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S1. ADDITIONAL SIMULATIONS

We first include an empirical verification of the surprising results from Proposition 2 and Lemma 2 that
we can accurately estimate L, but the naive estimate for €2 in (12) is biased. The data were simulated as
follows:

d=K=1,n=100, p=10°

X ~ N, (0,1I,)

B=0

Ly ~ (1 — n_l) So+n"tN1(0,1) (g=1,...,p)

T T T

X = (171/27071/2)

Cy~ Np_gq (Oa In—d)

C=X+QxCy

E~ MNyyn (0,1,,1,).
where Qx € R™*("=% js a matrix whose columns form an orthonormal basis for the null sapce of X.
Therefore, {2 = 1 for every simulation. L and ¥ were simulated so that A\; ~ 1 and p = 1. If (18) from
Lemma 2 was correct, then n'/2 (ﬁg - Lg) ~ N(0,1) for each g € [p]. If we let W = n'/? (f) - L) €
RP, we validate Lemma 2 by partitioning the components of W by whether or not the corresponding

component of L was non-zero. If Lemma 2 were true, both histograms in Fig. S1 should look as if they
were sampled from a N (0, 1) random variable, which they clearly do.
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Fig. S1: W = nt/? (f) — L) € RP? for one simulation for components of L that are non-zero (left) or 0

(right). The overlaid red curve is the density of a N (0, 1) random variable.

We next empirically verified (19) from Proposition 2 using 20 simulations. Figure S2 contains the results
of the 20 simulations, which clearly shows that n'/2(|Qshrunk — Q Xy (A + p) 7|2 ~ 0.
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Fig. $2: A = n!/? {QShrunk — QMM+ p)*l} for 20 simulations.

Lastly, Fig. S3 gives the simulation results from Section 4.1, with By ~ 0.80dp + 0.20N (0,0.42).

s The average power for the simulations on the left panel for C' known, BC K= 10, BC K = 20 was
23.3%,23.3%, 22.1% and 23.0%, 23.0%, 21.9% for the simulations on the right panel.
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Fig. S3: Simulations with B4 ~ 0.806¢ + 0.20N (O, 0.42) for A = A; (left)and A = A, (right). All other
parameters are the same as the simulations in Section 4.1.
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4 CHRIS MCKENNAN AND DAN NICOLAE

S2. PROOFS OF ALL PROPOSITIONS, LEMMAS, AND THEOREMS
S2.1. Proof of Proposition 1 and the identifiability of (n’lcQTCg) “tor

For the remainder of the Supplement, we define L, = ¢, for all g € [p]. Let X be a matrix, vector
or scalar and let || X||2 be the spectral norm, Euclidean norm or magnitude of X. We use the notation
that X = Oy, (ay,) if for some sequence a, | = Op (1). Similarly, X = o, (a,,) if || X||2/an =
Op (1). Lastly, for any vector v € R™, we define v; to be the jth element of v forall j = 1,...,m. If the
vector has a subscript r, then we define v,.; to be the jth elements of v, € R™ forall j =1,...,m.

We first prove Proposition 1.

Proof of Proposition 1. Under Assumptions 1 and 2, we can find an L € RP*X_ € € R"*¥ such that
for Cy = P C, E (Y2) = LCY and

np 'LTL = diag (\1,..., k), n 1030y = Ik (S1)

by taking the singular value decomposition of E (Y3). The columns of L and Cy are unique up to

sign by the uniqueness of the singular value decomposition, since A\g > Mgty for all k=1,... K

(where A1 = 0). That is, if L and C' also satisfy (S1), then L = LII and Cy = C5II where II =

diag (a1,...,ax) and ar € {—1,1} forall k € [K].
Next suppose Assumption 3(a) holds and let B(®) L@ (@) and B®) L®) C(®) be such that

{Cg‘”} — E(Ys) = L® {Og”)} and
B@ 4 (@ {Q(a)} — E() = B® 4 L® {Q(b)}T

We can find invertible matrices R, R® € REXK such that LWR® C@ {R®}™" and
LOR® ) {R® }_T satisfy (S1), where

@ {Q(vﬁ)}T — {L(i)R(i)} {Q(i) {R(O}T] ' (i = a,b).

Therefore, to prove the identifiability of B, it suffices to assume L(*, C(®) and L®) C©®) satisfy
(S1), meaning L® = L@1I and C = C{"1I for some I = diag (a1, . .. ,ax) where aj, € {—1,1}
for all k € [K]. Define L = L(*) (for notational convenience), S = { gelp: B =BY = O} and

Ls € RISIXK o be the submatrix of L restricted to the rows g € S. To prove that B(*) = B(®) and
C®) = C(1I, it suffices to show that L5Ls = 0,i.e. Ls has full column rank.

n(pAx) ' LELs = diag (MAR", -+ Ak 1A 1) —n(pA) ™ Y 4yl)

g€P\S
where for any r, s € [K],
nAR) ™ D Larlasl SnAR)TH D [grllls]
gelP\S gelPN\S
P P
< Ena [p_l Sor{Be #ob 4 > 1 {BY # 0}] —o(n772),
g=1 g=1

which completes the proof. O

We next state and prove a proposition regarding the identifiability of €2 (nilCQT CQ) o

PROPOSITION S1. Suppose Assumptions 1, 2 and 3(a) hold. Then 2 (n’lCQTC’g)il Q7 is identifiable
for all n > cy, where cy is defined in the statement of Proposition 1.
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Proof. Under these assumptions, Proposition 1 proves that B is identifiable for all n > ¢4, meaning
E(Y)— BX™ = LC™ is identifiable for all n > ¢4. Suppose C(4, C(py € R"*¥ and L ,), L) € RP*E
are such that

LCly = E(Y) — BX" = L, Cl,.

Under Assumptions 1 and 2, L(,) and L ;) have full column rank, meaning we may define

-1
R = L, L) {L(Tb)L(b)} ;
where C(;) = C(q) R. Since C(4) and C(y) have full column rank by Assumptions 1 and 2, R must be
invertible. Therefore, for ;) = (XTX)f1 XTCy (i = a,b),
—1 -1
Quy {nTICHPECw by = Qo RET {071l PECw | RTRTQY,

—1
— 1
= Q(a) {n lcga)PXC(a)} Q’(I‘a)7

which completes the proof. O

S2.2.  The behavior of the off-diagonal elements of np~* L*SL

Let m;, € RP be the kth left singular vector of LC3 (k = 1, ..., K). In this section, we state and prove a
1/2

proposition regarding the generality of the condition that (A, A) "/~ [m¥mg| < cgAmax(r,s) forallr, s €

[K], which is used in the statements of Theorems 2 and 3. To do so, we note that ()\T/\s)l/ 2 ImISm,| =
Inp~' LT, X L,| for some L such that (L,C) € O ).

PROPOSITION S2. Let L = [{y - -- ZP]T € RP*K and ¥ = diag (0%, . . ., 012,) where for each g € [p),
Zg ~ Iy
0'3 ~ FG.Q

where the distributions Fy and F,2> have compact support. Suppose C € R"*X and X € R"*4 are non-
random matrices and define R € REXEK gych that R? = n’lc’TP)Jg C. In addition, let

@) vx < --- < 1 be the eigenvalues of np~ 'L L
(b) Ak < -+ < Ay be the first K eigenvalues of PiC (p’lf/Tf/) C"Ps.
(¢) L = LRU, where U € REXEK s g unitary matrix such that np~* L™ L = diag (A1, ..., Ax).

Suppose the following assumptions hold:

() |[n"tCTPxC|l2, | (n*ICTPj(-C)AHQ < ¢ for some constant ¢ > 1.
(ii) For any € > 0, there exists a d¢ > 0 such that pr (yxp/n > d¢) > 1 — € for all n, p.
Then for any r, s € [K],

n {pAmax(r,s)}_l LITZL*S = Op(l)

asn,p — oo.
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6 CHRIS MCKENNAN AND DAN NICOLAE

Proof. First, n (vxp) ' = O,p(1) by Item (ii). Next, by the sampling mechanism used to draw L and
Y, L and ¥ are independent. Suppose r < s and define ¢, = L, for all g € [p]. First,

p
E |:7’L {p)‘max(r,s)}_l L;I:TZL*S | I’:| =n {p)‘max(hs)}_l ZZQTEQSE (UZ | E)
g=1

p
= B (03) n {pPhumaxtrs)} D Larlgs = 0.
g=1

< c||€,]|2, meaning ||¢,]|3, o2 < aforall g € [p] for some constant a > 0 not
dependent on n or p (since Fy and F,> have compact support). Let ¥ = np~'LTL and ¥ = np~ ' LT L.
Then

K =Tl < AU = Pyt
and
T =TT < AT = AR,
which implies ¢~ 2yx < Ag < >k Therefore, n (pAx) " = Op(1) and

p
var [n {p)\max(ns)}_l LI, YL, | E} =n? -2 2557655 var ( | L)
= var (o7) n* (pAs) 2 Z E;J;S

< a’n?( Zé =an (prs) "

< a®n (pAx)” 1=0p<1>.

This proves the claim. 0

Remark 1. Ttem (ii) is a weak assumption because pyx /n is the smallest eigenvalue of L™ L. Further,
we assume pAg /n — 0o as n — oo (where v =< Ag) in Assumption 2.

Remark 2. We can extend to Proposition S2 to include the case that C' is random if we
assume C is independent of X and if for all e >0, there exists an M >0 such that
pr ([n~'CTPEC|2 < M) ,pr{H(n_lCTP)%C)_IHQ < M} > 1 —e. To prove the claim, we would

simply condition on L and C instead of just L.

S2.3. A re-definition of Cy and Y3

Let Qx € R™*("~9) be a matrix whose columns form an orthonormal basis for the null space of X ™.
For the remainder of the Supplement, we re-define Cs to be

= Q% C e RIXK, (S2)

Note that since Py = QxQ%, C3Cy = C*P5C and the Cy defined in (3) is simply P5xC =
Qx (Q%C) = QxCs. This implies that the first n — d singular values and left singular vectors of Y P
and Y'Q x are the same and if we let V; € R™* ("= and V;, € R("=9)*(n=d) pe the right singular vectors
of YP}% and Y @ x corresponding to the non-zero singular values, then V; = @Q x V5. We therefore replace
(Y defined in (3) with that defined in (S2) in the statements of all remaining propositions, lemmas and
theorems, as well as the proofs of all propositions, lemmas and theorems stated in the main text.
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Using this definition of C5, we define Y7 and Y5 from to be

Y1 =B+ LQ"+ & (S3)
—YQx = LCI + &, (S4)

where €1 ~ M N,yxq {0, 3, (XTX)_I} and £ ~ M Npy (n—q) (0,%, I,,_4) are independent. Note that
this Y7 is the same as the one defined in the main text. To get back to the Y5 defined in the main text,
we simply multiply the Y5 defined in (S4) on the right by Q%. It is easy to see that because () x has
orthonormal columns and Qx Q% = Pi, Assumptions 1, 2 and 3 are equivalent with this redefinition of
C> and Y5. Further, Propositions 1 and S1 hold with C; = Q% C

We also define y2, and y;, to be the gth rows of Y7 and Y> defined in (S3) and (S4), respectively.
If Ve RM=D*K are the first K right singular vectors of Y5 defined in (S4), then Co=nl2V, [ =

—1

Yoy (C’QT C’g) and &g =(n—-d-—K)! Ygo PL Yoo Therefore, none of our estimators for L, ¥, Q) or
B change when we use this definition of C5 and YQ.

Since ¥, LCY and Aq,..., A are identifiable under Assumptions 1(a) and 1(b) and B, LQ" and

T (n*lcg Cg) ~1 O are identifiable under Assumptions 1, 2 and 3(a) (see Propositions 1 and S1), then
Lemma 1, (17) in Lemma 2 and Theorems 1 and 2 hold regardless of the parametrization of L and C.
Therefore, we will assume (L, C') € © ) when Assumptions 1 and 2 hold, and will assume (L, C') € Oy
when 1, 2 and 3(a) hold (again, where C = Q% C). The first goal is to understand the asymptotic prop-
erties of I, and Cg, which are essential to all of the proofs that follow.

S2.4. Understanding the behavior of Cyand L

We start by stating and proving Lemmas S1 and S2 and use their results to prove theoretical statements
made in the main text. For ease of notation, we assume for the statements and proofs in this subsection
(Section S2.4) that

Yosn = LpxkCryn + Epxns € ~ MNpyy (0,5, 1) (S5)

where n=1CTC = Ix. We also define
C=n"12C (S6)
L= n1/2p_1/2L. (S7)

We will lastly define a matrix Q € R"*"~X such that Q*Q = I,,_ x and QrC = On—rK)x k- Weuse a
technique developed in Paul (2007) to define the rotated matrix F;, «,, to be

F= (g:) pYTY (6 Q)

P 12e N (7 —1/28 1/23
B (L+p & (L+p 51) (L+p
1771/2(2/-"2F l~/+p’1/2<§'1) -1%

) e (S8)
&5

where £, = £C and £, = £ Q are independent. Since (C’ Q) is a unitary matrix, the eigenvalues of F’
are also the eigenvalues of p~1Y "Y' For the remainder of the Supplement, we assume

( R VK x K )

Z(n-K)xK

are the first K eigenvectors of ', meaning CV + QZ are the first K eigenvectors of p ~lY™Y. Further,
since &1 and &, are independent, the upper left block of F' is independent of Ey. We exploit this by

first studying the eigen-structure of the upper left block in Lemma S1, and then using those results to
enumerate the asymptotic properties of the first K eigenvalues and eigenvectors of F' in Lemma S2. In
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8 CHRIS MCKENNAN AND DAN NICOLAE

order to avoid confusing subscripts and superscripts, we define the scalar v[s] to be the sth component of
the vector v.

LEMMA S1. Let L € RP*E & ~ MN,yx (0,5, 1) and N =L+ p~'/2E,. Assume L"L =
diag (A1,. .., Ak ) where the \’s are the same as those given in Assumption 2 and . = diag (0%, ceey 012))

follows Assumption 1(c). If d2 = \j, (N TN ) and vy, are the k™ eigenvalue and eigenvector of NTN, then

BAT =14 pA;! +Op{(Akp)’1/2} (S9)
and
o =[1+ 0, {wn) " e+ 0p {Oup) e+ O { ) P e 510)
+Op {(Akp)_lm} epr1+ -+ 0p {()\kp)_l/Q} ex
where ey, k =1, ..., K, are the standard basis vectors in R¥.

Proof. First, N*N = NIN/T]ij— plx +p V2L &, +p‘1/2£’fi + B where the entries of B are
O, (p‘l/ 2). Let RRT = L™XL where R is a lower triangular matrix. By Cauchy-Schwartz, the kth row

of Ris Rf =0 (/\}/2). We also note that p~'/2L"E; ~ RM where the entries of M € RE*K are
Oy (p™/2). If we let the columns of M be M, (s € [K]), then [RM],, = RiM, = Op { (1)}
(k, s € [K]). Next, define the matrix A1) € REXK to be

H1 a2 - Q1K

a PR a
40 _ )\leTN _ 21 M.z 2K

OGK1 AK2 " MK

where
e = (Ae + p) AT+ 207 REM), + AT By
ags = AT REM + AT RE My 4+ A By, = O, (A}C”/\;lp*l/z’)
for k < s. Our goal is to break A(Y) into K rank one pieces, each of which are approximately orthogonal.

The procedure is enumerated in four steps:

T

1. Define A; = A, A :(o,A“),...,A“)),...,A —(o,...,0,4
1 1 2 29 2K K KK

K—10%
2. We wish to first modify A; and A, so that they are orthogonal. To do this, we will add €5 to As[1]
and remove €5 from A1 [2]. That is, we define A1, = A; + egeg and Ay, = Ay — egeq such that

0= A7, Ay, = AT Ao + €212 — €ap11 = a1z + €2p12 — ap11 + Oy (/\é/2>\1_3/2p71)

meaning e = ajopo (11 — piz) + O, ()\;/2)\1—3/2:071) =0, ()\2)\1_3/21)*1/2). We now have
AT, Ay, = 0.
3. Define A;, = A;,_, + exer and Ay, = Ay — eie; inductively:

0=(A1,_, +erer) (A —eper) = AT Ap + expir — exfin = arpfin + expie — €xpin
+0, (/\}jﬁﬁ”p*l)

meaning e = aygur, (1 — i)+ Op ()‘llc/QAfg/QpJ) =0p (Ak)\fg/zpflﬂ)'
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4. After we complete this process K — 1 times to get A;,., we now have for s < K
AT Agy =(A1 +ezea + -+ eger) (Ag —ese1) = (A1 + exea + -+ + €565)" (Ag — €5€1)

T
+ (€s+1es+1 +---+ 6Kef() (As - 6sel) =0+ €s+10s,s+1 + - €EKAs K

- _ 1 _1:\3/2 _
:Op <AS+1A1 3/2p 1/2/\;/2)\1 1p 1/2) — Op {()\sAl 1) / ()\11)) 1}
and AT Ay, = pi+ 0, {(Alp)_l}, meaning || A1, |2 = p1 + O, {()\1]))_1}. 200
We now have
0 T Oix(r—2
AD = (AlK 0 - ) T RSN IV <0<K—1>x(K—1) AT )
_ _ —
(K-Dx(K-1) Ox—2)x1 + Ox—2)x(K—2) i
B B(K)
B2
1 ajz2+e€2 - a1 +ex 0 —e 0 --- 0 0 -+ 0—ex
ais + € 0 0 —€2 2 Q23+ Q2K : Do
= . . . . + . . . +F e
: : " : : : o 0O ---0 0
a1xg + €x 0 0 0 asg O --- O —€ex - 0 pug

Define u;, = HA1K||2_1A1K = {1, (a2 + €2) ul_l, oo (a1g + €x) ul_l}T +Op {(Alp)_l}. Then

BW = pyuy uf, + O, {(Alp)fl}. Further, for s € [K], 205
—€s (als + 68) ||A1K ||51
0
1B ur, = g o =05 {(\p) "}
||A1KH2 A52A1K

||A1K H2_1as7s+1 (a1s +€s)

||A1KH2_1U‘S,K (als + Es)

which means AMuy, = pyug, + O, {(Alp)fl}. We then define

6 =uf AVuy, =1 + 0, {()\110)71}

7= AW, = dur,e|l2 = Op {up) ™}

By Weyl’s Theorem, the eigenvalues of A1) are yj, + Op {(Alp) -1/ } so if ¢ is the second largest eigen-

value of A1), & = s + O, {(Alp)*l/z}, meaning f =6 — £ = (A1 — M) A\{L + O, {(Alp)*l/z}. By 0
Theorem 3.6 in Auffinger & Tang (2015), we have

1. There exists an eigenvalue A, of A s.t. A\, € [§ — 7,0 + 7], ie. A, = 1 + O, {(Alp)fl}.

2. If A, is the only eigenvalue in [§ —y,d 4+ +] and v, is the eigenvalue corresponding to A, and
>

o =l vyunlle < 27 (f =)~ = 0p {0p) '}
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10 CHRIS MCKENNAN AND DAN NICOLAE

Let Gx,np = {A, is the maximum eigenvalue of A }. Then
pr (I (AD) =l = M) < pr (1A = il = M, Ga ) + 01 (G5 )
<pr(6 = | = M) +pr (G5, 0,)

Since  pr ( ;mn’p) =0 and  |A —u|=0, {(/\w)‘l}, BN = Ay (AD) = 1y +
Op{()\lp)fl}. We can apply an identical procedure to show that [v; —uf, viui, |2 =

Op {(Alp)fl} since on the event that )\, is the largest eigenvalue of A, A, — & > ¢+ o, (1),

where ¢ is a constant that does not depend on n or p (i.e. A, is the only eigenvalue in [6 — 7, + 7]
and f > 0 with probability tending to 1). Since v; and wq, are unit vectors, we must have

uf, v =F1+ 0, {(Alp)_Q}. That is, we know v up to sign parity. O
We then have
A@ = )1 (A1A<1> - dfulvf) = MA'B® 4 00 BE) 0, {(A2p)—1} .

Since ez AL = O0p s eyt (g —1/2 , all off-diagonal entries of the above matrix at most
2 P 2 p g
Op {()\Qp)fl/ 2}. We can then apply the exact same procedure as we did above to show that for all
k € [K],
BN =14 A+ 0, {p) 2}

and

0 { Owp) 2}

v = |14+0p {()\kp)_l}

0u{up) 2}

Lastly, for s < k,
0 = oTop = vglslos[s] + Op { p) ™ b+ wilkluwlk] = wxls] + 0y { Aup) ™2}

meaning vi[s] = O, {()\Sp)flﬂ} since )\;/2)\;1])’1/2 — 0 by assumption. This completes the proof.

We use £ 1 £ 2, N , di; and vy, defined in Lemma S1 in the remainder of the paper. We also define
R=p'&& — plo_x (S11)
andlet V = [vl e vK} ,U = [ul e uK} be the first K right and left singular values of N. That is
N=L+p Y2, =UDV" (S12)

is the singular value decomposition of N, where Dy, = dj.. By Theorem 5.39 in Eldar & Kutyniok (2012),
|R||2 = Op {(npil) Y 2} under Assumptions 1(c) and 2(c). The next lemma uses what we have estab-
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lished in Lemma S1 to prove convergence properties of the first K eigenvalues and eigenvectors of F' (see

(S8)).

LEMMA S2. Suppose the probability model for Y is given by (S5) and that Assumptions 1 and 2 hold
for d = 0 (d is the number of columns in X ). Then

Mo =N\ (F) =di + 0y (npt) . (S13)
Define Bk} O € RX and 2, € R" X to be the k™ eigenvector of F. Then 245
k
be=viten llenlz = 0p {nup) '} (S14)

and

5, = dkA,jlp_l/Qg;uk + dk)\,glp_lﬂRg’;uk + 0, {n3/2 ()\kp)fg/2 + nl/? (p)\k)fl} (S15)

where dy, and vy, are defined (S9) and (S10) and uy, is the ™ left singular vector of Y C. Further, if
np LT, YL, < CA\max(k,s) for all k, s € [K], then for any s < k,

en[s] = op ()\k)\s_ln_l/Q) . (S16)

Proof. First, define

250

FO = F =)\ [Al Hl} )

HT J;
We immediately observe from the expression for F' in (S8) that
STt = a0y {02 up) 2} = a4 ) A+ 0y {012 () T

by Weyl’s Theorem. The eigenvalue equations for F(!) are

MAT Yoy = Aydy + Hi 2

5\1)\1_121 :Hf@1+J121 255
which then implies

¢ w1 -1

5 = (AlA; Inox — Jl) HT,

. R R -1
/\1/\1_1171 = A0, + H; </\1/\1_1]7L—K — J1> Hirfjl
where
~ ~ T .
Hy = A\[lp~1/2 (L +p*1/251> &5 250
AMAT g — Jy = (&1 - p) AT o — ATIR.

The latter is invertible with eigenvalues that are uniformly bounded away from O with high probability,
since

AATE = 4 p) AT+ 0, {072 (up) 2

and || R||2 = Oy, (n*/?p~1/2). Therefore, 265

| Hy (5\1>\1‘11,L_K _ Jl) "HI s =0, {n()qp)_l} .
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12 CHRIS MCKENNAN AND DAN NICOLAE
Since A; = A® (see Lemma S1),
STt = {a®b v oy fnup) T =@t + 0, {nup) '

by Weyl’s Theorem. To determine the behavior of ¥, we first notice that since £{2; = Oy, {n (M p)_l}

and [[61]2 + |22 = 1. [[o1] = 1 — O, {n(Alp)*l}. This shows that,

01 =v1 + Op {n ()xlp)fl} .

Recall from (S12) that UDV™ = L 4 p~1/2£ is the singular value decomposition of L + p~1/2&,. Us-
ing these above relations and the fact that

(5\1 — p) MN=1+0, {()\1]9)71/2 +n ()\1]9)71} )

we can get an expression for 2;:

5 = (5\1)\1‘1[n_K - Jl) " Hry
= ATlpL/2 (XlAflln,K — (up)”! é’§52) T (i +p—1/251) i
=7 2 (3 = p) AT Tk - )\flR}il E;UDV vy + 0, {n®? (\p) ™7}
= d T2 (In_x — )\1—1R)71 g;ul +0, {n3/2 (>\1p)73/2 1 pl/2 (p)\l)ﬂ}
= d1)\1_1p71/2£’r2ru1 + d1>\1_2p71/2355u1 +Op {HS/Q ()\117)_3/2 +nl/? (p/\l)_l}
since

-1

1Tk = AT R) ™ = (Lo + AT R) 2 = O (INT2R22) = 0, {n (X3p) '}

We can then find expressions for 5%, 01, and Zj, by induction. First, assume the following three conditions
hold for all s < k, where k < K.
As =d2 + 0, (np™?) (S17a)
By =vs + O, {n (/\sp)_l} (S17b)
By =d A 2 E s + AT A RE g+ Op {072 (p) P 02 (pA) T} (S170)
ANHT =p V28N — My 2107 — -+ — Ag_1 5107,

=0y {”1/2 ()\1p)_1/2} of + -+ Oy {n1/2 (As,lp)‘l/z} T,

K
+p7 %8S deuef + 0, {A;}{Q (np")*? + n1/2p*1} . (S17d)
l=s
If we can show that these hold for k + 1, this would prove (S13), (S14) and (S15). To show that the
above hold for k& + 1, we first show that (S17d) holds, and then use the result to show that (S17a), (S17b)
and then (S17c¢) hold. Due to the lengthy calculations, we break the proof into four steps for convenience.
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Nep1 HE oy =p V280N — M 2107 — -+ — Ai2adf = MoHy — M2 0F
=0, {n1/2 (Alp)fl/z} v+ -+ 0p {n1/2 ()\k,lp)fl/z} vp_1+ dkp_l/gggukv,f

K
72 Y doue + Op {2 (™) /2
{=k+1

- (m,;l) dyop~ Y2 E ST — (m,;l) Ry A p Y28 uyof
=0y {”1/2 (/\11?)_1/2} vf 4+ Op {”1/2 (Akp)_m} vy,

K
_ _1\3/2 _ 1/25
+0, {Ak1/2 (np 1) / +nl/2p 1}+p 1/25; Z deugv?.
t=k+1

where third equality follows because
(XM?) =1+4p\, + 0y {(Akp)fl/z +n (p)\k)fl}
dkp’l/Qéguk@,f _ dkpfl/QEr;ukvg +0, {)\;1/2 (np’l)?’/Q}
(MAct) By p 285 = O (o 02 ) o + 0y {0012 (mp1) ™2}

This shows (S17d) in the inductive hypothesis also holds for k4 1, and shows |[Hp41l|l2 =

O, {n1/2 (A,mp)*l/?}.
. We next see that

Met1Apir = NTN = \og9f — - — MNiydf = N°N — d3viof — -+ — divgop + Op (np™t)
= )\k+1A(k+1) + 0, (np_l)
. Lastly,
)\k+1Jk+1 = p_lé;gg — lezA’li’f — = Xkész’;g = p_lg;gg + Op (’I’Lp_l) .
By the above expressions for Akﬂ, Hiy4q and Jyyq,
(5‘%1 - P) Metr = (dip1 = p) Mepr + Oy {n1/2 ()\k+1p)71/2} =140 {n1/2 (Ak+1p)71/2}
by Weyl’s Theorem. Therefore,
Mot Neti bk = Tt = (M = p) Al Tk = Aty R+ Oy {n Oeap) ™'

is invertible with high probability. We can now compute the eigenvalue equations to get:
. We can then put parts 1., 2. and 3. together to find expressions for the eigenvalue A\g; and compo-
nents of the eigenvector U1, Z41.-

(@)
3 -1 - i N T 3 -1 -1 N
Mo+ 1 A1 Ok41 = App1041 + Hy g ()\k+1>\k+117L—K - Jk+1> Hiy 10541

= A® D500+ 0, {” ()\k+1p)_1}

295

305

310

315
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(b)
Zhy1 = (S\kJrl)\];,l_lIan - Jk+1> Hi 110341
= [(S\k+1 - P) Motiln—x = A f R+ 0y {n ()\k+1p)_1H - )\,;llp_lﬂggx
X ﬁ deugvg Op41 + Op (x\;ilkl_lmnl/Qp*l/Q) V041 + -
t=k+1

+Op ()\,;il)\;l/znlmp*lm) VpOk+1 + Op {A;l/QA,;il (np*1)3/2}
+0p {02 Oveap) '

Therefore

I2ks1lle = Op {n!/2 (sap) 2},
meaning

lots1ll2 = 1= Op {n (pan) ™'}

We can then use this and what we showed in part a. to get that
Okq1 = Vkg1 + Op {n (/\k+1p)_1}
M1 = di iy + Oy (np™")

which means the 1. of the inductive hypothesis applies for k 4 1. Using the fact that for any
s<k

V41 = Op {n (p)\k+1)_1}
5 -1 _ —-1/2 -1
()‘k+1 - P) A1 =1+ 0 {()‘k+1p) + n (Ak41p) } ;
we can then modify our expression for Z;4; to get

(©)

K
2 _\—1 ,-1/2 5\ )\—1 I )\—l “Lor d T~
Zk+1 =Ap 1P {( k+1*p) piidn—K — k+1R} &y E QUpVy Dk 41
(=k+1

—1 1
+Op{<A§+1>\y2) (np—l)?)/Q}+,,.+Op{</\i+1)\i/2) (np—1)3/2}

+ 0, {n3/2 (PAr1) "% + !/ ()\k+1p)_l}

K K
-1 ,-1/27 A -2  —1/2pa” A
:)‘k+1p / &y § dZuévgkarl + )\k.Jrlp / RE, E ngg’Ug’UkJrl
l=k+1 f=k+1

+ O, {n3/2 (PAe1) 22 /2 ()\k+1p)_1}
:dk+1>\;§i1P71/2£;Uk+1 + dk+1/\;;_~2_1p71/2Réguk+1
+ Op {”3/2 (PAk1) 22 /2 (>\k+1p)_1} .

This completes the proof by induction and therefore proves (S13), (S14) and (S15). It remains to show
(S16).
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Since F'is symmetric with distinct eigenvalues (with probability 1), for s < k (i.e. As > Ag),

0 :@ST{)k + ﬁgﬁk = (US + ES)T (Uk + €k

where

)+ 202, =0+ €L 0p + vl € + 22 2.

€xi = O {n (pAe) 7} = 0 (AT 12)

vie = exls] + O, {()\sp)_1 2y (p)xk)_1 +n (pQ)\s)\k)_l} = ex[s] + op ()\k)\;ln*m)

Therefore, if we can show 272, = o, (\pA;'n~/2), we must have €x[s] = o, (\eA;1n~1/2). By our

above expression for 2y,

T
2Tz, [d AT V28 uy + dAT2p V2RE Yu, + O, {n3/2 (pAs) "2/% 4+ n1/2 (Asp)*l}} x

X [dk/\;lpflpgguk + dkAEprl/zRé;uk + 0, {n3/2 (p)\k)_3/2 +nlt/? (/\k.p)_IH

‘We see that
Op {2 (M) ™ + 012 (p) ™ 13,12 = O

{w™ A2 40 oA~ (00)

=0p ()\k)\s_ln_l/Q)

4752~ 2 RE s, + O, {2 (o) ™% +

Therefore,

w2 ()™ el = 0p {n (oA}
— o, (Ak)\ 1 —1/2)

23% = (d/\ L1287 u) (dk)\ P /252uk+dk)\ . /2R52uk)+0p ()\k)\ 1 —1/2)

= dydiy MsAip) T EoEqup, + dydi (A AZp

)_ ul€sREyuy + Op (/\k,)\;lnflﬂ) '

We analyze the two terms in the above equation in 1. and 2. below.

87

1/2
1. Define Uy s = (us ur), W = (UZ,SUs)

dydi AsAip) " ulEaEyup = {U;kg2g;Us,ki| . Z [dsdkn (Ashep) T W (n 7T MTM) W}
= dydpn (AsAep)
= dodpn (Ashep)

= dodgn (A Akp)

If ¥= O'QIp, we would be done. However,
uTYuy, = Op(1), meaning dydpn (AsApp) ™"

essarily o, (AgA;'n1/2). To see this, if A,

Oy (n'/2p=1), which is not o, (AgA; 'n=1/2).

andlet M ~ M N, gyx2 (0, Ik, I2). Then

1,2

w2+ 0, (71—1/2)L2

ug Yug + Oy (n1/2)\8—1/2)\;1/2p—1)
u; Sug + 0p ()\k/\sfln*l/z) .

if ¥ were arbitrary then under no assumptions

uTSuy = O, ()\;1/2)\,;1/271}9_1) which is not nec-

=n and Ay =1 then O, ( SV 1/27127_1) =

We will use the assumption that np~!LT, XL, =

O, {)\max(k,s)} in the statement of the lemma to show that u} Yu, = O, ()\,1/2)\ 1/2> If this

were the case, we would have dsdin (AsAgp) ™

YUYy, = O, {n ()\Sp)fl} =o0p (AeA;1n71/2),

345
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Lemma S5 in Section S2.10 proves u}Xux = O, ()\,16/ Y 2) under the assumption that
np 'L XL = Oy {)‘max(kys) }

2. Recall that R:p_lé';é'g —pl,_g. We will prove a lemma that shows
pilugégRg;uk:Op{(np*1)2+np’3/2}. Once we prove the lemma, we will have

dsdy, ()\S)\%p)flugg’gR?ﬁ;uk =0p (Ak)\;lnfl/Q). We prove this in Lemma S6 in Section
S2.10.

This proves (S16) and completes the proof.

S2.5.  Proof of Lemmas 1 and 2

In this section, we prove Lemmas 1 and 2. To do so, we first prove a modified version of Lemma 2 in
which we modify (18) to be

nt/? (EQ - €g> 2 ogW +0p(1),

where W ~ Ng (0, Ik ). We then prove Lemma 1. (18) from Lemma 2 then follows. For ease of notation,
we use the definition of Y from Section S2.4 defined in (S5).

Proof of Lemma 2. We first note that (17) is a direct consequence of (S9) ip Lemma S1 and (S13) in
Lemma S2. It therefore remains to prove (18), the asymptotic distribution of £,. Define y, and €, 4 to be
the g™ row of Y and &; (i = 1, 2).

0120y = CTyy = (V7CT 4+ 27Q) gy = 2Vl 4+ Ve + LTl
We then have
n1/2‘7% _ n1/2€g Jrn1/zop {(p)\K)—lm +n(p>\K)_1}
VTég,l ~ N (O, 0’3[}{) +Op {(p/\K)_l/2 +n (p/\K)_l}
Zpéag = dkA;ZlP_l/Quk[g]é;,zég,z + A o P ug[—g]"E2[—g, 1842 + Op {n3/2 (W\k)il}
where
wilg] = n1/2d;1p—1/2 (fg n ”_1/259,1)T1}k —0, (nl/QA,:l/zp_l/Q) .
Therefore, dk/\,;lp_l/Quk[g]é;Qég,g =0, {n3/2 (p)\k)_l}. Lastly,
ukl=g]"Eal=, )52 ~ N (0, un[~g]"S[—glus [~ 9175 269,2) = Op (n'/?) .

Therefore, Z%éy, =0, {n3/2 (PA) " +nl/? (p/\K)fl/Q}, which means n!'/? (ég - Eg) A

Nk (0,021k).
We also note that this also shows that

1/2)|pOLS _
n! 2N — Lyl2 = o0p(1)
where KA(g)LS =4, + n=1/ 2¢,.1 is the ordinary least squares estimate for ¢, when C'is known, since

2Vl — Lgllz, [V7eg1 — Egallz = 0p(1).
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Proof of Lemma 1. Once we estimate C by singular value decomposition, we let
G5 =(n—K)"'y3 . Pz
for each site g = 1,..., p. We will prove (15) and (16) by showing the following:
(@ 67 =024 0, {n‘l/Q +nt/? (p/\K)_l/Q} =07+ 0p(1).
P
) p=p~t 3 2= p+0p {oA) P4 n(pAk) T = oy (n712). 8
g=1

We first define the estimated scaled covariates W = n=1/2C' = CV + QZ e R"* K where V Z CT

and Q7 are given in Lemmas S1 and S2. Also, define € = [61 e eK], where €, € R¥ is as defined in
(S14) of Lemma S2. We then see that

(n—K) 63 =YyYg — Yy PirYg = YgYg — y;WWTyg =YyYg — Yy (C‘V + QZ) (VTC’T + ZTQT) Yg
= (viwy — ygCVVTCTy, ) —205CVZTQ yy — yiQZZ™Q"y,
(1) (2) (3)

We define €, 1 and €, 5 to be the gth rows of £y and &, respectively, and derive the asymptotic properties
of (1), (2) and (3) to show (a) and (b) above.

ey

YgYg — y;éVVTC'Tyg =Yy Yg — y;C'C’Tyg +2 y;C’(STC'Tyg + y;C‘(ST(SC’Tyg

() (ii) (iii)
where § = V — Ig.
(@)

(n—5)7" (3py — y CVV"C"y) = 5% 015 + Op { vep) ™/ 1 (ip) ™'}
= 03 + 0, (n71/2>
(b O

p
(n—K)"'p™ ) (ygyg - ygééTyg) =p 'Y Gros=p+0p {(np)*l/Q}

g=1 g=1

(ii)

p p T
()™ D yrCaTCTyy| < [l D (0 +n 200 ) (b + 0 2e00)
g=1

g=1
=0p {()\kp)_l/Q +n (Akp)_l}
(iii)
1 - A A 1/2 1
(np) ™ D4z C3"6C gy = 0p { ap) M+ (p) '}
g=1
@)
(n—K)ysQZZ Qg = (n— K) "6, 227600 < || Z]3(n — K)7'¢) 582

where [|Z|2 = O, {n (AKp)*l} and (n — K) =187 18,0 = Oy (1).

405

410

415

420
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(a)
(n— K)"'iQZZ™Q"yy = Op {n (Akp) '}
(b)

p p
(n—K) 7 S yiQZZTQ Y, < |1 235 Y (0 — K) ek aben = Op {n (uiep) '}

g=1 g=1
3)
~ A A T A A
WOV 2T QT = (607 P ) V2T 2,

— (0, 412 TVZT —1/25 “172- \* 51, —1/25
= (4, g1 n €go+ Ly +n €g1) €Z'n €g.2 -

@ (i)

(a)
T T B
(b + 071200 ) V20200 < (0 + 07 2000) V27 ol /2 2112
=0p {n1/2 (p)\K>—1/2}
(®) @
T L
Ip~! Z <€g + nfl/zég@) eZTnfl/Qégg\
g=1
1/2 » 1/2
T A A
< {pl > (zg + n*l/%g,l) €€’ (ég + nl/zé%l)} <p1 ané;QZZTég,g>
g=1 g=1
Op{n(prx)~'} Op{nt/2(prg)~1/2}
= op {n (o)™}
(i)
élTn_l/2ég72
T
430 (ég + n_l/Qég,l) VZTn_l/Qégg = 101/275_1/2 (dlul[g] dKuK[g]) :
éf(n_l/QégQ
= pl/anl/leul[g]ngnfl/Qgg,Q 4.
+pM 2T P duklg)ign T %
and for any k € [K],
-1 - 1/2, —1/2 AT —1/2~ —1/2 5 1 ¢ —1/25
D Zp n” dpuglglZinT/%€4 2 = (np) dipzp; Zuk[g]n €g.2
g=1 g=1
435 =0p (pil) .

The second equality follows because
(np) ™" iz = 0, (7")

P
Zuk[g]n_l/gé‘q,g ~n V2N, (0,ufSugl,) = O, (1).
g=1
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This completes the proof.

S2.6.  Proof of (20) from Lemma 3 under the conditions of Theorem 2 440

In this section, and for the remainder of the Supplement, we return to assuming Y is distributed ac-
cording (la). However, we continue to use &1, Eg e RPX(n=d=K) "N 4 V. §p, V, 3 € RP—4-K
7 € Rn—d=K)xK gpq R € R(n=d=K)x(n=d=K) defined in Lemmas S1 and S2 in Section S2.4 in What
follows.

We now prove Lemma S3, which will be useful in the proof of Theorems 1 and 2, and also acts as a s
proof of Lemma 3.

LEMMA S3. Suppose the conditions of Theorem 2 hold and the diagonal elements of C’QT Cs are non-
negative. Then

n'/2)Q = Qll2 = 0p (1)

where Q) is defined in (10). 450

Proof. Recall
o = ding A (3 =5) oo (e -0) f(E72) LY

(L"L) ' L*B4 (L"L) " L"LO" + (L"L) " L™ &

A 2 (@) (®) (©)

We will go through each one of these terms to prove || — Q> = o, (n~1/?).
A ~ -\ —1la2 ~
@) M, = (L™L)" L™B = n!/2p=1/2 (LTL) L™B. Define n'/2p~1/2B = B and let M,[k,] be s
the kth row of M,.
M[k,] = AT (E+p—1/2£’ ) B4+ A PEE B = AT LB + o, (n—1/2)

where the second equality follows because BY;B.; = o (n™*/?pAg) forall j =1,...,d by As-
sumption 3 and

A EEL B = 0y vl ()™ BBIY) = 0, (n2)
Or ()‘kp)ﬂm SI (A;1/2B> =0p {O\kp)il/z 7 (Akp) BTB||1/2} = 0p (n_l/Q) .
Lastly, the s, j element of of A_liTB € RE*d i5 such that

n (Akp)~ Zegéﬂgmn(xkp) Hetop(1)}Y T(Bgy #0) = A e+ 0p(1)} 6
g=1

g=1
= 0p (n_1/2>

P
by Assumption 3, where §; = p~! > I (B,; # 0) and ¢ > 0 is a constant that does not depend on s
=1

n or p. The first inequality above is b_ecause the magnitude of the entries of B and L are bounded by
2 OFLTBly = o, (n7V/?) forallk =1,..., K.
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At
~ ~ -\ 1 ~ 2 L

) (L7L) ' L7L = (LTL) Tf = N L™ L where
)\71

K

o

oy _or (7o 120\ 7 oro—1/25TF
L=V (Lyp28)) L+ 27p 280

(i) (iii)

()
ex ) where ¢, € R¥ was defined in Lemma S2 as 9, — vy,. Since € =

(i) Suppose € = (eg -
Opqn ()\Kp)fl} and p~1/28 L = O, ()\}/zpflﬁ), then

) peal).

~ -\ —1 ~T ~ n
ITL)  Ep V28 Ly = A0, 0 [ A
G I e Y v o
Next,
/\261[2] Aixq[K]

Frex[l] {2ex(2] -

Therefore, €™ <I~/ —|—p*1/2<§'1)T L= Op (nil/g).
(ii) (ETE) Ty (Z n p*l/Qé’l)T i
V(B4 p28) L=V (L p  28n) (L p 280) — VLT 28,

_ va + Op (p71/2>
=diag (d% — Py 7d§( — p) VT — VTiTp—l/le

480 + O, (p*1/2)
AL/2
— Op (piﬂ) —
=diag (d; — p,....d5 —p) VT = V7"
AL/2
— O, (le/z) —
+0p (p_l/Q)
\1/2 \1/2
: 1 K
_dla’g ()‘17 7)‘K) +dlag{op <p1/2> ’ » Up (pl/2

)

= (L p 28 L+t (Lap V28 Lt 27p 28, (L4 p /281 40, (np™
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Therefore,
(ZTE)_l yr (E + p_l/le)T L=1Ix+0, {(AKp)*l/Q} .
(iif) (ETZ) T grpueEt (Z n p*1/2£1>

. K
M1 V25 ES S dpuguf
-1 e ) k=1
(LTL) 2128 (L n p*l/Zel) -
. K
Mg D V2ERES S dpugvf
k=1
The largest row (in magnitude) in the above matrix will obviously be the K row, so we need
only focus on that row. By the expression for Zx given in (S15) and Lemmas S5 and S6,

a dd did
NplE K& = g u€a€rur + Z ulE2REHuy
K K

/\}/2 nl/2 n 3/2 N nl/2
)\?]’(/2 pt/? AKD AKD
where

didi n  n'/2d _1/2
525 U =0, | — + ——— | =0 (n /
/\% 2 P <p>\K )3(/21’ p ( )

+0p

dldK ul dln n d1 n —1/2
T &y REsuy = O + =0 (n / )
Nap 2dtcouy = Up )‘Kpp)\i(ﬂ )\}(/zpl/z PAZ P

A% p1/2 n \*?* nl/?2 n A/ A2 _1)2
+ =3 + 975 5— =0 (n )
)\%2 pl/? AKD AKD Akp p )\K/ pl/2 AiD

Second,

dr vz n —1/2
gk = 0n (1) <o (n71)
R T /- -
Therefore, (LTL) ZTp—1/25; (L +P_1/251) =0, (n_1/2).
We have shown that (L"L) " L™L = I + o, (n=1/2).
(c) Recall that Y1 = Y X7T (XX)_1 and Y2 = YA where A" X = 0(,,_q)xq. Since the residuals & ~
MNpn (0,2,1,), &1 =EXT (XX)f1 and €5 = £Qx are independent And since we use Y3

to estimate L Land € 1 are independent. (We abuse notation here. & 1 and &, are different. & 118
defined using the second set of data in part 1). Therefore,

(L*L)" 17 &, ~ p~Y2diag (/\ 12 ..,)\;(1/2) MNKM{O diag (/\ 2 1/2) ™SI
x diag ()\ 12 ..,A;“) , (n—1XXT)’1}

=0, ()\;{1/21771/2) =op (nfl/Q) )

The above work shows that

(L'L) ' L™B+ (L"L) ' L"LO + (L"L) L™ €, = Q + o, <n71/2) _
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~ ~ -1 ~
Our last task is to understand {)\k ()\k — ;3) } ()‘k>‘1;1) for k € [K].

- ~ —1
Ak A Ak — P _ 1111
e & e IO (SO SRR E R |
k=P Ak k Lemmas S1 and S2

-1

= {1+op (nil/z =1+o0, (n*1/2).
Lemma 1
si0  Therefore,
A Y
A1—p Xl
ar — {(LTL)‘1 L™B+ (L") ' LTLQ"
A M
Ak —p AK

(LD LT 51}

=Q"+ o0, (nil/z) .

S2.7.  Proof of the remaining theory from Sections 3.2, 3.3 and 3.4

5 In this section, we prove Theorem 2, Proposition 2 and Corollary 1 (in that order). We need not prove
Theorem 1, since Theorem 1 is a special case of Theorem 2.

5

Proof of Theorem 2. Define e, 1 to be the g™ row of £1. Then
By =By =9ty =) +ega+ (2-0Q)

B 5, =0 (1, 1915 1

{y

s20 Where @?LS is the ordinary least squares estimate for £, assuming C' was known. By the proof of Lemma
2, /2| QIOYS — Q|2 = 0,(1). Equation (21) and its equivalent in the statement of Theorem 2 follow

because n'/2||Q — Q|| = 0,(1). Equation (22) and its equivalent in the statement of Theorem 2 then
follows because 6, = o4 4 0p,(1) and

w20t (B0 - 8,) ~ Na {0, (n ' X7X) T 007}

525 Proof of Proposition 2. Define
r :diag{(ﬂl */3) /5\1,-~-7 (5\K *[’) /S‘K}
F={M/(Ai+p),.. . Ax/ (Ax +p)}
By Lemmas 1 and 2,

f‘:F—FoP (n71/2> .
s0  And by Lemma S3,

Gt — Yy = | — Tl < 8~ 2 + 0y (nY2) = 0, (n12)

Proof of Corollary 1. Define Q'K = Q) diag {)\1 A +p) " Ak Ak + p)_l} and let wy, be

the kth element of € R!*¥_ Using Proposition 2 and the definition of B;hr”nk from the statement of
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Corollary 1,

5Zhwnk — B, =Qehrunk (ég - fq) + e1, + pQldiag {(/\1 +0)7 o (ke + p)_l}ég +o0p (n—l/Z) )
(S18)

where ey, is the gth row of &1.By Lemma 2,
n1/2 {Qshrunk <£g _ tfg) + 619} EZ + op(l)’

where 0, 'Z ~ N {O, (n’1|\X||§)71 + HQShr“nkH%}. Define

~ - -1 Ashrun 1/2
s9= g { (W IXIZ) T+ Qg3

If Ai'n'/2 — 0, then clearly n'/2s (Bzhrunk - ﬂg) ZW + 0p(1), where W ~ N(0,1). Next, we can
write

K
J2gl = 55t nt/2 (Biheos = By )| = 5,105 (1) 4+ o2 Y ol (0 4+ )|

k=1
K
> 8;1 {Pn1/2|Zwk€gk (p+ M) — |Op(1)} (S19)
k=1
where s;l > ¢+ op(1) for some constant ¢ > 0. If A}lnl/ 2 — o0, then by Item (ii) in the statement of

Corollary 1, pr (|zg| > q1_a/2) — 1 forany q;_,/2 > 0 because

K
nl/z\Zwkﬁgk (p+2) =02 (p+ M) tex nt2Ate = oc.
k=1

Next, assume \'n'/27% — oo for some small constant cg > 0. Then

K
nl/Q\Zwkﬁgk (p+ )\k)_1| >n'2 (p+ Ag) exn (nl/Q_CG/\I_(le)
k=1

where for ® the cumulative distribution function for the standard normal and |z|, large enough,
2
log {2 (~|24])} < —22/2 < —an®® (027X ) {1+ 0,(1)}

for some constant ¢ > 0. If n~"p — 0 for some r > 0 as n, p — 0o, then exp (—cn?¢) p — 0 as n,p —
o0o. Therefore, for any « € (0, 1),

pr{lzgl > q1-p-1ay/2} = Pr{2p® (—|24]) < a} =1

asn,p — oo.

Lastly, suppose A'n'/2 > ¢g > 0. By (S19), for any § > 0, there exists an M large enough such that
if /\;(lnl/2 > M, pr (|zg| > ql,a/g) > 1—¢ for all n large enough. Therefore, it suffices to assume
)\I_(lnl/ 2 is bounded from above by a constant. By (S18), this implies

— Ashrun D
nl/zsg ' (5;1 k- Bg) =W + cnp +0p(1)

where W ~ N(0, 1), ¢, is non-random and

n,p

- - -1 run —1/2 . _ B
= oy { T IXIE) T et gl P diag { O +0) 7 Qi) 2 e
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for all n, p large enough, where ¢ > 0 is a constant not dependent on n or p. Since
pr (W + cnpl 2 qizas2) Zpr (IW +¢l 2 gi_a2) > a
for all n, p large enough, this proves the claim. g

S2.8. CATE-RR and dSVA inflate test statistics

We now state and prove results similar to Proposition 2 and Corollary 1, except for the estimators used
in dSVA (Lee et al., 2017) and CATE-RR (Wang et al., 2017).

PROPOSITION S3 (ESTIMATE FOR €2 USED IN dSVA). Suppose the assumptions of Proposition 2
hold but we estimate ) as

R N -1
QA —vrPLL (DTPEL)
Then if the smallest eigenvalue of np_lLTPltL is greater than 6\ where § > 0 is a constant,
R —1
|Q8VA — @ (L"PEL) (LTPEL+pn 7l ) o = 0p (n71/2)

Proof. Define V = (0 --- 1) € RE*K and Z = (3 --- 2x) € ROTITFIXK " where 0y, ..., 0
and 21, ..., Zx are defined in (S14) and (S15) in the statement of Lemma S2. By Lemmas S1 and S2,

L= n=Y2Y, (C'V + QZ) =n V2LV + n_l/lev + n—l/Qézz

where, C = n=1/2C5, Q = Q¢,. £1 = £QxC and &5 = £ Qx Q. Note that £, and &, are independent
by Craig’s Theorem. Therefore,

n(Axp) " L™PLL =n(Akp) " VILTPELV +n'/2 (\xp) " VILTPEEWV
4 {nl/g ()\Kp)% VTLTleZ_,glV}T n n1/2 ()\Kp)fl VTLTPlJ;g‘QZA
+ {02 (kp) ™! VTLTP¢52Z}T + (k) L VIE PEE T
(Axp) " Z7E, PEEZ + (Agp) ' ZTELPEEWV
{Cwn)™! ZTEQPltélV}T .
By the Lemmas S1 and S2,
n(Axp) ' VIL'PELV = m (Agp) ' LPEL + o (n_1/2) .
Next,

~ ~ A ~ T ~ A
w2 (p) T VTLTPEEW = Ouep) T2V {02 (ep) TP LY PEEW = 0y { (ien) ™2}
= 0p (n_l/Q)
~ ~ A ~ T ~ A
2 (p) T VTLTPEEZ = (uen) 2T {02 )P LY PEERZ = 0y {n k) '}

=0p (n_l/z) .

(/\Kp)_l ZATSEPﬁg?ZA =0p (”p_l)‘f_(2) = 0p (n_1/2>

(Arep) " ZATE;PﬁpSlV _ )\I—(lpfl/QZATg';:Pf; (p71/251) V-0, (np—lAI—{?)/Q) o, (n*1/2) '
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Lastly,

()\Kp)_l VTE’IprélV = )\I_(lp_l tr (EPllp) I + op (n_l/Q) = )\I_(lpIK +op (n_1/2> ) 595
An identical calculation shows that
n(Akp) ' L*PLL =n(Axp) ' L*PLL + o, (n—1/2) .
Lastly, for £, = € X (XTX)_l,
A =1
(Ap) 2 nl2ET PLL (LTPllpL) -0, {p*1/2A;(1} = 0p (,ﬁ/?) .

This completes the proof. O 600

PROPOSITION S4 (ESTIMATE FOR ) USED IN CATE-RR). Suppose the assumptions of Proposition
2 hold with d = 1 but we estimate <) as

Qctte — argmin ¥ (ylg — agg)

(XGRIXK
where for some constant ¢ > 0,
2/2 if || <
v (:)3) . / 9 lflx| = ¢ . (820) o5
cle| —c*/2 if|x] > ¢

Note that VU is Huber’s loss. Suppose further that pn=" — 0 for some r > 0. Then if A\ — o0, the results
of Proposition 2 hold. If Ay = O(1), then there exists a constant € > 0 such that

lim pr (||§A2Cate — Q2 > e||Q||2) =1.

n,p— 00

Proof. Let d/dz¥(z) = W(z). Since U is a convex function, 2°#t¢ solves
p . A A N ~A A ™\ T « A
0= (4, — £ Q) O = (vi - Lo AL o0
g=1
where A € RP*? isa diagonal matrix with

i1 if |y, — Qeatef | < ¢ (g=1 )
99 — | _Qcateé |71 if _Qcateé g=5--P)
Y1, ol if [y, gl >c

We start by assuming Ax — oo. When this is true, it suffices to show that

max|y;, — QShrunkég| = o0p(1).
g€lp]

We see that 615
y1, — Qshrunkég — Qshrunk (gq _ lfg) + (Q _ Qshrunk) Eg + e1,
where

_ —-1/2 —
ggﬁlelgl Op{n log(p)} op(1)

and

max| (Q - Qshrunk) ty] = 0p(1)

g€(p]
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because the entries of L are uniformly bounded and || — Q3""%||y = o,(1). To complete the proof, we
need only show that

L — Lllos = 0p(1).
By the proof of Proposition S3,
L-L=L (IK - f/) +n V2E WV 40T 28,2,

since |17 = Vil = op(1), I (Ixc = V) lloo = 0p(1). Next, [n™1/2€1 [l = O, {n" /2 log(p)} =

0p(1). For the last term, define the random variable Z, = 0;25595 2,- Since this is a sub-exponential
random variable with parameters {4(n — d — K), 4},

pr{Z, > (n—d—K)+t/n} < exp (—bt?)

for some constant b > 0, provided t = o (n!/2). If we let t =/ {log(p)}*/? for some constant b’ > b=,
then

pr {maxZg >(n—d-K) —&—t\/ﬁ} <1-{1—exp(-bt*)}"

g€(p]

where

plog {1 —exp (—bt*)} = —exp {log(p) (1 — bb')} {1+ o(1)} = o(1).
Therefore, for each k € [K],

i _ o 1/2
max|n*1/28292k\ < Op {n1/2 (Akp) 1/2} max <n7152g829> = op(1)

g€(p] g€(p]

which completes the proof when Ax — oo.
When \; = O(1), theresults || L — L|, ||€1]|cc = 0p(1) still hold. We therefore need only understand

how (Q — QShm“k) ¢, behaves. By assumption, there exists a constant m > 0 that does not depend on p
such that

max|[l,|ls < m.
|

Define 6; = ¢/(2m), where ¢ was defined in (S20). If ||2||2 < 61, then because

Qehrk — Qdiag M/ (A1 +0), - A/ (e + )+ 0p (n7172))
we get that

Q — Qe = Qdiag {p/ (M +p) -+, p/ (s + )} +0p (n71/2).

If ||2||2 > 61, suppose we initialize the optimization problem with a; € R**¥ such that || — a2 <
01. Then the next iteration will be

ay =Y{L (ﬁTi)fl = Qdiag {\/ (1 +p),++ Ak/ (i +p)} +0p (n7172)
with probability tending to 1, where
Q —as=Qdiag{p/ M +p), - ,p/ Ax +p)}+o0p (n‘1/2> .
Therefore,

192 = asllz = [20lap/ 1+ p) {1+ 05 (n772) } = 62 + 0 (n7172)
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for some constant o > 0 not dependent n or p, since \; = O(1) by assumption. Note that we may assume
01 > 09. Therefore,

124 = Qo > 62 + 0p (1)
which completes the proof. (|

Remark 3. The above proof shows that the behavior of Huber’s loss function is very dependent on
the constant ¢ used in (S20) when A; = O(1), meaning we cannot predict its behavior. This is an addi-
tional reason why this loss function should not be used to estimate {2 when the data are only moderately
informative for C.

COROLLARY S1 (THE RESULTS OF COROLLARY 1 HOLD USING DSVA AND CATE-RR). Suppose
the assumptions of Proposition 2 hold with d = 1 and for some fixed g € [p), define

AdSVA AdASVA )
B — QISVAj

=Y,
Bgate =y, — Qcateég.

In addition, suppose K = 1 and

(1) n~"p — 0 for some r > 0 asn — oo.
(ii) np_lLTPf;L > 0\ for some constant § > 0
(iii) [Q¢y| > € for some constant e > 0.

Then the results of Corollary 1 hold for the z-score
B B L -1/2
Z;lSVA —q, 1 (||XH22 +n 1||QdSVA||§) ﬁ;iSVA.
If A1 — o0, then the results of Corollary 1 hold for the z-score

R -1/2
Z;ate _ O_g—l (HX||2_2 +n_1HQCMeHS) 6Sate.

Proof. The proof is identical to the proof of Corollary 1 and is omitted. (]

Remark 4. We require A\; — oo to prove Proposition S1 for z-scores returned by CATE-RR because
the behavior of Q¢ depends heavily on the constant ¢ chosen in (S20) when A; = O(1).

S2.9. A framework for when C' is treated as a random variable and the proof of Theorem 3

Next, we provide a framework to extend all of our theoretical results to the case when C is treated
as a random variable. We then prove Theorem 3 at the end of this section. First, we prove a proposition
regarding the identifiability of factor models when C' is random.

PROPOSITION S5. SupposeY = BX™ + LC™ + £ where B € RP*? and L € RP*X are fixed effects,
X € R4 js observed and

(1) X has full column rank.
(i) C € R™¥ issuchthat E (C') = X A for some non-random A € R¥*¥ and var {Vec (C’)} =U®
1,, where U > Q.
(iii) £ € RP*™ is independent of C and var {vec (€)} = I,, ® ¥, where ¥ = diag (01, ...,02) = 0.
(iv) If any row is removed from L, there exists two sub-matrices with rank K.

Then LY L™ and Y. are identifiable.

Proof. Define Cy = Q%C and Y, = Y Qx, where the columns of Qx € R™*("~%) form an orthonor-
mal basis for the null space of X™. Then E (C2) = 0, var {vec (C) } = ¥ ® I,,_q and var {vec (Y3)} =
I, 4g® (Z + E‘i’I_,T). The identifiability of LU L™ and X then follows from Theorem 5.1 of (Anderson
& Rubin, 1956). O
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COROLLARY S2. Let ¢ > 1 be a constant. Suppose that in addition to the assumptions in Proposition
S5, the following hold

(i) p is a non-decreasing function of n.
(i) Ly, WLy <cforallg € [p]. -
(iii) There are K non-zero eigenvalues of LVL™ 7y, ..., vk such that c™* < v, < -+ < yg < cn.

(iv) Forallr € [d], p~* i I(Bg #0) =0 (n"'yk).
g=1

Then B is identifiable for all n. > ¢/, where ¢’ > 0 is a constant.

Proof. Define Y; = Y X (XTX) ™', where

T

E(Vi) = B+LA" = B+ (LU'2) (40-1/?)

The identical method used to prove B was identifiable in Proposition 1 can then be used to show B is
identifiable here. 0

Remark 5. If Ttems (ii) and (iii) from the statement of Corollary S2 hold for some L € RP*K and
U~ 0, then Item (iv) from the statement of Proposition S5 holds for all n, p suitably large. Therefore,
another way to express Item (ii) from the statement of Theorem 3 is to first assume Item (iv) from the
statement of Proposition S5 holds to identify 3 and LL™ (and therefore A1, ..., Ak ), and then assume
L™ L is orthogonal with decreasing elements, since this will not affect the isotropic distribution assumption
on C' (or any uniform bound on the fourth moments of its entries).

Remark 6. We do not need Corollary S2 to prove Theorem 3. We state it to show that our theoretical
results from Sections 3.2, 3.3 and 3.4 can be extended to the case when C is treated as a random variable.

Next, we state and prove a technical lemma to be used in the proof of Theorem 3. This lemma is also
important because it shows that we can generalize Assumption 2 to the case when C' is a random variable.

LEMMA S4. Let a > 1 be a constant not dependent on n or p, suppose Y = LC™ + £ where L €
RPXE C € R™K and & € RP*™ and assume Items (ii), (iii) and (iv) from the statement of Proposition S5
hold. Define 1, . . . ,vx to be the eigenvalues of np~*W'/2 L™ LU/2 with eigenvectors uy, . .., ux € RE
and assume the following hold

i) €~ MNpyn (0,%,1I,) where O'g € [a*17a] forall g € [p).
(i) [n71CTC — U]y = Op (n=1/2).
(iii) The magnitude of the entries of L are uniformly bounded by a.
(iv) a ' <yx < - <y <anand (v, — 'yk+1)'yk_1 >at(k=1,...,K) where yi 1 is defined

to be 0.

V) |utr (npil\ill/QiTEL\I/l/Q) Us| < @Ymax(rs)  (r=1...,K; s=1,...,K).

Then there exists an L € RP*E C € R"*K and constant ¢ > 1 such that the following hold:

1.
2.

LC™ = LC™ such that Ps = Po,n 'C3Cy = Ix and  sup  |Lgi| < ¢+ op(1).

g€lpl ke[K]
L™ L is a diagonal matrix with decreasing entries A1, . .., A such that Ay, is the kth largest eigen-
value of C (p_lLTL) Ck=1,...,K).
1— Xy ' =0, (n’1/2) and (A, — Met1) A\t > ¢+ 0, (n’1/2) (k=1,...,K) where
Ak +1 is defined to be 0.
1 {PAmax(re) ) L5 S Las = Op(1)  (r=1,....K; s=1,...,K).
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Proof. We first re-define L as LU'/2 and C' as C'¥ /2, meaning we now have [n='C"C — Ik ||> =
O, (n~1/2). Define R such that R = n~!C"C and
L=LRU
C=CR'U
where the columns of U € RX*X contain the right singular vectors of LR. Since n~'C" PxC = I,
this proves 1 and 2.

To then prove 3 and 4, we study the eigenvalues and eigenvectors of n}A)’lRTI:TETR. We can write
np~ 1 LT L (whose diagonal elements are the eigenvalues of np~ ' R* LT L™ R) as

np 'LTL = UTUUTRUdiag (v1, . ..,vx) UTRUUTU = U Fdiag (v, . .., vk ) FU

where U = (uy - -- ug) € RE*X and F = U™ RU where the diagonal entries of F' are 1 + O, (nfl/Q)
and the off-diagonal entries are Oy, (nil/ 2). We have also re-defined U/ as U™ U, which is still a random
unitary matrix. Define the matrix A = Fdiag (Y15 57K) F € REXK where

Ak = V& {1—|—Op (n_l/z)} —|—Z%Op (n_l) (k=1,...,K)
r#k

Ars = (7 +7s) Op (n_1/2) + Z ¥:O0p (n_l) (r=1,...,K;s=1,...,K;r # s).
k#r,s

Next, define A = ;1 A where

A :%{1+Op (n1/2>}+§c§:op (nY) (k=1,...,K)

Al = %;Z%Op (n72) + X %Op (nY) (r=2.. Kis=2,.. K #s).
k#r,s

We first decompose A1) into K rank (approximately) 1 matrices to study the behavior of the eigenvalues
and eigenvectors of A. We see that

0 —wy 0 -+ O
1 1 1
Agl) A§2)+w2"' Ag;—l-wK s AD A )
AD 4 0 0 2o 2K
AW — | 12 TR . _ L0 Ay 0 -0 |4,
A(l) "i‘WK 0 () ' (:1) : R
1K 0 A5y 0 -~ 0
=D,
=Ds
0 0 —wg
0 0--- O
+

w0 A(I?K

=Dy

where we define

A(l)A(l)
wp = —RECE o) (Wn—1/2) (k=2,...,K).
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Let
2 (1) 2 (1) 217!
o= [ fa ) o e

— AR fwo
755 = {1 I
11

/2

Then
Agll) + Op (nil)

AL 4w, -1
co 0 (n™)
11

A(l)'l)l = Dl'l}l + DQUl + -+ DKUl =
AN 4w _
O, (n_l)

—wsg + A22 Agll)

{AD AD v -

A+
(1) 412 T W2 +0, (n‘l)

_|_
=0
Op (”71)

O, (n_l)

O, (n_l)
+ -+ (1)

AiL +

_WK‘FAQ)K 11;1(1)WK
11
=0

760 and
61 =0T AWy, = Aﬁ) + 0, (n7h)
||A(1)’U1 — 511]1”2 = Op (nfl) .

T
Agllz +w[(}

By Weyl’s Theorem and Theorem 3.6 in Auffinger & Tang (2015) the largest eigenvalue of A() is ji; =
AN 4+ 0, (n=1) with corresponding eigenvector @y such that [|@; — v1]js = Oy (n~1). To find the next

765

A _ f1010] = Do+ -+ Dg + O, (n’l)

and we define

A =T {A<1> - ﬂlalal} ="pyt+. .+ Bprto, (’“)
V2 Y2 Y2 Y2n

0 —Zw 0 0 - y

) 2 2 2 -3

772(“] AéZ) Aé:i) Aél% 0 0 ”

—| o A% o 0 | +-4]| .
—’LIOJK 0 A(z)

o A2 o 0 72 o

eigenvalue and eigenvector of A, we first have to remove the principal direction from A(D:

0
.40, (’”)
. Y2n
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where

ﬂwk =0p (Wn_1/2> (k=2,...,K)
Y2 V2

2 _ V& — Vr — o
AP _%{14_01)(” 1/2>}+7§€’y20p(n Y (k=2,....K)

AP = mOp (n_l/Z) + Z 7—kOp (") (r=2,...,K;s=2,...,K;r#s).
72 k#r,s 72
A subsequent application of the above procedure will show that the largest eigenvalue of A is
ao A(2) o) n
fi2 20 T Up o
with eigenvalue w5 such that
N 71
_ —0. L
iz - valla = 0, ().
where v; is the second column of y;v5 ! Dy. When we subsequently remove the second principal direction,
we will remove 175 1D, and the O, {71 (vgn)fl} error term will become O, {71 (fygn)71 } Provided

"1 (ykn)_l < n~1/2, this procedure will give us estimates /i;, and 1, such that
Ne =it = {140, (n772) | (s21)
i — exll2 = Oy (n*l/z) (S22)

where here e;, € R¥ is the standard basis vector with 1 in the £ position and 0’s everywhere else.

We next handle the case when v (7xn) " = n~1/2. Let r < K be such that v; (ven) " < n~1/2 for
k <rand (Wkn)fl > n~1/2 for k > r. For these eigenvalues, we note that we can study the smallest
eigenvalues and their eigenvectors of A by studying the largest eigenvalues of A~!. If ), is an eigenvalue
of A with eigenvector 4y, then )\,;1 is an eigenvalue of A~! with the same eigenvector. We note that

A7l = F‘ldiag (fyfl, e ,’y;(l) Pl = Vfll}_ldiag (1,71751, . ,fyw;{l) Pl

where the diagonal entries of F~1are 1+ Op (nil/ 2) and the oft-diagonal entries are Oy, (n’l/ 2). If

k > 7, then y17, ' 2 n'/2, meaning i, < n'/2, since v; < n. Therefore,

-1
MV Vk <n1/2

"yt K

~

for all k>r. By what we have shown above, the K —k+4 1 eigenvalue of v, A~!' is
YV ! {1 + 0, (n’l/ 2)} with eigenvectors that satisfies (S22). Therefore, the ke eigenvalue of A is

Yk {1+ Oy (n=1/2)} with eigenvector that satisfies (S22). This proves item 3.
To prove item 4,

np 'LYSL = M {np 'U'L"SLU } M (S23)
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where M = FU is such that |M — Ix|s = O, (n=1/2) by the analysis above. To evaluate (S23), we
first see that

O (1) O(7) O (7k) O(m)0---0 O (72) 0
e O(v2) O(12) -+ O(x) 0 0---0 O(72)O(y2) -+ 0
np UTL'ELU = : A - SR +
O(;YK)O('YK) - 0 (k) 0 0 0 0 0
0 0 e O<7K>
0 0 - O(vk)
800 + .

O (k) O(vk) -+ O(vk)
Fix some r, s < K such that r < s. If 7, is the k™ column of M, then
mr (np_lUTETEEU) ms =0p (vln_l) +--4+0p (’yr,ln_l)
{0 () vy, 10, + O () 1y, 1y + -+ + O () 10y, 10,
+ O (Yrt1) My, Mg,y + o0+ O (Ys—1) r, 1,y + Op(7s)-

sos Next, note that for any k£ < s, we have

0= fnzdlag (’71, S 77K) ms = vlmklmsl + -+ ’Vkmkkmsk + -+ vsmksfnss —‘rOp (1) .
—— —
=05p(1) =0, (7sn—1/2)
Therefore,

Yetis, = Op {max (787171/2’ 1)}
for all £ < s. This also shows that
810 %mrrmsk = Op {max (’ysnilﬂ, 1)}

for k =1,2,...,r and completes the proof.

We now prove Theorem 3.

815 Proof of Theorem 3. To make notation consistent with the statement of Lemma S4, we first redefine C,
€, Z and L from the statement of Theorem 3 to be C, , = and L. Under the null hypothesis Q = 0, we
define

2 1,

Q=(X"X)'X"C=n"Y2(nTIXTX) 3,
o =n"1/? Z &}
i=1

&0 Define a = vec (14 x &), where 15 € R? is the vector of all ones, and ¢, (t), t € R4 10 be
the characteristic function of a. Under the null hypothesis, the gradient of ¢, (¢) is 0 and the Hessian is
—1gxq @ I, where 1454 € R%*4 ig the matrix of all ones. Lastly, let t = (¢7, ... 7tg)T, t; € RE If the
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magnitude of the entries of X are bounded above by x, we then have that

n xi[l]tl
IOg {‘Pveo(én) (t)} = Z IOg Pa n_1/2 :
i xi[d]td
=Y [~@n) " {(wia]) © I}t + o(n " 2?|1]]3)]

i=1
= 274" (Zx ®@Ig)t+o(1).
where ¥y = lim,,_ oo n~' X" X. Therefore,

(X"X) 20 {n 27 PEE} ? B M Ny (0, I, Ik

since [|[nT1ZTPE= — Ik |2 = op(1).
We next define €2 be the that from the statement and proof of Lemma S4, i.e.
12 ¢
Q=0{ng Pz}
where U is a unitary matrix ensuring that

1/2 1/2

L"L=U"{n"'E"°PE} " L"L{n 'E"P3E}

is diagonal with decreasing elements. Since the assumptions of Lemma S4 hold with U = [y, it is then
straightforward to adapt the proof of Lemma S3 to show that n'/2||Q — Q|| = o, (1) under the assump-
tions of Theorem 3. The result then follows by an application of Slutsky’s Theorem.

S2.10. Two technical lemmas used in the proof of Lemma S2

We now state and prove two technical lemmas are used in the proof of Lemma S2. For these two
lemmas, we assume Y is distributed according to (S5) (as it is in Lemmas S1 and S2).

LEMMA S5. LetU = (u1 e uK), V = (vl cee UK), D = diag (dy,...,dk) and N be as defined in
Lemmas S1 and S2 and suppose %LEZL;C = Op (Ag) for s < k, where s,k € [K|. Then
uISu = 0y (/A1)
Proof. We need to understand how
U™SU = D"'V'NTSNVD™!
behaves. First, let R; R} = L™L for i = 1,2, 3 and define v = p~* tr (X2). Then
O (A2 0 - 0
1/2 1/2)
. o) A'Q o) ()\2 ) 0
1/2 1/2 1/2
0 (%) 0 (A7) -+ 0 (M%)

and

NTSN = L"SL+p '2L"5E, +p_1/2<23$2i +vIlg +Op (p_l/Q)
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The next quantity we need to determine is V. D~
Op ()\;3/2]3—1) Op {(/\1>\2p)_1/2} S Op 4 (MAkp) 2

Op{(Alp)*l} O, <A2—3/2p71> - Op (>\2/\Kp)*1/2

VD l=D"4 =D7 te

o {un ™} op{0un '} 0y (A7)

and

R'VD ' =0,(1) + 0, {(AKp)‘l/Q} .
Then for M ~ M Ngxx (0, Ik, I), we have

pV2EISEVD ! ~ p  2MRIVD Y = O, (p_l/Q) .
Next
D-lyT (iTzi n VIK) VD !=p-t (iTZE n VIK) Dt (iTzi + WIK) D!
+ D! (ETEf/ + va) e+e’ (ETEf/ + va) e

where

¢"L™SLe = ¢"RyRfe = O, {()\Kp)fl}
and

b (ETEI: + 7IK) e=D"'RiRje+ Oy {(AKP)_W} =0p {(AKP)_W} .

The second equality holds because D' Ry = O,(1) and Rfe = O, {()\Kp)flﬂ}. Next,let A = L™%L
and B= D' (A+~Ik) D' Thenif s < k, Asy = O, (A\x) by assumption and

At + Y05k Ak 0l 1/2\ 1
BG = —— = 75§ . = )\ A /2
sk dydy, Op (dsdk) tddy OP( ko T )

where 05, = I(s = k). Therefore, for s < k (s, k € [K]),

[UTSU], = Op {0 A2 4 (ep) 77 = 0, (W/2A7172).

LEMMA S6. Let aj,a9 € RP be linearly independent unit vectors independent of Ey~
MNpy(n—r) (0,5, I, k) for K is a fixed constant. Recall from (S11) that R = p‘lé’;gg —pl_ i
where p = p~1 tr(X). Then

platEsREyay = Oy {(”P_l)z + np—3/2} :

Proof. Since K is a fixed constant not dependent on n or p, I will assume £ 9~ MNyyxn (0,%,1,,) for
notational convenience.
p_lafg’QRg;az = p_Qafg’gé;ggg;ag — pp_lafg’gg’;ag
We will focus our efforts on understanding p—2af52553285a2. Define A = (ay az), A=YAandQ €
RP*(P=2) gt ATSQ = 02 (p—2). Let Py = GG™ where G € RP*? and Pﬁ = QQ". Since P; + Pﬁ =
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I,,, we have
2 rg gTa a7 - 1\ &7
p a1€2525252a2 =p CL1(€252 (PA + PA ) 52520,2
= p_2apf(§2(§;PAggg;a2 + p_QGPngE;PI%EQE;GQ

Since a¥a; < cand ||G"EG||2 < ¢ for some constant ¢ > 0, ||é;ai||2 ~ |MNpx1 (0, Iy, alXa;) |2 =

Op (n'/2) for i=1,2 and ||E,Gs ~ [|MNpxs (0, I, GTSG)||2 = Oy (n'/2). Then by Cauchy-
Schwartz,
p2aTE2E, PiEaEqay = p 2 alE2 E9G G EREyay = O, {(np_l)z}
—— ——
1xn nx2
By Craig’s Theorem, £ Tai and £ TQ are independent, since a; X = 0. We then have
72@525;13;{323;@2 = p 2726, QQ €y az
Let B =X"2QQ™%'/2 and let HAH™ be its singular value decomposition. Note that max A < ¢
for some constant ¢ > 0 since QQ™ is just a projection matrix. Therefore, S;QQT(C/'Q ~ JTJ, where
J ~ MN,y,, (0, A, I,) and is independent of p~'/2, a; = @; € R™** where |||, = O, (n'/2p=1/2).
Define§ =p~'tr (A)=p+ 0 (p~!), v =ptr (A?) and b; = ||@;|5 *@;. Then
A R
— o a7 o o7 ~ ~ — . .
P 2aiE2E,QQTEEaz ~ ||an|2]|as 26T T T Ty = [|an |2z 207 oo b
PN I T

p IS pT T

by : : by = Zbl[i]bz[i]P_lJiTJi + Zbl [i]b2[qlp ™" I T,
p—lJlTJn p—ljgjn =1 i#q

Zm [i]ba[i]p~ L TF T = STy + > ba[ilbali]X.

X;=2JTJ—6 =1
=X
var(X) =Y by[i]*boi] var (X;) = 2yp~ " Y ba[i]*beli]* < 29p !
1=1 1=1
= > bililbolilp™ I = 86y + O, (p7Y2) = pbTba + Oy (p72). (S24)

Note that £ (Z by [i]ba [q]p‘lJiTJq> = 0, meaning
i#q

v D balilbalalp TF Ty | = EQ | balilbalglp I,

i#q i#q

Therefore,

Zbﬂi]bz[Q]P_lJiTJq _P_szbl Jb2[q]b1[r)ba[s] E{(J;" Jg) (J; )} -

i#q i#q 15
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‘We then need to go through various scenarios to evaluate the above expression.
890 1. i # r,sand g # r, s. Then,
E{(J]Jq) (J7 )} =0

2. 0=r.

(@) q#s

E{(JFJy) (JfJs)} =F {J;E(JZJZ.T | Jgs Js) JS} =F (J;AJS) =tr {AE (JSJ;)} =0
(®) g=s
EB{(J7Jq) (JF )} = E{JFE (LI} | Jg) Jg} = E (J{AJ,) = tr (A%) = py

3.1=s

895 (a) q 7é r

E{(J Jy) (J i)} =F {J;E(JiJiT | Jg» JIr) JT} =F (J;AJT) =
®) g=r

E{(JJ) (JgJi) } = pv
4. q = s,1 # r (we already have the case ¢ = s,7 = r above).
E{(J} ) (JJ,)} =0
5. ¢ = r,i # s (we already have the case ¢ = r,i = s above).

E{(JFJ) (JFI)} =0

Therefore,
P2 Y balilbalalba[rlbals) E{(IT Tg) (JF T} = " Y balil*ba(g)” +ap™ D bulilbalilbi [g]ba[d]
i#q r#s i#q i#q
900
> bafilPoalgl? <3 bili? Y balgl? =1
i#q =1 q=1
> bafilbs[ilb: [g]balg Zm [1]2i] Zbl [a]b2lg |Zb1 [a]b2lg]] < [1b1,ill2l|b2,~sll2 < 1
i#q qFi qFi
9 1/2
ﬁ\zbl [i]b2d] Zbl [q]baq]| < Z(Zbl[Q]b2[Q]) by [i]? [b2]l2 < (b1 ]l2]lb2fl2 = 1
q#i i=1 \ q#i

Therefore var (E by [i]ba [q]p‘lJiTJq> < 4yp~!, meaning
i#q

o a ) . ~ ~ _ 12
p2a18:8,E285 a5 = ||anll2la2l20b7b2 + a1 |2llaal|20p (p772) + Oy { ()"}
905 = pp_laTEQ‘E;;GQ +0p (np—3/2) +0p {(np_l)Q} '
Therefore,

N O (U
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