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Supplementary Figure S1 
 

 
 

Figure S1. 13C NMR analysis of NBSK fiber hydrolyzed for 0, 0.5, and 2h. After 2 h of hydrolysis, the 

changes occurring in the substrate drastically changes its size and supramolecular organization. The 13C 

NMR spectra will reflect these changes, making it impossible to attribute changes in the CI to the enzymatic 

deconstruction mechanism.  



Supplementary Figure S2 
 

 
 

Figure S2. CLSM micrographs from the hydrolysis reactions using the never-dried NBSK. Incubation 

times as indicated. Scale bar is 100 µm. 

 



Supplementary Figure S3 
 

 

 
 

Figure S3: The variance of the R/G ratios in samples hydrolyzed with increasing time.   



Supplementary Figure S4 
 

 
 

Figure S4. The effect of agitation on the change in mean fiber length (a) and R/G ratio (b) with increasing 

cellulose hydrolysis. NBSK_Ag was incubated in shaken flasks under continuous agitation in an orbital 

shaker (150 rpm), as presented in the main manuscript. NBSK was incubated in 2 mL tubes in a heating 

block, with regular periodical vortexing. 

 

  



Supplementary methodology: Quantitative image analysis 

1. Data acquisition 

Confocal laser scanning microscopy (CSLM) imaging was performed with an Olympus FV1000 (Olympus, 

Japan), using a 10x (NA 0.3-0.4) air objective, and a Zeiss 710 LSM (Carl Zeiss AG, Germany), using a 

10x (NA 0.3-0.4) air objective and a 40x (NA 1.2) water objective. The respective instruments capture 

micrographs of 1024×1024 and 512×512 pixels (picture elements), respectively. Following the 

specifications of the dyes, CBM17-FITC was excited at 570 nm and emissions detected at 590-650 nm. The 

excitation and emission of CBM2a-RRedX was at 490 nm and 510-550 nm, respectively. Images were 

acquired in 5-6 µm (10x) and 0.4-0.5 µm (40x) thick optical sections. Bleed-through of fluorescence 

emission was tested and can be neglected for the presented image quantification method. 

2. Software 

Quantitative image analysis of the CLSM images were performed in a Python 2.7 environment (build 

2.7.10, Python Software Foundation). Image data acquisition, processing, and visualization were performed 

using the open source toolboxes Bio-Formats (build 5.7.1, Open Microscopy Environment (OME), 

https://www.openmicroscopy.org/)[1]with a python wrapper (python-bioformats 1.4.0, OME) [2], the open 

source computer vision library for python (opencv-python 3.4.3.18, https://opencv.org/) [3], the python 

imaging library (PIL) fork Pillow (build 5.2.0, https://python-pillow.org/) [4], Matplotlib (build 2.2.3, 

https://matplotlib.org/) [5], NumPy (build 1.15.1, http://www.numpy.org/) [6], and the SciPy library (build 

1.2.0, https://www.scipy.org/) [7]. Supporting micrograph metadata was extracted using ImageJ (build 

1.52a, https://imagej.net) [8]. 

3. Image processing 

Quantitative image analysis of the acquired CLSM images was performed to assess changes in the relative 

proportion of the adsorbed fluorophores and the distribution of features in the specimens with increasing 

cellulose conversion. High throughput could be achieved with a high degree of automation of the image 

analysis. The micrographs were batch processed. Batch data and user supplied inputs were retrieved from 

a spreadsheet and the acquired micrographs was analyzed in a 3-step process: preprocessing, segmentation, 

and analysis. The workflow of the image analysis is illustrated in Figure S5 and is described more in detail 

below. 



 
 

Figure S5. Overview of the quantitative image analysis workflow. 

3.1 Preprocessing. 

The image preprocessing stage encompassed import of user specified micrographs and metadata to the 

processing environment, extraction of intensity data, and formatting of data for fiber identification (i.e. 

segmentation) and image analysis. The data preprocessing module was built on code by Dr Carl J. Houtman 

(USDA Forest product laboratory, Madison, WI) [9]. 

Data import. The acquired micrographs were imported to the image processing framework as 3D NumPy 

arrays using OME Bio-Formats, and micrograph metadata, embedded and user supplied (read from 

spreadsheets), for the image analysis were appended. The acquired 12-bit micrograph, read as 16-bit image 

scaled from 0 to 1 by the data import environment, were reshaped to 12-bit data with a dynamic range from 

0 to 4095. 

Red/green image separation. The spatial FITC and RRedX fluorescence intensities were extracted from 

the acquired 3D NumPy array as separate grayscale images, i.e. 2D NumPy arrays containing intensity 

information from respective fluorescent label. FITC and RRedX fluorescence data are henceforth referred 

to as “green” and “red” layer. 

Background subtraction. The modes of the background intensities of the “red” and “green” layers, 

acquired from blank slide micrographs analyzed with ImageJ, were subtracted from the “red” and “green” 

layers of the analyzed micrograph. Duplicate layers were created for the image segmentation process. 

Masking. The pixels in the layers that represent fiber area, the region of interest (ROI), were isolated from 

the background. The corrected layers were masked with the binary mask created by the image segmentation 

process (section 3.2. Segmentation). 

Point feature removal. Saturated pixels and negative values in the masked “red” and “green” layers were 

removed. 



Data scaling. The intensities in the “red” and “green” layers were scaled with the respective laser 

transmission factors used to control the excitation of the fluorescent labels (set to maximize the signal-to-

noise ratio within the dynamic range of the detector). 

3.2 Segmentation 

The stage encompassed unsupervised identification of fiber from the background, definition of a ROI, and 

the creation of a binary mask for isolation of the ROI sparse matrix in the image analysis. Duplicate “red” 

and “green” layers were created and manipulated for the segmentation operations. 

Noise filtering. A median filter with a 7×7 kernel was applied to reduce spatial noise in the copies of the 

“red” and “green” layers. An OpenCV subroutine was used to replace each pixel with the center value of 

the neighbors in the kernel, efficiently reducing “salt-and-pepper” noise. 

Threshold determination. The filtered layers were segmented based on contrasting intensities between 

fibers (foreground) and background by binary thresholding, using OpenCV subroutines. Nonparametric and 

unsupervised methods were used to automate the selection of threshold value, T. The threshold value for 

the strongly bimodal histogram of the “red” layer was selected using Otsu’s method [10], which find the 

optimal threshold value by minimizing the intra-class variances of the foreground and background. The 

lower signal-to-noise ratio (S/N-ratio) of the “green” layer, and the weaker bimodality, made segmentation 

more complex. The low S/N-ratio makes the segmentation sensitive to various disturbances, e.g. 

illumination, resulting in multi-modal background in the “green” layer histogram. Robust selection of 

threshold value for the “green” layer was achieved by setting the mode of the background class as the left 

boundary of the domain over which the threshold is computed, using contrast stretching, and selecting the 

threshold value with the triangle method [11]. 

Binarization. The duplicated “red” and “green” layers were segmented by applying the determined 

threshold values on the respective layers, creating binary representations of the layers. The ROI was defined 

as the union of the binary ROI subsets identified in the “red” and “green” layers. The identified ROI was 

used to mask the corrected fluorescence layers. 

Verification. In order to verify that the previous steps lead to correct identification of the ROI, the contours 

of the identified ROI were superimposed on the original micrograph and the “red” and “green” layers for 

manual comparison. Correction of irregular features in the micrograph that does not coincide with fibers, 

such as the boundaries of air bubbles and nonspecifically labelled debris in the specimen, were manually 

removed from the duplicated “red” and “green” layers before being reprocessed. 

3.3 Analysis and output 

In the analysis step, the relative proportion of “red” and “green” fluorescence were estimated for every 

pixel, descriptive statistics calculated, the numerical appropriateness of the methodology assessed, and the 

outputs exported. 

Analysis. A fluorescence ratio imaging approach was used to derive a consistent quantitative measure 

which can be used to assess the temporal change of the surface structure of the fibers during enzymatic 

hydrolysis. The basic premise of the method is that the fluorescence ratio of “red” to “green” (R/G-ratio) 

represents a measure of the relative proportion of the adsorbed fluorophores, reflecting the relative 

abundance of specific surface structures. Because of differences in optical properties of fluorophores (e.g. 

extinction coefficients and quantum yield), the R/G-ratio has an arbitrary magnitude which is proportional 

to the ratio of the absolute concentrations of the two fluorophores. 



The mean R/G-ratio was estimated by inversion from the sparse matrices using the estimator below (eq 1), 

where R and G were the masked “red” and “green” layers. 

 𝑟𝑅/𝐺 = (𝑅(1 𝐺⁄ ))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅         (eq 1) 

The mean R/G-ratio estimate was complemented with statistical properties of estimator (variance and 

sample size) and descriptive statistics of the underlying data sets (min, max, mean, and variance).  

Validation. The validation of the appropriateness of the segmentation and analysis results was made by 

visual inspection of the segmented micrographs and evaluation of the distribution of the (1/G) part of the 

estimator, which could bias the mean. As Gi,j  approach 0, (1/G)i,j approach infinity, which also would be 

reflected in the variance of the estimator. Inflated values of (1/G)i,j was primarily associated with image 

elements along the boundary of the ROI with low S/N-ratios, unduly included in the ROI under relaxed 

segmentation criteria. 

Output. The quantitative analysis results were output to a user specified spreadsheet. The data output is 

assembled in summary statistics and figures in external software. 
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