.0013 

GO_AP_TYPE_MEMBRANE_COAT_ADAPTOR_COMPLEX C5 0.0034 

GO_INTRACELLULAR_PROTEIN_TRANSPORT C5 0.0084 

GO_CELLULAR_MACROMOLECULE_LOCALIZATION C5 0.0131 

GO_MEMBRANE_PROTEIN_COMPLEX C5 0.0160 

GO_IMMUNE_SYSTEM_PROCESS C5 0.0193 

GO_VESICLE_MEDIATED_TRANSPORT C5 0.0209 

GO_VACUOLAR_TRANSPORT C5 0.0565 

GO_ENDOCYTIC_VESICLE C5 0.0793 
 
Note: the MSigDB collection from which the gene sets were derived are indicated in the middle 
column. Gene sets with FDR < 0.1 are shown. 
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Table S3. Cell viability and irreversibly arrested cell fraction under treatment with 
lysosomal modulator, oxidant, and anti-oxidant. 

  Cell viability Irreversible arrest (EdU-%) 

Batch condition Median sd Median sd 

Baf 
0nM 1.00 0.07 3.13 0.18 

10nM 0.98 0.06 3.15 0.15 

50nM 0.93 0.05 3.21 0.15 

CQ 

0μM 1.00 0.05 3.07 0.01 

5μM 0.93 0.07 3.92 0.06 

20μM 0.91 0.04 7.94 0.29 

tBHP 

0μM 1.00 0.07 3.00 0.13 

100μM 0.96 0.05 5.27 0.38 

200μM 0.91 0.04 9.45 1.07 

400μM 0.85 0.03 15.2 0.07 

βME 
0μM 1.00 0.06 2.65 0.18 

25μM 0.97 0.10 2.76 0.40 
 

Note: 1) Cell viability value of each treatment is normalized to vehicle control, which is set to 1. 
See Methods for details. 2) Cells that did not incorporate EdU (EdU-%) after 2-day 20% serum 
stimulation were considered irreversibly arrested. Sd, standard deviation. 
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Table S4. GSEA result for KEGG_lysosome gene set in aged and senescent cells (Figure 
7B, D). 

Cell/Tissue type Processes 
Lysosomal 
correlation 

FDR  
q-val 

Adrenal gland Aging positive 9.6E-04 

Brain Aging positive 5.3E-03 

Heart Aging positive 8.4E-05 

Kidney Aging positive 6.1E-03 

Liver Aging positive 2.6E-04 

Lung Aging positive 1.2E-05 

Muscle Aging negative 5.4E-02 

Spleen Aging positive 0.0E+00 

Thymus Aging positive 2.6E-03 

Uterus Aging positive 1.4E-02 

Testis Aging positive 0.0E+00 

Fibroblasts (BJ) Replicative senescence positive 1.1E-02 

Fibroblasts (IMR-90) Replicative senescence positive 8.0E-02 

Fibroblasts (WI-38) Replicative senescence positive 3.4E-03 

Fibroblasts (HFF) Replicative senescence positive 9.0E-04 

Fibroblasts (MRC-5) Replicative senescence positive 7.2E-02 

Fibroblasts (MDAH041) Replicative senescence none 9.9E-01 

Fibroblasts (MDAH041) Stress-induced senescence (5-aza) none 1.0E+00 

Fibroblasts (MDAH041) Stress-induced senescence (H2O2) none 7.4E-01 

Fibroblasts (MDAH041) Stress-induced senescence (Adriamycin) none 8.2E-01 
 
Note: FDR < 0.1 regarded as statistical significance. 
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