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S1. ADDITIONAL SIMULATIONS

We first include an empirical verification of the surprising results from Proposition 2 and Lemma 2 that
we can accurately estimate L, but the naive estimate for Ω in (12) is biased. The data were simulated as
follows: 10

d = K = 1, n = 100, p = 105

X ∼ Nn (0, In)

B = 0

Lg ∼
(
1− n−1

)
δ0 + n−1N1(0, 1) (g = 1, . . . , p)

X =
(

1T

n/2, 0
T

n/2

)T

15

C2 ∼ Nn−d (0, In−d)

C = X +QXC2

E ∼MNp×n (0, Ip, In) .

where QX ∈ Rn×(n−d) is a matrix whose columns form an orthonormal basis for the null sapce of X .
Therefore, Ω = 1 for every simulation. L and Σ were simulated so that λ1 ≈ 1 and ρ = 1. If (18) from 20

Lemma 2 was correct, then n1/2
(
L̂g − Lg

)
≈ N(0, 1) for each g ∈ [p]. If we let W = n1/2

(
L̂− L

)
∈

Rp, we validate Lemma 2 by partitioning the components of W by whether or not the corresponding
component of L was non-zero. If Lemma 2 were true, both histograms in Fig. S1 should look as if they
were sampled from a N(0, 1) random variable, which they clearly do.
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Fig. S1: W = n1/2
(
L̂− L

)
∈ Rp for one simulation for components of L that are non-zero (left) or 0

(right). The overlaid red curve is the density of a N(0, 1) random variable.

25

We next empirically verified (19) from Proposition 2 using 20 simulations. Figure S2 contains the results
of the 20 simulations, which clearly shows that n1/2‖Ω̂shrunk − Ωλ1(λ1 + ρ)−1‖2 ≈ 0.

Fig. S2: ∆ = n1/2
{

Ω̂shrunk − Ωλ1(λ1 + ρ)−1
}

for 20 simulations.

Lastly, Fig. S3 gives the simulation results from Section 4.1, with Bg ∼ 0.80δ0 + 0.20N
(
0, 0.42

)
.

The average power for the simulations on the left panel for C known, BC K̂ = 10, BC K̂ = 20 was30

23.3%, 23.3%, 22.1% and 23.0%, 23.0%, 21.9% for the simulations on the right panel.
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Fig. S3: Simulations withBg ∼ 0.80δ0 + 0.20N
(
0, 0.42

)
forA = A1 (left) andA = A2 (right). All other

parameters are the same as the simulations in Section 4.1.
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S2. PROOFS OF ALL PROPOSITIONS, LEMMAS, AND THEOREMS

S2.1. Proof of Proposition 1 and the identifiability of Ω
(
n−1CT2 C2

)−1
ΩT35

For the remainder of the Supplement, we define Lg∗ = `g for all g ∈ [p]. Let X be a matrix, vector
or scalar and let ‖X‖2 be the spectral norm, Euclidean norm or magnitude of X. We use the notation
that X = Op (an) if for some sequence an, ‖X‖2/an = Op (1). Similarly, X = op (an) if ‖X‖2/an =
op (1). Lastly, for any vector v ∈ Rm, we define vj to be the jth element of v for all j = 1, . . . ,m. If the
vector has a subscript r, then we define vrj to be the jth elements of vr ∈ Rm for all j = 1, . . . ,m.40

We first prove Proposition 1.

Proof of Proposition 1. Under Assumptions 1 and 2, we can find an L ∈ Rp×K , C ∈ Rn×K such that
for C2 = P⊥XC, E (Y2) = LCT

2 and

np−1LTL = diag (λ1, . . . , λK) , n−1CT

2C2 = IK (S1)

by taking the singular value decomposition of E (Y2). The columns of L and C2 are unique up to45

sign by the uniqueness of the singular value decomposition, since λk > λk+1 for all k = 1, . . . ,K
(where λK+1 = 0). That is, if L̃ and C̃ also satisfy (S1), then L̃ = LΠ and C̃2 = C2Π where Π =
diag (a1, . . . , aK) and ak ∈ {−1, 1} for all k ∈ [K].

Next, suppose Assumption 3(a) holds and let B(a), L(a), C(a) and B(b), L(b), C(b) be such that

L(a)
{
C

(a)
2

}T

= E (Y2) = L(b)
{
C

(b)
2

}T

and50

B(a) + L(a)
{

Ω(a)
}T

= E (Y1) = B(b) + L(b)
{

Ω(b)
}T

.

We can find invertible matrices R(a), R(b) ∈ RK×K such that L(a)R(a), C(a)
{
R(a)

}−T

and

L(b)R(b), C(b)
{
R(b)

}−T

satisfy (S1), where

L(i)
{

Ω(i)
}T

=
{
L(i)R(i)

}[
Ω(i)

{
R(i)

}−T
]T

(i = a, b).

Therefore, to prove the identifiability of B, it suffices to assume L(a), C(a) and L(b), C(b) satisfy55

(S1), meaning L(b) = L(a)Π and C(b)
2 = C

(a)
2 Π for some Π = diag (a1, . . . , aK) where ak ∈ {−1, 1}

for all k ∈ [K]. Define L = L(a) (for notational convenience), S =
{
g ∈ [p] : B

(a)
g∗ = B

(b)
g∗ = 0

}
and

LS ∈ R|S|×K to be the submatrix of L restricted to the rows g ∈ S. To prove that B(a) = B(b) and
C(b) = C(a)Π, it suffices to show that LT

SLS � 0, i.e. LS has full column rank.

n (pλK)
−1
LT

SLS = diag
(
λ1λ

−1
K , · · · , λK−1λ

−1
K , 1

)
− n (pλK)

−1
∑

g∈[p]\S

`g`
T

g60

where for any r, s ∈ [K],

|n (pλK)
−1

∑
g∈[p]\S

`gr`gs| ≤ n (pλK)
−1

∑
g∈[p]\S

|`gr||`gs|

≤ c22nλ−1
K

[
p−1

p∑
g=1

I
{
B

(a)
g∗ 6= 0

}
+ p−1

p∑
g=1

I
{
B

(b)
g∗ 6= 0

}]
= o

(
n−1/2

)
,

which completes the proof. �

We next state and prove a proposition regarding the identifiability of Ω
(
n−1CT

2C2

)−1
ΩT.65

PROPOSITION S1. Suppose Assumptions 1, 2 and 3(a) hold. Then Ω
(
n−1CT

2C2

)−1
ΩT is identifiable

for all n ≥ c4, where c4 is defined in the statement of Proposition 1.
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Proof. Under these assumptions, Proposition 1 proves that B is identifiable for all n ≥ c4, meaning
E(Y )−BXT = LCT is identifiable for all n ≥ c4. Suppose C(a), C(b) ∈ Rn×K and L(a), L(b) ∈ Rp×K
are such that 70

L(a)C
T

(a) = E(Y )−BXT = L(b)C
T

(b).

Under Assumptions 1 and 2, L(a) and L(b) have full column rank, meaning we may define

R = LT

(a)L(b)

{
LT

(b)L(b)

}−1

,

where C(b) = C(a)R. Since C(a) and C(b) have full column rank by Assumptions 1 and 2, R must be
invertible. Therefore, for Ω(i) = (XTX)

−1
XTC(i) (i = a, b), 75

Ω(b)

{
n−1CT

(b)P
⊥
XC(b)

}−1

ΩT

(b) = Ω(a)RR
−1
{
n−1CT

(a)P
⊥
XC(a)

}−1

R−TRTΩT

(a)

= Ω(a)

{
n−1CT

(a)P
⊥
XC(a)

}−1

ΩT

(a),

which completes the proof. �

S2.2. The behavior of the off-diagonal elements of np−1LTΣL

Letmk ∈ Rp be the kth left singular vector ofLCT
2 (k = 1, . . . ,K). In this section, we state and prove a 80

proposition regarding the generality of the condition that (λrλs)
1/2 |mT

rΣms| ≤ c8λmax(r,s) for all r, s ∈
[K], which is used in the statements of Theorems 2 and 3. To do so, we note that (λrλs)

1/2 |mT
rΣms| =

|np−1LT
∗rΣL∗s| for some L such that (L,C) ∈ Θ(0).

PROPOSITION S2. Let L̄ =
[
¯̀
1 · · · ¯̀

p

]T ∈ Rp×K and Σ = diag
(
σ2

1 , . . . , σ
2
p

)
where for each g ∈ [p],

¯̀
g ∼ F¯̀ 85

σ2
g ∼ Fσ2

where the distributions F¯̀ and Fσ2 have compact support. Suppose C ∈ Rn×K and X ∈ Rn×d are non-
random matrices and define R ∈ RK×K such that R2 = n−1CTP⊥XC. In addition, let

(a) γK ≤ · · · ≤ γ1 be the eigenvalues of np−1L̄TL̄

(b) λK ≤ · · · ≤ λ1 be the first K eigenvalues of P⊥XC
(
p−1L̄TL̄

)
CTP⊥X . 90

(c) L = L̄RU , where U ∈ RK×K is a unitary matrix such that np−1LTL = diag (λ1, . . . , λK).

Suppose the following assumptions hold:

(i) ‖n−1CTP⊥XC‖2, ‖
(
n−1CTP⊥XC

)−1‖2 ≤ c2 for some constant c ≥ 1.
(ii) For any ε > 0, there exists a δε > 0 such that pr (γKp/n ≥ δε) ≥ 1− ε for all n, p.

Then for any r, s ∈ [K], 95

n
{
pλmax(r,s)

}−1
LT

∗rΣL∗s = Op(1)

as n, p→∞.
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Proof. First, n (γKp)
−1

= Op(1) by Item (ii). Next, by the sampling mechanism used to draw L̄ and
Σ, L̄ and Σ are independent. Suppose r ≤ s and define `g = Lg∗ for all g ∈ [p]. First,

E
[
n
{
pλmax(r,s)

}−1
LT

∗rΣL∗s | L̄
]

= n
{
pλmax(r,s)

}−1
p∑
g=1

`gr`gsE
(
σ2
g | L̄

)
100

= E
(
σ2

1

)
n
{
pλmax(r,s)

}−1
p∑
g=1

`gr`gs = 0.

Next, ‖`g‖2 = ‖UTR ¯̀
g‖2 ≤ c‖¯̀g‖2, meaning ‖`g‖22, σ2

g ≤ a for all g ∈ [p] for some constant a > 0 not
dependent on n or p (since F¯̀ and Fσ2 have compact support). Let Ψ̄ = np−1L̄T L̄ and Ψ = np−1LTL.
Then

λ−1
K = ‖Ψ−1‖2 ≤ c2‖Ψ̄−1‖2 = c2γ−1

K105

and

γ−1
K = ‖Ψ̄−1‖2 ≤ c2‖Ψ−1‖2 = c2λ−1

K ,

which implies c−2γK ≤ λK ≤ c2γK . Therefore, n (pλK)
−1

= Op(1) and

var
[
n
{
pλmax(r,s)

}−1
LT

∗rΣL∗s | L̄
]

= n2 (pλs)
−2

p∑
g=1

`2gr`
2
gs var

(
σ2
g | L̄

)
= var

(
σ2

1

)
n2 (pλs)

−2
p∑
g=1

`2gr`
2
gs110

≤ a2n2 (pλs)
−2

p∑
g=1

`2gs = a2n (pλs)
−1

≤ a2n (pλK)
−1

= Op(1).

This proves the claim. �

Remark 1. Item (ii) is a weak assumption because pγK/n is the smallest eigenvalue of L̄TL̄. Further,
we assume pλK/n→∞ as n→∞ (where γK � λK) in Assumption 2.115

Remark 2. We can extend to Proposition S2 to include the case that C is random if we
assume C is independent of Σ and if for all ε > 0, there exists an M > 0 such that
pr
(
‖n−1CTP⊥XC‖2 ≤M

)
,pr
{
‖
(
n−1CTP⊥XC

)−1‖2 ≤M
}
≥ 1− ε. To prove the claim, we would

simply condition on L̄ and C instead of just L̄.

S2.3. A re-definition of C2 and Y2120

Let QX ∈ Rn×(n−d) be a matrix whose columns form an orthonormal basis for the null space of XT.
For the remainder of the Supplement, we re-define C2 to be

C2 = QT

XC ∈ R(n−d)×K . (S2)

Note that since P⊥X = QXQ
T

X , CT
2C2 = CTP⊥XC and the C2 defined in (3) is simply P⊥XC =

QX (QT

XC) = QXC2. This implies that the first n− d singular values and left singular vectors of Y P⊥X125

and Y QX are the same and if we let V1 ∈ Rn×(n−d) and V2 ∈ R(n−d)×(n−d) be the right singular vectors
of Y P⊥X and Y QX corresponding to the non-zero singular values, then V1 = QXV2. We therefore replace
C2 defined in (3) with that defined in (S2) in the statements of all remaining propositions, lemmas and
theorems, as well as the proofs of all propositions, lemmas and theorems stated in the main text.
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Using this definition of C2, we define Y1 and Y2 from to be 130

Y1 = B + LΩT + E1 (S3)
Y2 = Y QX = LCT

2 + E2 (S4)

where E1 ∼MNp×d

{
0,Σ, (XTX)

−1
}

and E2 ∼MNp×(n−d) (0,Σ, In−d) are independent. Note that
this Y1 is the same as the one defined in the main text. To get back to the Y2 defined in the main text,
we simply multiply the Y2 defined in (S4) on the right by QT

X . It is easy to see that because QX has 135

orthonormal columns and QXQT

X = P⊥X , Assumptions 1, 2 and 3 are equivalent with this redefinition of
C2 and Y2. Further, Propositions 1 and S1 hold with C2 = QT

XC.
We also define y2g and y1g to be the gth rows of Y1 and Y2 defined in (S3) and (S4), respectively.

If V ∈ R(n−d)×K are the first K right singular vectors of Y2 defined in (S4), then Ĉ2 = n1/2V , L̂ =

Y2Ĉ2

(
ĈT

2 Ĉ2

)−1

and σ̂2
g = (n− d−K)−1yT

g2P
⊥
Ĉ2
yg2 . Therefore, none of our estimators for L, Σ, Ω or 140

B change when we use this definition of C2 and Y2.
Since Σ, LCT

2 and λ1, . . . , λK are identifiable under Assumptions 1(a) and 1(b) and B,LΩT and
ΩT
(
n−1CT

2C2

)−1
Ω are identifiable under Assumptions 1, 2 and 3(a) (see Propositions 1 and S1), then

Lemma 1, (17) in Lemma 2 and Theorems 1 and 2 hold regardless of the parametrization of L and C.
Therefore, we will assume (L,C) ∈ Θ(0) when Assumptions 1 and 2 hold, and will assume (L,C) ∈ Θ(1) 145

when 1, 2 and 3(a) hold (again, where C2 = QT

XC). The first goal is to understand the asymptotic prop-
erties of L̂ and Ĉ2, which are essential to all of the proofs that follow.

S2.4. Understanding the behavior of Ĉ2 and L̂

We start by stating and proving Lemmas S1 and S2 and use their results to prove theoretical statements
made in the main text. For ease of notation, we assume for the statements and proofs in this subsection 150

(Section S2.4) that

Yp×n = Lp×KC
T

K×n + Ep×n, E ∼MNp×n (0,Σ, In) (S5)

where n−1CTC = IK . We also define

C̃ = n−1/2C (S6)

L̃ = n1/2p−1/2L. (S7)

We will lastly define a matrix Q ∈ Rn×n−K such that QTQ = In−K and QT C̃ = 0(n−K)×K . We use a 155

technique developed in Paul (2007) to define the rotated matrix Fn×n to be

F =

(
C̃T

QT

)
p−1Y TY

(
C̃ Q

)
=

(L̃+ p−1/2Ẽ1

)T (
L̃+ p−1/2Ẽ1

) (
L̃+ p−1/2Ẽ1

)T

p−1/2Ẽ2

p−1/2ẼT

2

(
L̃+ p−1/2Ẽ1

)
p−1ẼT

2 Ẽ2

 (S8)

where Ẽ1 = E C̃ and Ẽ2 = E Q are independent. Since
(
C̃ Q

)
is a unitary matrix, the eigenvalues of F

are also the eigenvalues of p−1Y TY . For the remainder of the Supplement, we assume 160(
V̂K×K

Ẑ(n−K)×K

)
are the first K eigenvectors of F , meaning C̃V̂ +QẐ are the first K eigenvectors of p−1Y TY . Further,
since Ẽ1 and Ẽ2 are independent, the upper left block of F is independent of Ẽ2. We exploit this by
first studying the eigen-structure of the upper left block in Lemma S1, and then using those results to
enumerate the asymptotic properties of the first K eigenvalues and eigenvectors of F in Lemma S2. In 165
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order to avoid confusing subscripts and superscripts, we define the scalar v[s] to be the sth component of
the vector v.

LEMMA S1. Let L̃ ∈ Rp×K , Ẽ1 ∼MNp×K (0,Σ, IK) and Ñ = L̃+ p−1/2Ẽ1. Assume L̃TL̃ =
diag (λ1, . . . , λK) where the λk’s are the same as those given in Assumption 2 and Σ = diag

(
σ2

1 , . . . , σ
2
p

)
follows Assumption 1(c). If d2

k = λk

(
ÑTÑ

)
and vk are the kth eigenvalue and eigenvector of ÑTÑ , then170

d2
kλ
−1
k = 1 + ρλ−1

k +Op

{
(λkp)

−1/2
}

(S9)

and

vk =
[
1 +Op

{
(λkp)

−1
}]

ek +Op

{
(λ1p)

−1/2
}
e1 + · · ·+Op

{
(λk−1p)

−1/2
}
ek−1 (S10)

+Op

{
(λkp)

−1/2
}
ek+1 + · · ·+Op

{
(λkp)

−1/2
}
eK

where ek, k = 1, . . . ,K, are the standard basis vectors in RK .175

Proof. First, ÑTÑ = L̃TL̃+ ρIK + p−1/2L̃TẼ1 + p−1/2ẼT

1 L̃+B where the entries of B are
Op

(
p−1/2

)
. Let RRT = L̃TΣL̃ where R is a lower triangular matrix. By Cauchy-Schwartz, the kth row

of R is RT

k = O
(
λ

1/2
k

)
. We also note that p−1/2L̃TẼ1 ∼ RM where the entries of M ∈ RK×K are

Op

(
p−1/2

)
. If we let the columns of M be Ms (s ∈ [K]), then [RM ]ks = RT

kMs = Op

{(
λkp
−1
)1/2}

(k, s ∈ [K]). Next, define the matrix A(1) ∈ RK×K to be180

A(1) = λ−1
1 ÑTÑ =


µ1 a12 · · · a1K

a21 µ2 · · · a2K

...
...

. . .
...

aK1 aK2 · · · µK


where

µk = (λk + ρ)λ−1
1 + 2λ−1

1 RT

kMk + λ−1
1 Bkk

aks = λ−1
1 RT

kMs + λ−1
1 RT

sMk + λ−1
1 Bsk = Op

(
λ

1/2
k λ−1

1 p−1/2
)

for k < s. Our goal is to break A(1) into K rank one pieces, each of which are approximately orthogonal.185

The procedure is enumerated in four steps:

1. Define A1 = A
(1)
1 , A2 =

(
0, A

(1)
22 , . . . , A

(1)
2K

)
, . . . , AK =

0, . . . , 0︸ ︷︷ ︸
K − 1 0’s

, A
(1)
KK

T

.

2. We wish to first modify A1 and A2 so that they are orthogonal. To do this, we will add ε2 to A2[1]
and remove ε2 from A1[2]. That is, we define A12 = A1 + ε2e2 and A22 = A2 − ε2e1 such that

0 = AT

12
A22

= AT

1A2 + ε2µ2 − ε2µ1 = a12µ2 + ε2µ2 − ε2µ1 +Op

(
λ

1/2
2 λ

−3/2
1 p−1

)
meaning ε2 = a12µ2 (µ1 − µ2)

−1
+Op

(
λ

1/2
2 λ

−3/2
1 p−1

)
= Op

(
λ2λ

−3/2
1 p−1/2

)
. We now have190

AT
12
A22

= 0.
3. Define A1k = A1k−1

+ εkek and Ak2 = Ak − εke1 inductively:

0 =
(
A1k−1

+ εkek
)T

(Ak − εke1) = AT

1k−1
Ak + εkµk − εkµ1 = a1kµk + εkµk − εkµ1

+Op

(
λ

1/2
k λ

−3/2
1 p−1

)
meaning εk = a1kµk (µ1 − µk)

−1
+Op

(
λ

1/2
k λ

−3/2
1 p−1

)
= Op

(
λkλ

−3/2
1 p−1/2

)
.195
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4. After we complete this process K − 1 times to get A1K , we now have for s < K

AT

1KAs2 = (A1 + ε2e2 + · · ·+ εKeK)
T

(As − εse1) = (A1 + ε2e2 + · · ·+ εses)
T

(As − εse1)

+ (εs+1es+1 + · · ·+ εKeK)
T

(As − εse1) = 0 + εs+1as,s+1 + · · · εKas,K

=Op

(
λs+1λ

−3/2
1 p−1/2λ1/2

s λ−1
1 p−1/2

)
= Op

{(
λsλ
−1
1

)3/2
(λ1p)

−1
}

and AT
1KA1K = µ2

1 +Op

{
(λ1p)

−1
}

, meaning ‖A1K‖2 = µ1 +Op

{
(λ1p)

−1
}

. 200

We now have

A(1) =

(
A1K →
↓ 0(K−1)×(K−1)

)
︸ ︷︷ ︸

B(1)

+

 0 ↑ 01×(K−2)

← A22
→

0(K−2)×1 ↓ 0(K−2)×(K−2)


︸ ︷︷ ︸

B(2)

+ · · ·+
(

0(K−1)×(K−1) ↑
← AK2

)
︸ ︷︷ ︸

B(K)

=


µ1 a12 + ε2 · · · a1K + εK

a12 + ε2 0 · · · 0
...

...
. . .

...
a1K + εK 0 · · · 0

+


0 −ε2 0 · · · 0
−ε2 µ2 a23 · · · a2K

...
...

... · · ·
...

0 a2K 0 · · · 0

+ · · ·+


0 · · · 0 −εK
... · · ·

...
...

0 · · · 0 0
−εK · · · 0 µK


Define u1K = ‖A1K‖−1

2 A1K =
{

1, (a12 + ε2)µ−1
1 , . . . , (a1K + εK)µ−1

1

}T

+Op

{
(λ1p)

−1
}

. Then

B(1) = µ1u1Ku
T
1K +Op

{
(λ1p)

−1
}

. Further, for s ∈ [K], 205

‖B(s)u1K‖2 = ‖



−εs (a1s + εs) ‖A1K‖−1
2

0
...
0

‖A1K‖−1
2 AT

s2A1K

‖A1K‖−1
2 as,s+1 (a1s + εs)

...
‖A1K‖−1

2 as,K (a1s + εs)


‖2 = Op

{
(λ1p)

−1
}

which means A(1)u1K = µ1u1K +Op

{
(λ1p)

−1
}

. We then define

δ = uT

1KA
(1)u1K = µ1 +Op

{
(λ1p)

−1
}

γ = ‖A(1)u1K − δu1K‖2 = Op

{
(λ1p)

−1
}
.

By Weyl’s Theorem, the eigenvalues ofA(1) are µk +Op

{
(λ1p)

−1/2
}

, so if ξ is the second largest eigen-

value ofA(1), ξ = µ2 +Op

{
(λ1p)

−1/2
}

, meaning f = δ − ξ = (λ1 − λ2)λ−1
1 +Op

{
(λ1p)

−1/2
}

. By 210

Theorem 3.6 in Auffinger & Tang (2015), we have

1. There exists an eigenvalue λγ of A(1) s.t. λγ ∈ [δ − γ, δ + γ], i.e. λγ = µ1 +Op

{
(λ1p)

−1
}

.
2. If λγ is the only eigenvalue in [δ − γ, δ + γ] and vγ is the eigenvalue corresponding to λγ and
f > γ,

‖vγ − uT

1Kvγu1K‖2 ≤ 2γ (f − γ)
−1

= Op

{
(λ1p)

−1
}
.
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Let Gλγ ,n,p =
{
λγ is the maximum eigenvalue of A(1)

}
. Then215

pr
(
|λ1

(
A(1)

)
− µ1| ≥M

)
≤ pr

(
|λγ − µ1| ≥M,Gλγ ,n,p

)
+ pr

(
Gcλγ ,n,p

)
≤ pr (|δ − µ1| ≥M) + pr

(
Gcλγ ,n,p

)
Since pr

(
Gcλγ ,n,p

)
→ 0 and |λγ − µ1| = Op

{
(λ1p)

−1
}

, d2
1λ
−1
1 = λ1

(
A(1)

)
= µ1 +

Op

{
(λ1p)

−1
}

. We can apply an identical procedure to show that ‖v1 − uT
1Kv1u1K‖2 =

Op

{
(λ1p)

−1
}

since on the event that λγ is the largest eigenvalue of A(1), λγ − ξ > c+ op(1),220

where c is a constant that does not depend on n or p (i.e. λγ is the only eigenvalue in [δ − γ, δ + γ]
and f > δ with probability tending to 1). Since v1 and u1K are unit vectors, we must have
uT

1Kv1 = ±1 +Op

{
(λ1p)

−2
}

. That is, we know v1 up to sign parity. �

We then have

A(2) = λ−1
2

(
λ1A

(1) − d2
1v1v

T

1

)
= λ1λ

−1
2 B(2) + · · ·+ λ1λ

−1
2 B(K) +Op

{
(λ2p)

−1
}
.

Since εkλ1λ
−1
2 = Op

{
λkλ

−1
2 (λ1p)

−1/2
}

, all off-diagonal entries of the above matrix at most225

Op

{
(λ2p)

−1/2
}

. We can then apply the exact same procedure as we did above to show that for all
k ∈ [K],

d2
kλ
−1
k = 1 + ρλ−1

k +Op

{
(λkp)

−1/2
}

and

vk =



Op

{
(λkp)

−1/2
}

...

1 +Op

{
(λkp)

−1
}

...

Op

{
(λkp)

−1/2
}
.


230

Lastly, for s < k,

0 = vT

s vk = vk[s]vs[s] +Op

{
(λkp)

−1
}

+ vs[k]vk[k] = vk[s] +Op

{
(λsp)

−1/2
}

meaning vk[s] = Op

{
(λsp)

−1/2
}

since λ1/2
s λ−1

k p−1/2 → 0 by assumption. This completes the proof.

We use Ẽ1, Ẽ2, Ñ , dk and vk defined in Lemma S1 in the remainder of the paper. We also define235

R = p−1ẼT

2 Ẽ2 − ρIn−K (S11)

and let V =
[
v1 · · · vK

]
, U =

[
u1 · · ·uK

]
be the first K right and left singular values of Ñ . That is

Ñ = L̃+ p−1/2Ẽ1 = UDV T (S12)

is the singular value decomposition of Ñ , whereDkk = dk. By Theorem 5.39 in Eldar & Kutyniok (2012),
‖R‖2 = Op

{(
np−1

)1/2}
under Assumptions 1(c) and 2(c). The next lemma uses what we have estab-240
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lished in Lemma S1 to prove convergence properties of the first K eigenvalues and eigenvectors of F (see
(S8)).

LEMMA S2. Suppose the probability model for Y is given by (S5) and that Assumptions 1 and 2 hold
for d = 0 (d is the number of columns in X). Then

λ̂k = λk (F ) = d2
k +Op

(
np−1

)
. (S13)

Define
[
v̂k
ẑk

]
, v̂k ∈ RK and ẑk ∈ Rn−K to be the kth eigenvector of F . Then 245

v̂k = vk + εk, ‖εk‖2 = Op

{
n (λkp)

−1
}
. (S14)

and

ẑk = dkλ
−1
k p−1/2ẼT

2uk + dkλ
−1
k p−1/2RẼT

2uk +Op

{
n3/2 (λkp)

−3/2
+ n1/2 (pλk)

−1
}

(S15)

where dk and vk are defined (S9) and (S10) and uk is the kth left singular vector of Y C̃. Further, if
np−1LT

∗kΣL∗s ≤ cλmax(k,s) for all k, s ∈ [K], then for any s < k,

εk[s] = op

(
λkλ

−1
s n−1/2

)
. (S16)

Proof. First, define

F (1) = F = λ1

[
Â1 H1

HT
1 J1

]
. 250

We immediately observe from the expression for F in (S8) that

λ̂1λ
−1
1 = d2

1λ
−1
1 +Op

{
n1/2 (λ1p)

−1/2
}

= (λ1 + ρ)λ−1
1 +Op

{
n1/2 (λ1p)

−1/2
}

by Weyl’s Theorem. The eigenvalue equations for F (1) are

λ̂1λ
−1
1 v̂1 = Â1v̂1 +H1ẑ1

λ̂1λ
−1
1 ẑ1 = HT

1 v̂1 + J1ẑ1 255

which then implies

ẑ1 =
(
λ̂1λ

−1
1 In−K − J1

)−1

HT

1 v̂1

λ̂1λ
−1
1 v̂1 = Â1v̂1 +H1

(
λ̂1λ

−1
1 In−K − J1

)−1

HT

1 v̂1

where

H1 = λ−1
1 p−1/2

(
L̃+ p−1/2Ẽ1

)T

Ẽ2 260

λ̂1λ
−1
1 In−K − J1 =

(
λ̂1 − ρ

)
λ−1

1 In−K − λ−1
1 R.

The latter is invertible with eigenvalues that are uniformly bounded away from 0 with high probability,
since

λ̂1λ
−1
1 = (λ1 + ρ)λ−1

1 +Op

{
n1/2 (λ1p)

−1/2
}

and ‖R‖2 = Op

(
n1/2p−1/2

)
. Therefore, 265

‖H1

(
λ̂1λ

−1
1 In−K − J1

)−1

HT

1 ‖2 = Op

{
n (λ1p)

−1
}
.
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Since Â1 = A(1) (see Lemma S1),

λ̂1λ
−1
1 = λ1

{
A(1)

}
+Op

{
n (λ1p)

−1
}

= d2
1λ
−1
1 +Op

{
n (λ1p)

−1
}

by Weyl’s Theorem. To determine the behavior of v̂1, we first notice that since ẑT
1 ẑ1 = Op

{
n (λ1p)

−1
}

and ‖v̂1‖22 + ‖ẑ1‖22 = 1, ‖v̂1‖2 = 1−Op

{
n (λ1p)

−1
}

. This shows that,

v̂1 = v1 +Op

{
n (λ1p)

−1
}
.

Recall from (S12) that UDV T = L̃+ p−1/2Ẽ1 is the singular value decomposition of L̃+ p−1/2Ẽ1. Us-270

ing these above relations and the fact that(
λ̂1 − ρ

)
λ−1

1 = 1 +Op

{
(λ1p)

−1/2
+ n (λ1p)

−1
}
,

we can get an expression for ẑ1:

ẑ1 =
(
λ̂1λ

−1
1 In−K − J1

)−1

HT

1 v̂1

= λ−1
1 p−1/2

(
λ̂1λ

−1
1 In−K − (λ1p)

−1 ẼT

2 Ẽ2

)−1

ẼT

2

(
L̃+ p−1/2Ẽ1

)
v̂1275

= λ−1
1 p−1/2

{(
λ̂1 − ρ

)
λ−1

1 In−K − λ−1
1 R

}−1

ẼT

2UDV
Tv1 +Op

{
n3/2 (λ1p)

−3/2
}

= d1λ
−1
1 p−1/2

(
In−K − λ−1

1 R
)−1 ẼT

2u1 +Op

{
n3/2 (λ1p)

−3/2
+ n1/2 (pλ1)

−1
}

= d1λ
−1
1 p−1/2ẼT

2u1 + d1λ
−2
1 p−1/2RẼT

2u1 +Op

{
n3/2 (λ1p)

−3/2
+ n1/2 (pλ1)

−1
}

since

‖
(
In−K − λ−1

1 R
)−1 −

(
In−K + λ−1

1 R
)
‖2 = O

(
‖λ−2

1 R2‖2
)

= Op

{
n
(
λ2

1p
)−1
}
.280

We can then find expressions for λ̂k, v̂k and ẑk by induction. First, assume the following three conditions
hold for all s ≤ k, where k < K.

λ̂s =d2
s +Op

(
np−1

)
(S17a)

v̂s =vs +Op

{
n (λsp)

−1
}

(S17b)

ẑs =dsλ
−1
s p−1/2ẼT

2us + dsλ
−2
s p−1/2RẼT

2us +Op

{
n3/2 (λsp)

−3/2
+ n1/2 (pλs)

−1
}

(S17c)285

λsH
T

s =p−1/2ẼT

2 Ñ − λ̂1ẑ1v̂
T

1 − · · · − λ̂s−1ẑs−1v̂
T

s−1

=Op

{
n1/2 (λ1p)

−1/2
}
vT

1 + · · ·+Op

{
n1/2 (λs−1p)

−1/2
}
vT

s−1

+ p−1/2ẼT

2

K∑
`=s

d`u`v
T

` +Op

{
λ
−1/2
s−1

(
np−1

)3/2
+ n1/2p−1

}
. (S17d)

If we can show that these hold for k + 1, this would prove (S13), (S14) and (S15). To show that the
above hold for k + 1, we first show that (S17d) holds, and then use the result to show that (S17a), (S17b)290

and then (S17c) hold. Due to the lengthy calculations, we break the proof into four steps for convenience.
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1.

λk+1H
T

k+1 =p−1/2ẼT

2 Ñ − λ̂1ẑ1v̂
T

1 − · · · − λ̂kẑkv̂T

k = λkHk − λ̂kẑkv̂T

k

=Op

{
n1/2 (λ1p)

−1/2
}
vT

1 + · · ·+Op

{
n1/2 (λk−1p)

−1/2
}
vT

k−1 + dkp
−1/2ẼT

2ukv
T

k

+ p−1/2ẼT

2

K∑
`=k+1

d`u`v
T

` +Op

{
λ
−1/2
k−1

(
np−1

)3/2
+ n1/2p−1

}
−
(
λ̂kλ

−1
k

)
dkp
−1/2ẼT

2ukv̂
T

k −
(
λ̂kλ

−1
k

)
Rdkλ

−1
k p−1/2ẼT

2ukv̂
T

k 295

=Op

{
n1/2 (λ1p)

−1/2
}
vT

1 + · · ·+Op

{
n1/2 (λkp)

−1/2
}
vT

k

+Op

{
λ
−1/2
k

(
np−1

)3/2
+ n1/2p−1

}
+ p−1/2ẼT

2

K∑
`=k+1

d`u`v
T

` .

where third equality follows because(
λ̂kλ

−1
k

)
= 1 + ρλ−1

k +Op

{
(λkp)

−1/2
+ n (pλk)

−1
}

dkp
−1/2ẼT

2ukv̂
T

k = dkp
−1/2ẼT

2ukv
T

k +Op

{
λ
−1/2
k

(
np−1

)3/2}
300(

λ̂kλ
−1
k

)
Rdkλ

−1
k p−1/2ẼT

2ukv̂
T

k = Op

(
np−1λ

−1/2
k

)
vT

k +Op

{
λ
−1/2
k

(
np−1

)3/2}
.

This shows (S17d) in the inductive hypothesis also holds for k + 1, and shows ‖Hk+1‖2 =

Op

{
n1/2 (λk+1p)

−1/2
}

.
2. We next see that

λk+1Âk+1 = ÑTÑ − λ̂1v̂1v̂
T

1 − · · · − λ̂kv̂kv̂T

k = ÑTÑ − d2
1v1v

T

1 − · · · − d2
kvkv

T

k +Op

(
np−1

)
305

= λk+1A
(k+1) +Op

(
np−1

)
3. Lastly,

λk+1Jk+1 = p−1ẼT

2 Ẽ2 − λ̂1ẑ1ẑ
T

1 − · · · − λ̂kẑkẑT

k = p−1ẼT

2 Ẽ2 +Op

(
np−1

)
.

By the above expressions for Âk+1, Hk+1 and Jk+1,(
λ̂k+1 − ρ

)
λ−1
k+1 =

(
d2
k+1 − ρ

)
λ−1
k+1 +Op

{
n1/2 (λk+1p)

−1/2
}

= 1 +Op

{
n1/2 (λk+1p)

−1/2
}

by Weyl’s Theorem. Therefore, 310

λ̂k+1λ
−1
k+1In−K − Jk+1 =

(
λ̂k+1 − ρ

)
λ−1
k+1In−K − λ

−1
k+1R+Op

{
n (λk+1p)

−1
}

is invertible with high probability. We can now compute the eigenvalue equations to get:
4. We can then put parts 1., 2. and 3. together to find expressions for the eigenvalue λ̂k+1 and compo-

nents of the eigenvector v̂k+1, ẑk+1.
(a)

λ̂k+1λ
−1
k+1v̂k+1 = Âk+1v̂k+1 +HT

k+1

(
λ̂k+1λ

−1
k+1In−K − Jk+1

)−1

Hk+1v̂k+1 315

= A(k+1)v̂k+1 +Op

{
n (λk+1p)

−1
}
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(b)

ẑk+1 =
(
λ̂k+1λ

−1
k+1In−K − Jk+1

)
Hk+1v̂k+1

=
[(
λ̂k+1 − ρ

)
λ−1
k+1In−K − λ

−1
k+1R+Op

{
n (λk+1p)

−1
}]−1

λ−1
k+1p

−1/2ẼT

2×

×
K∑

`=k+1

d`u`v
T

` v̂k+1 +Op

(
λ−1
k+1λ

−1/2
1 n1/2p−1/2

)
vT

1 v̂k+1 + · · ·

+Op

(
λ−1
k+1λ

−1/2
k n1/2p−1/2

)
vT

k v̂k+1 +Op

{
λ
−1/2
k λ−1

k+1

(
np−1

)3/2}
320

+Op

{
n1/2 (λk+1p)

−1
}

Therefore

‖ẑk+1‖2 = Op

{
n1/2 (λk+1p)

−1/2
}
,

meaning

‖v̂k+1‖2 = 1−Op

{
n (λk+1p)

−1
}
.325

We can then use this and what we showed in part a. to get that

v̂k+1 = vk+1 +Op

{
n (λk+1p)

−1
}

λ̂k+1 = d2
k+1 +Op

(
np−1

)
which means the 1. of the inductive hypothesis applies for k + 1. Using the fact that for any
s ≤ k330

vsv̂k+1 = Op

{
n (pλk+1)

−1
}

(
λ̂k+1 − ρ

)
λ−1
k+1 = 1 +Op

{
(λk+1p)

−1/2
+ n (λk+1p)

−1
}
,

we can then modify our expression for ẑk+1 to get
(c)

ẑk+1 =λ−1
k+1p

−1/2
{(
λ̂k+1 − ρ

)
λ−1
k+1In−K − λ

−1
k+1R

}−1

ẼT

2

K∑
`=k+1

d`u`v
T

` v̂k+1

+Op

{(
λ2
k+1λ

1/2
1

)−1 (
np−1

)3/2}
+ · · ·+Op

{(
λ2
k+1λ

1/2
k

)−1 (
np−1

)3/2}
335

+Op

{
n3/2 (pλk+1)

−3/2
+ n1/2 (λk+1p)

−1
}

=λ−1
k+1p

−1/2ẼT

2

K∑
`=k+1

d`u`v
T

` v̂k+1 + λ−2
k+1p

−1/2RẼT

2

K∑
`=k+1

d`u`v
T

` v̂k+1

+Op

{
n3/2 (pλk+1)

−3/2
+ n1/2 (λk+1p)

−1
}

=dk+1λ
−1
k+1p

−1/2ẼT

2uk+1 + dk+1λ
−2
k+1p

−1/2RẼT

2uk+1

+Op

{
n3/2 (pλk+1)

−3/2
+ n1/2 (λk+1p)

−1
}
.340

This completes the proof by induction and therefore proves (S13), (S14) and (S15). It remains to show
(S16).
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Since F is symmetric with distinct eigenvalues (with probability 1), for s < k (i.e. λs > λk),

0 =v̂T

s v̂k + ẑT

s ẑk = (vs + εs)
T

(vk + εk) + ẑT

s ẑk = 0 + εTs v̂k + vT

s εk + ẑT

s ẑk.

where 345

εTs v̂k = Op

{
n (pλs)

−1
}

= op

(
λkλ

−1
s n−1/2

)
vT

s εk = εk[s] +Op

{
(λsp)

−1/2
n (pλk)

−1
+ n

(
p2λsλk

)−1
}

= εk[s] + op

(
λkλ

−1
s n−1/2

)
Therefore, if we can show ẑT

s ẑk = op

(
λkλ

−1
s n−1/2

)
, we must have εk[s] = op

(
λkλ

−1
s n−1/2

)
. By our

above expression for ẑk,

ẑT

s ẑk =
[
dsλ
−1
s p−1/2ẼT

2us + dsλ
−2
s p−1/2RẼT

2us +Op

{
n3/2 (pλs)

−3/2
+ n1/2 (λsp)

−1
}]T
× 350

×
[
dkλ

−1
k p−1/2ẼT

2uk + dkλ
−2
k p−1/2RẼT

2uk +Op

{
n3/2 (pλk)

−3/2
+ n1/2 (λkp)

−1
}]

We see that

Op

{
n3/2 (pλk)

−3/2
+ n1/2 (λkp)

−1
}
‖ẑs‖2 = Op

{(
np−1

)2
λ
−3/2
k λ−1/2

s + n (pλk)
−1

(pλs)
−1/2

}
= op

(
λkλ

−1
s n−1/2

)
355

‖dsλ−2
s p−1/2RẼT

2us +Op

{
n3/2 (pλs)

−3/2
+ n1/2 (λsp)

−1
}
‖2‖ẑk‖2 = Op

{
n (pλs)

−1
}

= op

(
λkλ

−1
s n−1/2

)
Therefore,

ẑT

s ẑk =
(
dsλ
−1
s p−1/2ẼT

2us

)T (
dkλ

−1
k p−1/2ẼT

2uk + dkλ
−2
k p−1/2RẼT

2uk

)
+ op

(
λkλ

−1
s n−1/2

)
= dsdk (λsλkp)

−1
uT

s Ẽ2Ẽ
T

2uk + dsdk
(
λsλ

2
kp
)−1

uT

s Ẽ2RẼ
T

2uk + op

(
λkλ

−1
s n−1/2

)
. 360

We analyze the two terms in the above equation in 1. and 2. below.

1. Define Us,k =
(
us uk

)
, W =

(
UT

s,kΣUs,k

)1/2

and let M ∼MN(n−K)×2 (0, In−K , I2). Then

dsdk (λsλkp)
−1
uT

s Ẽ2Ẽ
T

2uk =
[
UT

s,kẼ2Ẽ
T

2Us,k

]
1,2

D
=
[
dsdkn (λsλkp)

−1
W
(
n−1MTM

)
W
]

1,2

= dsdkn (λsλkp)
−1
[
W 2 +Op

(
n−1/2

)]
1,2

= dsdkn (λsλkp)
−1
uT

sΣuk +Op

(
n1/2λ−1/2

s λ
−1/2
k p−1

)
365

= dsdkn (λsλkp)
−1
uT

sΣuk + op

(
λkλ

−1
s n−1/2

)
.

If Σ = σ2Ip, we would be done. However, if Σ were arbitrary then under no assumptions

uT
sΣuk = Op(1), meaning dsdkn (λsλkp)

−1
uT
sΣuk = Op

(
λ
−1/2
s λ

−1/2
k np−1

)
which is not nec-

essarily op

(
λkλ

−1
s n−1/2

)
. To see this, if λs = n and λk = 1 then Op

(
λ
−1/2
s λ

−1/2
k np−1

)
=

Op

(
n1/2p−1

)
, which is not op

(
λkλ

−1
s n−1/2

)
. We will use the assumption that np−1LT

∗kΣL∗s = 370

Op

{
λmax(k,s)

}
in the statement of the lemma to show that uT

sΣuk = Op

(
λ

1/2
k λ

−1/2
s

)
. If this

were the case, we would have dsdkn (λsλkp)
−1
uT
sΣuk = Op

{
n (λsp)

−1
}

= op

(
λkλ

−1
s n−1/2

)
.



16 CHRIS MCKENNAN AND DAN NICOLAE

Lemma S5 in Section S2.10 proves uT
sΣuk = Op

(
λ

1/2
k λ

−1/2
s

)
under the assumption that

np−1LT

∗kΣL∗s = Op

{
λmax(k,s)

}
.

2. Recall that R = p−1ẼT

2 Ẽ2 − ρIn−K . We will prove a lemma that shows375

p−1uT
s Ẽ2RẼ

T

2uk = Op

{(
np−1

)2
+ np−3/2

}
. Once we prove the lemma, we will have

dsdk
(
λsλ

2
kp
)−1

uT
s Ẽ2RẼ

T

2uk = op

(
λkλ

−1
s n−1/2

)
. We prove this in Lemma S6 in Section

S2.10.

This proves (S16) and completes the proof.

S2.5. Proof of Lemmas 1 and 2380

In this section, we prove Lemmas 1 and 2. To do so, we first prove a modified version of Lemma 2 in
which we modify (18) to be

n1/2
(

ˆ̀
g − `g

)
D
=σgW + op(1),

whereW ∼ NK (0, IK). We then prove Lemma 1. (18) from Lemma 2 then follows. For ease of notation,
we use the definition of Y from Section S2.4 defined in (S5).385

Proof of Lemma 2. We first note that (17) is a direct consequence of (S9) in Lemma S1 and (S13) in
Lemma S2. It therefore remains to prove (18), the asymptotic distribution of ˆ̀

g . Define yg and ẽi,g to be
the gth row of Y and Ẽ i (i = 1, 2).

n1/2 ˆ̀
g = ˆ̃CTyg =

(
V̂ TC̃T + ẐTQT

)
yg = n1/2V̂ T`g + V̂ Tẽg,1 + ẐTẽ2,g.

We then have

n1/2V̂ T`g = n1/2`g + n1/2Op

{
(pλK)

−1/2
+ n (pλK)

−1
}

390

V̂ Tẽg,1 ∼ N
(
0, σ2

gIK
)

+Op

{
(pλK)

−1/2
+ n (pλK)

−1
}

ẑT

k ẽ2,g = dkλ
−1
k p−1/2uk[g]ẽTg,2ẽg,2 + dkλ

−1
k p−1/2uk[−g]TẼ2[−g, ]ẽg,2 +Op

{
n3/2 (pλk)

−1
}

where

uk[g] = n1/2d−1
k p−1/2

(
`g + n−1/2ẽg,1

)T

vk = Op

(
n1/2λ

−1/2
k p−1/2

)
.

Therefore, dkλ−1
k p−1/2uk[g]ẽTg,2ẽg,2 = Op

{
n3/2 (pλk)

−1
}

. Lastly,395

uk[−g]TẼ2[−g, ]ẽg,2 ∼ N
(
0, uk[−g]TΣ[−g]uk[−g]ẽTg,2ẽg,2

)
= Op

(
n1/2

)
.

Therefore, ẐTẽ2,g = Op

{
n3/2 (pλK)

−1
+ n1/2 (pλK)

−1/2
}

, which means n1/2
(

ˆ̀
g − `g

)
D→

NK
(
0, σ2

gIK
)
.

We also note that this also shows that

n1/2‖ˆ̀OLS
g − ˆ̀

g‖2 = op(1)

where ˆ̀OLS
g = `g + n−1/2ẽg,1 is the ordinary least squares estimate for `g when C is known, since400

n1/2‖V̂ T`g − `g‖2, ‖V̂ Tẽg,1 − ẽg,1‖2 = op(1).
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Proof of Lemma 1. Once we estimate C by singular value decomposition, we let

σ̂2
g = (n−K)−1yT

2,gP
⊥
Ĉ
y2,g

for each site g = 1, . . . , p. We will prove (15) and (16) by showing the following: 405

(a) σ̂2
g = σ2

g +Op

{
n−1/2 + n1/2 (pλK)

−1/2
}

= σ2
g + op(1).

(b) ρ̂ = p−1
p∑
g=1

σ̂2
g = ρ+Op

{
(pλK)

−1/2
+ n (pλK)

−1
}

= ρ+ op

(
n−1/2

)
. �

We first define the estimated scaled covariates Ŵ = n−1/2Ĉ = C̃V̂ +QẐ ∈ Rn×K , where V̂ , Ẑ, C̃T

and QT are given in Lemmas S1 and S2. Also, define ε =
[
ε1 · · · εK

]
, where εk ∈ RK is as defined in

(S14) of Lemma S2. We then see that 410

(n−K) σ̂2
g = yT

g yg − yT

gPŴ yg = yT

g yg − yT

g ŴŴTyg = yT

g yg − yT

g

(
C̃V̂ +QẐ

)(
V̂ TC̃T + ẐTQT

)
yg

=
(
yT

g yg − yT

g C̃V̂ V̂
TC̃Tyg

)
︸ ︷︷ ︸

(1)

−2 yT

g C̃V̂ Ẑ
TQTyg︸ ︷︷ ︸

(2)

− yT

gQẐẐ
TQTyg︸ ︷︷ ︸

(3)

We define ẽg,1 and ẽg,2 to be the gth rows of Ẽ1 and Ẽ2, respectively, and derive the asymptotic properties
of (1), (2) and (3) to show (a) and (b) above.

(1)

yT

g yg − yT

g C̃V̂ V̂
TC̃Tyg = yT

g yg − yT

g C̃C̃
Tyg︸ ︷︷ ︸

(i)

+2 yT

g C̃δ
TC̃Tyg︸ ︷︷ ︸

(ii)

+ yT

g C̃δ
TδC̃Tyg︸ ︷︷ ︸
(iii)

415

where δ = V̂ − IK .
(a)

(n−K)−1
(
yT

g yg − yT

g C̃V̂ V̂
TC̃Tyg

)
= σ̂2

g,OLS +Op

{
(λkp)

−1/2
+ n (λkp)

−1
}

= σ2
g +Op

(
n−1/2

)
(b) (i)

(n−K)−1p−1

p∑
g=1

(
yT

g yg − yT

g C̃C̃
Tyg

)
= p−1

p∑
g=1

σ̂2
g,OLS = ρ+Op

{
(np)

−1/2
}

(ii)

|(np)−1
p∑
g=1

yT

g C̃δ
TC̃Tyg| ≤ ‖δ‖2p−1

p∑
g=1

(
`g + n−1/2ẽg,1

)T (
`g + n−1/2ẽg,1

)
= Op

{
(λkp)

−1/2
+ n (λkp)

−1
}

420

(iii)

(np)
−1

p∑
g=1

yT

g C̃δ
TδC̃Tyg = op

{
(λkp)

−1/2
+ n (λkp)

−1
}

(2)

(n−K)−1yT

gQẐẐ
TQTyg = (n−K)−1ẽTg,2ẐẐ

Tẽg,2 ≤ ‖Ẑ‖22(n−K)−1ẽTg,2ẽg,2

where ‖Ẑ‖22 = Op

{
n (λKp)

−1
}

and (n−K)−1ẽTg,2ẽg,2 = Op(1).
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(a)

(n−K)−1yT

gQẐẐ
TQTyg = Op

{
n (λKp)

−1
}
.

(b)

(n−K)−1p−1

p∑
g=1

yT

gQẐẐ
TQTyg ≤ ‖Ẑ‖22p−1

p∑
g=1

(n−K)−1ẽTg,2ẽg,2 = Op

{
n (λKp)

−1
}
.

(3)

n−1yT

g C̃V̂ Ẑ
TQTyg =

(
`g + n−1/2ẽg,1

)T

V̂ ẐTn−1/2ẽg,2

=
(
`g + n−1/2ẽg,1

)T

V ẐTn−1/2ẽg,2︸ ︷︷ ︸
(i)

+
(
`g + n−1/2ẽg,1

)T

εẐTn−1/2ẽg,2︸ ︷︷ ︸
(ii)

.

(a)

|
(
`g + n−1/2ẽg,1

)T

V̂ ẐTn−1/2ẽg,2| ≤ ‖
(
`g + n−1/2ẽg,1

)T

V̂ ‖2‖ẐT‖2‖n−1/2ẽg,2‖2425

= Op

{
n1/2 (pλK)

−1/2
}

(b) (i)

|p−1

p∑
g=1

(
`g + n−1/2ẽg,1

)T

εẐTn−1/2ẽg,2|

≤

{
p−1

p∑
g=1

(
`g + n−1/2ẽg,1

)T

εεT
(
`g + n−1/2ẽg,1

)}1/2

︸ ︷︷ ︸
Op{n(pλK)−1}

(
p−1

p∑
g=1

n−1ẽTg,2ẐẐ
Tẽg,2

)1/2

︸ ︷︷ ︸
Op{n1/2(pλK)−1/2}

= op

{
n (pλK)

−1
}

(ii)

(
`g + n−1/2ẽg,1

)T

V ẐTn−1/2ẽg,2 = p1/2n−1/2
(
d1u1[g] · · · dKuK [g]

) ẑ
T
1n
−1/2ẽg,2

...
ẑT

Kn
−1/2ẽg,2

430

= p1/2n−1/2d1u1[g]ẑT

1n
−1/2ẽg,2 + · · ·

+ p1/2n−1/2dKuK [g]ẑT

Kn
−1/2ẽg,2

and for any k ∈ [K],

p−1

p∑
g=1

p1/2n−1/2dkuk[g]ẑT

kn
−1/2ẽg,2 = (np)

−1/2
dkẑ

T

k

p∑
g=1

uk[g]n−1/2ẽg,2

= Op

(
p−1
)
.435

The second equality follows because

(np)
−1/2

dkẑ
T

k = Op

(
p−1
)

p∑
g=1

uk[g]n−1/2ẽg,2 ∼ n−1/2Nn (0, uT

kΣuKIn) = Op (1) .
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This completes the proof.

S2.6. Proof of (20) from Lemma 3 under the conditions of Theorem 2 440

In this section, and for the remainder of the Supplement, we return to assuming Y is distributed ac-
cording (1a). However, we continue to use Ẽ1, Ẽ2 ∈ Rp×(n−d−K), Ñ , vk, V , v̂k, V̂ , ẑk ∈ Rn−d−K ,
Ẑ ∈ R(n−d−K)×K and R ∈ R(n−d−K)×(n−d−K) defined in Lemmas S1 and S2 in Section S2.4 in what
follows.

We now prove Lemma S3, which will be useful in the proof of Theorems 1 and 2, and also acts as a 445

proof of Lemma 3.

LEMMA S3. Suppose the conditions of Theorem 2 hold and the diagonal elements of ĈT
2C2 are non-

negative. Then

n1/2‖Ω̂− Ω‖2 = op (1)

where Ω̂ is defined in (10). 450

Proof. Recall

Ω̂T = diag

{
λ̂1

(
λ̂1 − ρ̂

)−1

, . . . , λ̂K

(
λ̂K − ρ̂

)−1
}(

L̂TL̂
)−1

L̂TY1 =
λ̂1

λ̂1−ρ̂
. . .

λ̂K
λ̂K−ρ̂



λ1

λ̂1

. . .
λK
λ̂K


(LTL)

−1
L̂TB︸ ︷︷ ︸

(a)

+ (LTL)
−1
L̂TL︸ ︷︷ ︸

(b)

ΩT + (LTL)
−1
L̂T E1︸ ︷︷ ︸

(c)

 .

We will go through each one of these terms to prove ‖Ω̂ − Ω‖2 = op
(
n−1/2

)
.

(a) Ma = (LTL)
−1
L̂TB = n1/2p−1/2

(
L̃TL̃

)−1 ˆ̃LTB. Define n1/2p−1/2B = B̃ and let Ma[k, ] be 455

the kth row of Ma.

Ma[k, ] = λ−1
k v̂T

k

(
L̃+ p−1/2Ẽ1

)T

B̃ + λ−1
k p−1/2ẑT

k Ẽ
T

2 B̃ = λ−1
k v̂T

k L̃
TB̃ + op

(
n−1/2

)
where the second equality follows because BT

∗jB∗j = o
(
n−3/2pλK

)
for all j = 1, . . . , d by As-

sumption 3 and

λ−1
k p−1/2ẑT

k Ẽ
T

2 B̃ = Op

{
n (λkp)

−1 ‖n (λkp)
−1
BTB‖1/22

}
= op

(
n−1/2

)
460

v̂T

k (λkp)
−1/2 ẼT

1

(
λ
−1/2
k B̃

)
= Op

{
(λkp)

−1/2 ‖n (λkp)
−1
BTB‖1/22

}
= op

(
n−1/2

)
.

Lastly, the s, j element of of λ−1
k L̃TB̃ ∈ RK×d is such that

|n (λkp)
−1

p∑
g=1

`gsβgj | ≤ n (λkp)
−1 {c+ op(1)}

p∑
g=1

I (βgj 6= 0) = nλ−1
k {c+ op(1)} δj

= op

(
n−1/2

)
by Assumption 3, where δj = p−1

p∑
g=1

I (Bgj 6= 0) and c > 0 is a constant that does not depend on 465

n or p. The first inequality above is because the magnitude of the entries ofB and L are bounded by
a constant by Assumptions 2 and 3. Therefore, ‖λ−1

k v̂T

k L̃
TB̃‖2 = op

(
n−1/2

)
for all k = 1, . . . ,K.
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(b) (LTL)
−1
L̂TL =

(
L̃TL̃

)−1 ˆ̃LTL̃ =

λ
−1
1

. . .
λ−1
K

 ˆ̃LTL̃ where

ˆ̃LTL̃ = V̂ T

(
L̃+ p−1/2Ẽ1

)T

L̃+ ẐTp−1/2ẼT

2 L̃

= εT
(
L̃+ p−1/2Ẽ1

)T

L̃︸ ︷︷ ︸
(i)

+V T

(
L̃+ p−1/2Ẽ1

)T

L̃︸ ︷︷ ︸
(ii)

+ ẐTp−1/2ẼT

2

(
L̃+ p−1/2Ẽ1

)
︸ ︷︷ ︸

(iii)

+Op

(
np−1

)
470

(i) Suppose ε =
(
ε1 · · · εK

)
where εk ∈ RK was defined in Lemma S2 as v̂k − vk. Since ε =

Op

{
n (λKp)

−1
}

and p−1/2ẼT

1 L̃ = Op

(
λ

1/2
1 p−1/2

)
, then

‖
(
L̃TL̃

)−1

εTp−1/2ẼT

1 L̃‖2 = λ
−1/2
K Op

{
n

pλK

(
λ1

λKp

)1/2
}

= op

(
n−1/2

)
.

Next,

(
L̃TL̃

)−1

εTL̃TL̃ =

 ε1[1] λ2

λ1
ε1[2] · · · λKλ1

ε1[K]
...

. . . · · ·
...

λ1

λK
εK [1] λ2

λK
εK [2] · · · εK [K]

 =︸︷︷︸
Lemma S2

op

(
n−1/2

)
.

Therefore, εT
(
L̃+ p−1/2Ẽ1

)T

L̃ = op

(
n−1/2

)
.475

(ii)
(
L̃TL̃

)−1

V T

(
L̃+ p−1/2Ẽ1

)T

L̃

V T

(
L̃+ p−1/2Ẽ1

)T

L̃ =V T

(
L̃+ p−1/2Ẽ1

)T (
L̃+ p−1/2Ẽ1

)
− V TL̃Tp−1/2Ẽ1

− ρV T +Op

(
p−1/2

)
= diag

(
d2

1 − ρ, . . . , d2
K − ρ

)
V T − V TL̃Tp−1/2Ẽ1

+Op

(
p−1/2

)
480

= diag
(
d2

1 − ρ, . . . , d2
K − ρ

)
V T − V T


← Op

(
λ
1/2
1

p1/2

)
→

...
. . .

...

← Op

(
λ
1/2
K

p1/2

)
→


+Op

(
p−1/2

)
= diag (λ1, . . . , λK) + diag

{
Op

(
λ

1/2
1

p1/2

)
, . . . , Op

(
λ

1/2
K

p1/2

)}

−


← Op

(
λ
1/2
1

p1/2

)
→

...
. . .

...

← Op

(
λ
1/2
K

p1/2

)
→

+Op

(
p−1/2

)
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Therefore, 485(
L̃TL̃

)−1

V T

(
L̃+ p−1/2Ẽ1

)T

L̃ = IK +Op

{
(λKp)

−1/2
}
.

(iii)
(
L̃TL̃

)−1

ẐTp−1/2ẼT

2

(
L̃+ p−1/2Ẽ1

)

(
L̃TL̃

)−1

ẐTp−1/2ẼT

2

(
L̃+ p−1/2Ẽ1

)
=


λ−1

1 p−1/2ẑT
1 Ẽ2

K∑
k=1

dkukv
T

k

...

λ−1
K p−1/2ẑT

K Ẽ2

K∑
k=1

dkukv
T

k


The largest row (in magnitude) in the above matrix will obviously be the K th row, so we need
only focus on that row. By the expression for ẑK given in (S15) and Lemmas S5 and S6,

d1

λKp1/2
ẑT

K Ẽ2u1 =
d1dK
λ2
Kp

uT

K Ẽ2Ẽ
T

2u1 +
d1dK
λ3
Kp

uT

K Ẽ2RẼ
T

2u1

+Op

[
λ

1/2
1

λ
3/2
K

n1/2

p1/2

{(
n

λKp

)3/2

+
n1/2

λKp

}]
490

where

d1dK
λ2
Kp

uT

K Ẽ2Ẽ
T

2u1 = Op

(
n

pλK
+
n1/2d1

λ
3/2
K p

)
= op

(
n−1/2

)
d1dK
λ3
Kp

uT

K Ẽ2RẼ
T

2u1 = Op

(
d1n

λKp

n

pλ
3/2
K

+
d1

λ
1/2
K p1/2

n

pλ2
K

)
= op

(
n−1/2

)
λ

1/2
1

λ
3/2
K

n1/2

p1/2

{(
n

λKp

)3/2

+
n1/2

λKp

}
=

n

λ2
Kp

λ
1/2
1 n

p
+

λ
1/2
1

λ
1/2
K p1/2

n

λ2
Kp

= o
(
n−1/2

)
Second, 495

dK
λKp1/2

ẑT

K Ẽ2uK = Op

(
n

λKp

)
= op

(
n−1/2

)
Therefore,

(
L̃TL̃

)−1

ẐTp−1/2ẼT

2

(
L̃+ p−1/2Ẽ1

)
= op

(
n−1/2

)
.

We have shown that (LTL)
−1
L̂TL = IK + op

(
n−1/2

)
.

(c) Recall that Y1 = Y XT (XX)
−1 and Y2 = Y A where ATX = 0(n−d)×d. Since the residuals E ∼

MNp×n (0,Σ, In), E1 = E XT (XX)
−1 and E2 = E QX are independent. And since we use Y2

to estimate L̂, L̂ and E1 are independent. (We abuse notation here. Ẽ1 and E1 are different. Ẽ1 is 500

defined using the second set of data in part 1). Therefore,

(LTL)
−1
L̂T E1 ∼ p−1/2diag

(
λ
−1/2
1 , . . . , λ

−1/2
K

)
MNK×d

{
0, diag

(
λ
−1/2
1 , . . . , λ

−1/2
K

)
ˆ̃LTΣˆ̃L×

×diag
(
λ
−1/2
1 , . . . , λ

−1/2
K

)
,
(
n−1XXT

)−1
}

= Op

(
λ
−1/2
K p−1/2

)
= op

(
n−1/2

)
.

The above work shows that 505

(LTL)
−1
L̂TB + (LTL)

−1
L̂TLΩ + (LTL)

−1
L̂T E1 = Ω + op

(
n−1/2

)
.
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Our last task is to understand
{
λ̂k

(
λ̂k − ρ̂

)−1
}(

λkλ̂
−1
k

)
for k ∈ [K].

λ̂k

λ̂k − ρ̂
λk

λ̂k
=

(
λ̂k − ρ̂
λk

)−1

=︸︷︷︸
Lemmas S1 and S2

[
1 + (ρ− ρ̂)λ−1

k +Op

{
λ
−1/2
K p−1/2 + n (λkp)

−1
}]−1

=︸︷︷︸
Lemma 1

{
1 + op

(
n−1/2

)}−1

= 1 + op

(
n−1/2

)
.

Therefore,510

Ω̂T =


λ̂1

λ̂1−ρ̂
. . .

λ̂K
λ̂K−ρ̂



λ1

λ̂1

. . .
λK
λ̂K

{(LTL)
−1
L̂TB + (LTL)

−1
L̂TLΩT

+ (LTL)
−1
L̂T E1

}
= ΩT + op

(
n−1/2

)
.

S2.7. Proof of the remaining theory from Sections 3.2, 3.3 and 3.4
In this section, we prove Theorem 2, Proposition 2 and Corollary 1 (in that order). We need not prove515

Theorem 1, since Theorem 1 is a special case of Theorem 2.

Proof of Theorem 2. Define eg,1 to be the gth row of E1. Then

β̂g − βg = Ω
(
`g − ˆ̀

g

)
+ eg,1 +

(
Ω − Ω̂

)
ˆ̀
g

β̂OLS
g − βg = Ω

(
`g − ˆ̀OLS

g

)
+ eg,1

where ˆ̀OLS
g is the ordinary least squares estimate for `g , assuming C was known. By the proof of Lemma520

2, n1/2‖Ωˆ̀OLS
g − Ωˆ̀

g‖2 = op(1). Equation (21) and its equivalent in the statement of Theorem 2 follow
because n1/2‖Ω − Ω̂‖2 = op(1). Equation (22) and its equivalent in the statement of Theorem 2 then
follows because σ̂g = σg + op(1) and

n1/2σ−1
g

(
β̂OLS
g − βg

)
∼ Nd

{
0,
(
n−1XTX

)−1
+ ΩΩT

}
.

Proof of Proposition 2. Define525

Γ̂ = diag
{(
λ̂1 − ρ̂

)
/λ̂1, . . . ,

(
λ̂K − ρ̂

)
/λ̂K

}
Γ = {λ1/ (λ1 + ρ) , . . . , λK/ (λK + ρ)} .

By Lemmas 1 and 2,

Γ̂ = Γ + op

(
n−1/2

)
.

And by Lemma S3,530

‖Ω̂shrunk − ΩΓ‖2 = ‖Ω̂Γ̂− ΩΓ‖2 ≤ ‖Ω̂− Ω‖2 + op

(
n−1/2

)
= op

(
n−1/2

)
.

Proof of Corollary 1. Define Ωshrunk = Ω diag
{
λ1 (λ1 + ρ)

−1
, . . . , λK (λK + ρ)

−1
}

and let ωk be

the kth element of Ω ∈ R1×K . Using Proposition 2 and the definition of β̂shrunk
g from the statement of
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Corollary 1,

β̂shrunk
g − βg =Ωshrunk

(
`g − ˆ̀

g

)
+ e1g + ρΩ diag

{
(λ1 + ρ)

−1
, . . . , (λK + ρ)

−1
}
`g + op

(
n−1/2

)
.

(S18)

535

where e1g is the gth row of E1. By Lemma 2,

n1/2
{

Ωshrunk
(
`g − ˆ̀

g

)
+ e1g

}
D
=Z + op(1),

where σ−1
g Z ∼ N

{
0,
(
n−1‖X‖22

)−1
+ ‖Ωshrunk‖22

}
. Define

sg = σ̂g

{(
n−1‖X‖22

)−1
+ ‖Ω̂shrunk‖22

}1/2

.

If λ−1
K n1/2 → 0, then clearly n1/2s−1

g

(
β̂shrunk
g − βg

)
D
=W + op(1), where W ∼ N(0, 1). Next, we can 540

write

|zg| = s−1
g |n1/2

(
β̂shrunk
g − βg

)
| = s−1

g |Op(1) + ρn1/2
K∑
k=1

ωk`gk (ρ+ λk)
−1|

≥ s−1
g

{
ρn1/2|

K∑
k=1

ωk`gk (ρ+ λk)
−1| − |Op(1)|

}
(S19)

where s−1
g ≥ c+ op(1) for some constant c > 0. If λ−1

K n1/2 →∞, then by Item (ii) in the statement of
Corollary 1, pr

(
|zg| ≥ q1−α/2

)
→ 1 for any q1−α/2 > 0 because 545

n1/2|
K∑
k=1

ωk`gk (ρ+ λk)
−1| ≥ n1/2 (ρ+ λK)

−1
ε � n1/2λ−1

K ε→∞.

Next, assume λ−1
K n1/2−c6 →∞ for some small constant c6 > 0. Then

n1/2|
K∑
k=1

ωk`gk (ρ+ λk)
−1| ≥ n1/2 (ρ+ λK)

−1
ε � nc6

(
n1/2−c6λ−1

K ε
)

where for Φ the cumulative distribution function for the standard normal and |z|g large enough,

log {2Φ (−|zg|)} ≤ −z2
g/2 ≤ −c̃n2c6

(
n1/2−c6λ−1

K

)2

{1 + op(1)} 550

for some constant c̃ > 0. If n−rp→ 0 for some r > 0 as n, p→∞, then exp
(
−c̃n2c6

)
p→ 0 as n, p→

∞. Therefore, for any α ∈ (0, 1),

pr
{
|zg| ≥ q1−(p−1α)/2

}
= pr {2pΦ (−|zg|) ≤ α} → 1

as n, p→∞.
Lastly, suppose λ−1

K n1/2 ≥ c6 > 0. By (S19), for any δ > 0, there exists an M large enough such that 555

if λ−1
K n1/2 ≥M , pr

(
|zg| ≥ q1−α/2

)
≥ 1− δ for all n large enough. Therefore, it suffices to assume

λ−1
K n1/2 is bounded from above by a constant. By (S18), this implies

n1/2s−1
g

(
β̂shrunk
g − βg

)
D
=W + cn,p + op(1)

where W ∼ N(0, 1), cn,p is non-random and

|cn,p| = σ−1
g

{(
n−1‖X‖22

)−1
+ ‖Ωshrunk‖22

}−1/2

ρ|n1/2Ω diag
{

(λ1 + ρ)
−1
, . . . , (λK + ρ)

−1
}
| ≥ c 560
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for all n, p large enough, where c > 0 is a constant not dependent on n or p. Since

pr
(
|W + cn,p| ≥ q1−α/2

)
≥ pr

(
|W + c| ≥ q1−α/2

)
> α

for all n, p large enough, this proves the claim. �

S2.8. CATE-RR and dSVA inflate test statistics

We now state and prove results similar to Proposition 2 and Corollary 1, except for the estimators used565

in dSVA (Lee et al., 2017) and CATE-RR (Wang et al., 2017).

PROPOSITION S3 (ESTIMATE FOR Ω USED IN dSVA). Suppose the assumptions of Proposition 2
hold but we estimate Ω as

Ω̂dSVA = Y T

1 P
⊥
1pL̂

(
L̂TP⊥1pL̂

)−1

.

Then if the smallest eigenvalue of np−1LTP⊥1pL is greater than δλK where δ > 0 is a constant,570

‖Ω̂dSVA − Ω
(
LTP⊥1pL

)(
LTP⊥1pL+ pn−1ρIK

)−1

‖2 = op

(
n−1/2

)
.

Proof. Define V̂ = (v̂1 · · · v̂K) ∈ RK×K and Ẑ = (ẑ1 · · · ẑK) ∈ R(n−d−K)×K , where v̂1, . . . , v̂K
and ẑ1, . . . , ẑK are defined in (S14) and (S15) in the statement of Lemma S2. By Lemmas S1 and S2,

L̂ = n−1/2Y2

(
C̃V̂ +QẐ

)
= n−1/2LV̂ + n−1/2Ẽ1V̂ + n−1/2Ẽ2Ẑ

where, C̃ = n−1/2C2, Q = QC2
, Ẽ1 = E QXC̃ and Ẽ2 = E QXQ. Note that Ẽ1 and Ẽ2 are independent575

by Craig’s Theorem. Therefore,

n (λKp)
−1
L̂TP⊥1pL̂ =n (λKp)

−1
V̂ TLTP⊥1pLV̂ + n1/2 (λKp)

−1
V̂ TLTP⊥1p Ẽ1V̂

+
{
n1/2 (λKp)

−1
V̂ TLTP⊥1p Ẽ1V̂

}T

+ n1/2 (λKp)
−1
V̂ TLTP⊥1p Ẽ2Ẑ

+
{
n1/2 (λKp)

−1
V̂ TLTP⊥1p Ẽ2Ẑ

}T

+ (λKp)
−1
V̂ TẼT

1P
⊥
1p Ẽ1V̂

+ (λKp)
−1
ẐTẼT

2P
⊥
1p Ẽ2Ẑ + (λKp)

−1
ẐTẼT

2P
⊥
1p Ẽ1V̂580

+
{

(λKp)
−1
ẐTẼT

2P
⊥
1p Ẽ1V̂

}T

.

By the Lemmas S1 and S2,

n (λKp)
−1
V̂ TLTP⊥1pLV̂ = m (λKp)

−1
LTP⊥1pL+ op

(
n−1/2

)
.

Next,

n1/2 (λKp)
−1
V̂ TLTP⊥1p Ẽ1V̂ = (λKp)

−1/2
V̂ T

{
n1/2 (λKp)

−1/2
L
}T

P⊥1p Ẽ1V̂ = Op

{
(λKp)

−1/2
}

585

= op

(
n−1/2

)
n1/2 (λKp)

−1
V̂ TLTP⊥1p Ẽ2Ẑ = (λKp)

−1/2
V̂ T

{
n1/2 (λKp)

−1/2
L
}T

P⊥1p Ẽ2Ẑ = Op

{
n (λKp)

−1
}

= op

(
n−1/2

)
.

590

(λKp)
−1
ẐTẼT

2P
⊥
1p Ẽ2Ẑ = Op

(
np−1λ−2

K

)
= op

(
n−1/2

)
(λKp)

−1
ẐTẼT

2P
⊥
1p Ẽ1V̂ = λ−1

K p−1/2ẐTẼT

2P
⊥
1p

(
p−1/2Ẽ1

)
V̂ = Op

(
np−1λ

−3/2
K

)
= op

(
n−1/2

)
.
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Lastly,

(λKp)
−1
V̂ TẼT

1P
⊥
1p Ẽ1V̂ = λ−1

K p−1 tr
(

ΣP⊥1p

)
IK + op

(
n−1/2

)
= λ−1

K ρIK + op

(
n−1/2

)
. 595

An identical calculation shows that

n (λKp)
−1
LTP⊥1pL̂ = n (λKp)

−1
LTP⊥1pL+ op

(
n−1/2

)
.

Lastly, for E1 = E X (XTX)
−1,

(λKp)
−1/2

n1/2 ET

1 P
⊥
1pL̂

(
L̂TP⊥1pL̂

)−1

= Op

{
p−1/2λ−1

K

}
= op

(
n−1/2

)
.

This completes the proof. � 600

PROPOSITION S4 (ESTIMATE FOR Ω USED IN CATE-RR). Suppose the assumptions of Proposition
2 hold with d = 1 but we estimate Ω as

Ω̂cate = arg min
α∈R1×K

Ψ
(
y1g − αˆ̀

g

)
where for some constant c > 0,

Ψ (x) =

{
x2/2 if |x| ≤ c
c|x| − c2/2 if |x| > c

. (S20) 605

Note that Ψ is Huber’s loss. Suppose further that pn−r → 0 for some r > 0. Then if λK →∞, the results
of Proposition 2 hold. If λ1 = O(1), then there exists a constant ε > 0 such that

lim
n,p→∞

pr
(
‖Ω̂cate − Ω‖2 ≥ ε‖Ω‖2

)
= 1.

Proof. Let d/dxΨ(x) = Ψ̇(x). Since Ψ is a convex function, Ω̂cate solves

0 =

p∑
g=1

Ψ̇
(
y1g − ˆ̀

gΩ̂
cate
)

ˆ̀T
g =

(
Y1 − L̂Ω̂cateT

)T

ÂL̂ 610

where Â ∈ Rp×p is a diagonal matrix with

Âgg =

{
1 if |y1g − Ω̂cate ˆ̀

g| ≤ c
|y1g − Ω̂cate ˆ̀

g|−1 if |y1g − Ω̂cate ˆ̀
g| > c

(g = 1, . . . , p).

We start by assuming λK →∞. When this is true, it suffices to show that

max
g∈[p]
|y1g − Ω̂shrunk ˆ̀

g| = op(1).

We see that 615

y1g − Ω̂shrunk ˆ̀
g = Ω̂shrunk

(
`g − ˆ̀

g

)
+
(

Ω − Ω̂shrunk
)
`g + e1g

where

max
g∈[p]
|e1g | = Op

{
n−1/2 log(p)

}
= op(1)

and

max
g∈[p]
|
(

Ω − Ω̂shrunk
)
`g| = op(1) 620
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because the entries of L are uniformly bounded and ‖Ω − Ω̂shrunk‖2 = op(1). To complete the proof, we
need only show that

‖L̂− L‖∞ = op(1).

By the proof of Proposition S3,

L̂− L = L
(
IK − V̂

)
+ n−1/2Ẽ1V̂ + n−1/2Ẽ2Ẑ.625

Since ‖IK − V̂ ‖2 = op(1), ‖L
(
IK − V̂

)
‖∞ = op(1). Next, ‖n−1/2Ẽ1‖∞ = Op

{
n−1/2 log(p)

}
=

op(1). For the last term, define the random variable Zg = σ−2
g Ẽ

T

2g Ẽ2g . Since this is a sub-exponential
random variable with parameters {4(n− d−K), 4},

pr
{
Zg ≥ (n− d−K) + t

√
n
}
≤ exp

(
−bt2

)
for some constant b > 0, provided t = o

(
n1/2

)
. If we let t = b′ {log(p)}1/2 for some constant b′ > b−1,630

then

pr

{
max
g∈[p]

Zg ≥ (n− d−K) + t
√
n

}
≤ 1−

{
1− exp

(
−bt2

)}p
where

p log
{

1− exp
(
−bt2

)}
= − exp {log(p) (1− bb′)} {1 + o(1)} = o(1).

Therefore, for each k ∈ [K],635

max
g∈[p]
|n−1/2ẼT

2g ẑk| ≤ Op

{
n1/2 (λKp)

−1/2
}

max
g∈[p]

(
n−1ẼT

2g Ẽ2g

)1/2

= op(1)

which completes the proof when λK →∞.
When λ1 = O(1), the results ‖L− L̂‖∞, ‖E1‖∞ = op(1) still hold. We therefore need only understand

how
(

Ω − Ω̂shrunk
)
`g behaves. By assumption, there exists a constant m > 0 that does not depend on p

such that640

max
g∈[p]
‖`g‖2 ≤ m.

Define δ1 = c/(2m), where c was defined in (S20). If ‖Ω‖2 ≤ δ1, then because

Ω̂shrunk = Ω diag {λ1/ (λ1 + ρ) , · · · , λK/ (λK + ρ)}+ op

(
n−1/2

)
,

we get that

Ω − Ω̂cate = Ω diag {ρ/ (λ1 + ρ) , · · · , ρ/ (λK + ρ)}+ op

(
n−1/2

)
.645

If ‖Ω‖2 > δ1, suppose we initialize the optimization problem with α1 ∈ R1×K such that ‖Ω − α1‖2 ≤
δ1. Then the next iteration will be

α2 = Y T

1 L̂
(
L̂TL̂

)−1

= Ω diag {λ1/ (λ1 + ρ) , · · · , λK/ (λK + ρ)}+ op

(
n−1/2

)
with probability tending to 1, where

Ω − α2 = Ω diag {ρ/ (λ1 + ρ) , · · · , ρ/ (λK + ρ)}+ op

(
n−1/2

)
.650

Therefore,

‖Ω − α2‖2 ≥ ‖Ω‖2ρ/ (λ1 + ρ)
{

1 + op

(
n−1/2

)}
≥ δ2 + op

(
n−1/2

)
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for some constant δ2 > 0 not dependent n or p, since λ1 = O(1) by assumption. Note that we may assume
δ1 > δ2. Therefore,

‖Ω̂cate − Ω‖2 ≥ δ2 + op (1) 655

which completes the proof. �

Remark 3. The above proof shows that the behavior of Huber’s loss function is very dependent on
the constant c used in (S20) when λ1 = O(1), meaning we cannot predict its behavior. This is an addi-
tional reason why this loss function should not be used to estimate Ω when the data are only moderately
informative for C. 660

COROLLARY S1 (THE RESULTS OF COROLLARY 1 HOLD USING DSVA AND CATE-RR). Suppose
the assumptions of Proposition 2 hold with d = 1 and for some fixed g ∈ [p], define

β̂dSVA
g = y1g − Ω̂dSVA ˆ̀

g

β̂cate
g = y1g − Ω̂cate ˆ̀

g.

In addition, suppose K = 1 and 665

(i) n−rp→ 0 for some r > 0 as n→∞.
(ii) np−1LTP⊥1pL ≥ δλ1 for some constant δ > 0

(iii) |Ω`g| ≥ ε for some constant ε > 0.

Then the results of Corollary 1 hold for the z-score

zdSVA
g = σ−1

g

(
‖X‖−2

2 + n−1‖Ω̂dSVA‖22
)−1/2

β̂dSVA
g . 670

If λ1 →∞, then the results of Corollary 1 hold for the z-score

zcate
g = σ−1

g

(
‖X‖−2

2 + n−1‖Ω̂cate‖22
)−1/2

β̂cate
g .

Proof. The proof is identical to the proof of Corollary 1 and is omitted. �

Remark 4. We require λ1 →∞ to prove Proposition S1 for z-scores returned by CATE-RR because
the behavior of Ω̂cate depends heavily on the constant c chosen in (S20) when λ1 = O(1). 675

S2.9. A framework for when C is treated as a random variable and the proof of Theorem 3
Next, we provide a framework to extend all of our theoretical results to the case when C is treated

as a random variable. We then prove Theorem 3 at the end of this section. First, we prove a proposition
regarding the identifiability of factor models when C is random.

PROPOSITION S5. Suppose Y = BXT + L̄C̄T + E whereB ∈ Rp×d and L̄ ∈ Rp×K are fixed effects, 680

X ∈ Rn×d is observed and

(i) X has full column rank.
(ii) C̄ ∈ Rn×K is such thatE

(
C̄
)

= XĀ for some non-random Ā ∈ Rd×K and var
{

vec
(
C̄
)}

= Ψ̄⊗
In where Ψ̄ � 0.

(iii) E ∈ Rp×n is independent of C̄ and var {vec (E)} = In ⊗ Σ, where Σ = diag
(
σ2

1 , . . . , σ
2
p

)
� 0. 685

(iv) If any row is removed from L̄, there exists two sub-matrices with rank K.

Then L̄Ψ̄L̄T and Σ are identifiable.

Proof. Define C̄2 = QT

XC̄ and Y2 = Y QX , where the columns of QX ∈ Rn×(n−d) form an orthonor-
mal basis for the null space of XT. Then E

(
C̄2

)
= 0, var

{
vec
(
C̄
)}

= Ψ̄⊗ In−d and var {vec (Y2)} =

In−d ⊗
(
Σ + L̄Ψ̄L̄T

)
. The identifiability of L̄Ψ̄L̄T and Σ then follows from Theorem 5.1 of (Anderson 690

& Rubin, 1956). �
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COROLLARY S2. Let c > 1 be a constant. Suppose that in addition to the assumptions in Proposition
S5, the following hold

(i) p is a non-decreasing function of n.
(ii) L̄T

g∗Ψ̄L̄g∗ ≤ c for all g ∈ [p].695

(iii) There are K non-zero eigenvalues of L̄Ψ̄L̄T γ1, . . . , γK such that c−1 ≤ γ1 ≤ · · · ≤ γK ≤ cn.

(iv) For all r ∈ [d], p−1
p∑
g=1

I (Bgr 6= 0) = o
(
n−1γK

)
.

Then B is identifiable for all n ≥ c′, where c′ > 0 is a constant.

Proof. Define Y1 = Y X (XTX)
−1, where

E (Y1) = B + L̄ĀT = B +
(
L̄Ψ̄1/2

)(
ĀΨ̄−1/2

)T

.700

The identical method used to prove B was identifiable in Proposition 1 can then be used to show B is
identifiable here. �

Remark 5. If Items (ii) and (iii) from the statement of Corollary S2 hold for some L̄ ∈ Rp×K and
Ψ̄ � 0, then Item (iv) from the statement of Proposition S5 holds for all n, p suitably large. Therefore,
another way to express Item (ii) from the statement of Theorem 3 is to first assume Item (iv) from the705

statement of Proposition S5 holds to identify Σ and LLT (and therefore λ1, . . . , λK), and then assume
LTL is orthogonal with decreasing elements, since this will not affect the isotropic distribution assumption
on C (or any uniform bound on the fourth moments of its entries).

Remark 6. We do not need Corollary S2 to prove Theorem 3. We state it to show that our theoretical
results from Sections 3.2, 3.3 and 3.4 can be extended to the case when C is treated as a random variable.710

Next, we state and prove a technical lemma to be used in the proof of Theorem 3. This lemma is also
important because it shows that we can generalize Assumption 2 to the case when C is a random variable.

LEMMA S4. Let a > 1 be a constant not dependent on n or p, suppose Y = L̄C̄T + E where L̄ ∈
Rp×K , C̄ ∈ Rn×K and E ∈ Rp×n and assume Items (ii), (iii) and (iv) from the statement of Proposition S5
hold. Define γ1, . . . , γK to be the eigenvalues of np−1Ψ̄1/2L̄TL̄Ψ̄1/2 with eigenvectors u1, . . . , uK ∈ RK715

and assume the following hold

(i) E ∼MNp×n (0,Σ, In) where σ2
g ∈

[
a−1, a

]
for all g ∈ [p].

(ii) ‖n−1C̄TC̄ − Ψ̄‖2 = Op

(
n−1/2

)
.

(iii) The magnitude of the entries of L̄ are uniformly bounded by a.
(iv) a−1 ≤ γK < · · · < γ1 ≤ an and (γk − γk+1) γ−1

k ≥ a−1 (k = 1, . . . ,K) where γK+1 is defined720

to be 0.
(v) |uT

r

(
np−1Ψ̄1/2L̄TΣL̄Ψ̄1/2

)
us| ≤ aγmax(r,s) (r=1,. . . ,K; s=1,. . . ,K) .

Then there exists an L ∈ Rp×K , C ∈ Rn×K and constant c > 1 such that the following hold:

1. L̄C̄T = LCT such that PC̄ = PC , n−1CT
2C2 = IK and sup

g∈[p],k∈[K]

|Lgk| ≤ c+ op(1).

2. LTL is a diagonal matrix with decreasing entries λ1, . . . , λK such that λk is the kth largest eigen-725

value of C̄
(
p−1L̄TL̄

)
C̄ (k = 1, . . . ,K).

3. 1− λkγ−1
k = Op

(
n−1/2

)
and (λk − λk+1)λ−1

k ≥ c−1 +Op

(
n−1/2

)
(k = 1, . . . ,K) where

λK+1 is defined to be 0.
4. n

{
pλmax(r,s)

}−1
LT
∗rΣL∗s = Op(1) (r=1,. . . ,K; s=1,. . . ,K).
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Proof. We first re-define L̄ as L̄Ψ̄1/2 and C̄ as C̄Ψ̄−1/2, meaning we now have ‖n−1C̄TC̄ − IK‖2 = 730

Op

(
n−1/2

)
. Define R̂ such that R̂2 = n−1C̄TC̄ and

L = L̄R̂Û

C = C̄R̂−1Û

where the columns of Û ∈ RK×K contain the right singular vectors of L̄R̂. Since n−1CTP⊥XC = IK ,
this proves 1 and 2. 735

To then prove 3 and 4, we study the eigenvalues and eigenvectors of np−1R̂TL̄TL̄TR̂. We can write
np−1LTL (whose diagonal elements are the eigenvalues of np−1R̂TL̄TL̄TR̂) as

np−1LTL = ÛTUUTR̂Udiag (γ1, . . . , γK)UTR̂UUTÛ = ÛTF̂diag (γ, . . . , γK) F̂ Û

where U = (u1 · · · uK) ∈ RK×K and F̂ = UTR̂U where the diagonal entries of F̂ are 1 +Op

(
n−1/2

)
and the off-diagonal entries are Op

(
n−1/2

)
. We have also re-defined Û as UTÛ , which is still a random 740

unitary matrix. Define the matrix A = F̂diag (γ1, . . . , γK) F̂ ∈ RK×K where

Akk = γk

{
1 +Op

(
n−1/2

)}
+
∑
r 6=k

γrOp

(
n−1

)
(k = 1, . . . ,K)

Ars = (γr + γs)Op

(
n−1/2

)
+
∑
k 6=r,s

γkOp

(
n−1

)
(r = 1, . . . ,K; s = 1, . . . ,K; r 6= s).

Next, define A(1) = γ−1
1 A where

A
(1)
kk =

γk
γ1

{
1 +Op

(
n−1/2

)}
+
∑
r 6=k

γr
γ1
Op

(
n−1

)
(k = 1, . . . ,K) 745

A(1)
rs =

γr + γs
γ1

Op

(
n−1/2

)
+
∑
k 6=r,s

γk
γ1
Op

(
n−1

)
(r = 2, . . . ,K; s = 2, . . . ,K; r 6= s).

We first decompose A(1) into K rank (approximately) 1 matrices to study the behavior of the eigenvalues
and eigenvectors of A. We see that

A(1) =


A

(1)
11 A

(1)
12 + ω2 · · · A(1)

1K + ωK

A
(1)
12 + ω2 0 · · · 0

...
...

. . .
...

A
(1)
1K + ωK 0 · · · 0


︸ ︷︷ ︸

=D1

+


0 −ω2 0 · · · 0

−ω2 A
(1)
22 A

(1)
23 · · · A

(1)
2K

0 A
(1)
23 0 · · · 0

...
...

...
. . .

...
0 A

(1)
2K 0 · · · 0


︸ ︷︷ ︸

=D2

+ · · ·

+


0 0 · · · −ωK
0 0 · · · 0
...

...
. . .

...
−ωK 0 · · · A(1)

KK


︸ ︷︷ ︸

=DK

750

where we define

ωk =
A

(1)
kkA

(1)
1k

A
(1)
11 −A

(1)
kk

= Op

(
γk
γ1
n−1/2

)
(k = 2, . . . ,K).
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Let

v1 =

[{
A

(1)
11

}2

+
{
A

(1)
12 + ω2

}2

+ · · ·+
{
A

(1)
1K + ωK

}2
]−1/2 {

A
(1)
11 A

(1)
12 + ω2 · · · A(1)

1K + ωK

}T

=

{
1
A

(1)
12 +ω2

A
(1)
11

· · · A
(1)
1K+ωK

A
(1)
11

}T

+Op

(
n−1

)
.755

Then

A(1)v1 = D1v1 +D2v1 + · · ·+DKv1 =



A
(1)
11 +Op

(
n−1

)
A

(1)
12 +ω2

A
(1)
11

+Op

(
n−1

)
· · ·

A
(1)
1K+ωK

A
(1)
11

+Op

(
n−1

)



+



Op

(
n−1

)
−ω2 +A

(1)
22

A
(1)
12 + ω2

A
(1)
11︸ ︷︷ ︸

=0

+Op

(
n−1

)
· · ·

Op

(
n−1

)



+ · · ·+



Op

(
n−1

)
· · ·

Op

(
n−1

)
−ωK +A

(1)
KK

A
(1)
1K + ωK

A
(1)
11︸ ︷︷ ︸

=0

+Op

(
n−1

)


and760

δ1 = vT

1A
(1)v1 = A

(1)
11 +Op

(
n−1

)
‖A(1)v1 − δ1v1‖2 = Op

(
n−1

)
.

By Weyl’s Theorem and Theorem 3.6 in Auffinger & Tang (2015) the largest eigenvalue of A(1) is µ̂1 =

A
(1)
11 +Op

(
n−1

)
with corresponding eigenvector û1 such that ‖û1 − v1‖2 = Op

(
n−1

)
. To find the next

eigenvalue and eigenvector of A, we first have to remove the principal direction from A(1):765

A(1) − µ̂1û1û
T

1 = D2 + · · ·+DK +Op

(
n−1

)
and we define

A(2) =
γ1

γ2

{
A(1) − µ̂1û1û

T

1

}
=
γ1

γ2
D2 + · · ·+ γ1

γ2
DK +Op

(
γ1

γ2n

)

=



0 −γ1γ2ω2 0 · · · 0

−γ1γ2ω2 A
(2)
22 A

(2)
23 · A

(2)
2K

0 A
(2)
23 0 · · · 0

...
...

...
. . .

...
0 A

(2)
2K 0 · · · 0

+ · · ·+


0 0 · · · −γ1γ2ωK
0 0 · · · 0
...

...
. . .

...
−γ1γ2ωK 0 · · · A

(2)
KK

+Op

(
γ1

γ2n

)



Biometrika style 31

where 770

γ1

γ2
ωk = Op

(
γk
γ2
n−1/2

)
(k = 2, . . . ,K)

A
(2)
kk =

γk
γ2

{
1 +Op

(
n−1/2

)}
+
∑
r 6=k

γr
γ2
Op

(
n−1

)
(k = 2, . . . ,K)

A(2)
rs =

γr + γs
γ2

Op

(
n−1/2

)
+
∑
k 6=r,s

γk
γ2
Op

(
n−1

)
(r = 2, . . . ,K; s = 2, . . . ,K; r 6= s).

A subsequent application of the above procedure will show that the largest eigenvalue of A(2) is

µ̂2 = A
(2)
22 +Op

(
γ1

γ2n

)
775

with eigenvalue û2 such that

‖û2 − v2‖2 = Op

(
γ1

γ2n

)
,

where v2 is the second column of γ1γ
−1
2 D2. When we subsequently remove the second principal direction,

we will remove γ1γ
−1
2 D2 and the Op

{
γ1 (γ2n)

−1
}

error term will become Op

{
γ1 (γ3n)

−1
}

. Provided

γ1 (γkn)
−1 . n−1/2, this procedure will give us estimates µ̂k and ûk such that 780

λk = γkµ̂k = γk

{
1 +Op

(
n−1/2

)}
(S21)

‖ûk − ek‖2 = Op

(
n−1/2

)
(S22)

where here ek ∈ RK is the standard basis vector with 1 in the kth position and 0’s everywhere else.
We next handle the case when γ1 (γkn)

−1 & n−1/2. Let r ≤ K be such that γ1 (γkn)
−1 . n−1/2 for

k ≤ r and γ1 (γkn)
−1 & n−1/2 for k > r. For these eigenvalues, we note that we can study the smallest 785

eigenvalues and their eigenvectors of A by studying the largest eigenvalues of A−1. If λk is an eigenvalue
of A with eigenvector ûk, then λ−1

k is an eigenvalue of A−1 with the same eigenvector. We note that

A−1 = F̂−1diag
(
γ−1

1 , . . . , γ−1
K

)
F̂−1 = γ−1

1 F̂−1diag
(
1, γ1γ

−1
2 , . . . , γ1γ

−1
K

)
F̂−1

where the diagonal entries of F̂−1 are 1 +Op

(
n−1/2

)
and the off-diagonal entries are Op

(
n−1/2

)
. If

k > r, then γ1γ
−1
k & n1/2, meaning γk . n1/2, since γ1 . n. Therefore, 790

γ1γ
−1
K

γ1γ
−1
k

=
γk
γK
. n1/2

for all k > r. By what we have shown above, the K − k + 1 eigenvalue of γ1A
−1 is

γ1γ
−1
k

{
1 +Op

(
n−1/2

)}
with eigenvectors that satisfies (S22). Therefore, the kth eigenvalue of A is

γk
{

1 +Op

(
n−1/2

)}
with eigenvector that satisfies (S22). This proves item 3.

To prove item 4, 795

np−1LTΣL = M̂T
{
np−1UTL̄TΣL̄U

}
M̂ (S23)
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where M̂ = F̂ Û is such that ‖M̂ − IK‖2 = Op

(
n−1/2

)
by the analysis above. To evaluate (S23), we

first see that

np−1UTL̄TΣL̄U =


O (γ1) O (γ2) · · · O (γK)
O (γ2) O (γ2) · · · O (γK)

...
...

. . .
...

O (γK) O (γK) · · · O (γK)

 =


O (γ1) 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+


0 O (γ2) · · · 0

O (γ2) O (γ2) · · · 0
...

...
. . .

...
0 0 · · · 0



+


0 0 · · · O (γK)
0 0 · · · O (γK)
...

...
. . .

...
O (γK) O (γK) · · · O (γK)

 .800

Fix some r, s ≤ K such that r < s. If m̂k is the kth column of M̂ , then

m̂T

r

(
np−1UTL̄TΣL̄U

)
m̂s =Op

(
γ1n
−1
)

+ · · ·+Op

(
γr−1n

−1
)

+ {O (γr) m̂rrm̂s1 +O (γr) m̂rrm̂s2 + · · ·+O (γr) m̂rrm̂sr}
+O (γr+1) m̂rrm̂sr+1 + · · ·+O (γs−1) m̂rrm̂ss−1 +Op(γs).

Next, note that for any k < s, we have805

0 = m̂T

kdiag (γ1, . . . , γK) m̂s = γ1m̂k1m̂s1︸ ︷︷ ︸
=Op(1)

+ · · ·+ γkm̂kkm̂sk + · · ·+ γsm̂ksm̂ss︸ ︷︷ ︸
=Op(γsn−1/2)

+Op (1) .

Therefore,

γkm̂sk = Op

{
max

(
γsn
−1/2, 1

)}
for all k < s. This also shows that

γrm̂rrm̂sk = Op

{
max

(
γsn
−1/2, 1

)}
810

for k = 1, 2, . . . , r and completes the proof.

We now prove Theorem 3.

Proof of Theorem 3. To make notation consistent with the statement of Lemma S4, we first redefine C,815

Ω, Ξ and L from the statement of Theorem 3 to be C̄, Ω̄, Ξ̄ and L̄. Under the null hypothesis Ω̄ = 0, we
define

ˆ̄Ω = (XTX)
−1
XTC̄ = n−1/2

(
n−1XTX

)−1
ŝn

ŝn = n−1/2
n∑
i=1

xiξ̄
T

i

Define a = vec
(
1d × ξ̄1

)
, where 1d ∈ Rd is the vector of all ones, and ϕa (t), t ∈ RdK×dK , to be820

the characteristic function of a. Under the null hypothesis, the gradient of ϕa (t) is 0 and the Hessian is
−1d×d ⊗ IK , where 1d×d ∈ Rd×d is the matrix of all ones. Lastly, let t = (tT1 , . . . , t

T

d)
T, tj ∈ RK . If the
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magnitude of the entries of X are bounded above by x, we then have that

log
{
ϕvec(ŝn) (t)

}
=

n∑
i=1

log

ϕa
n−1/2

xi[1]t1
...

xi[d]td





=

n∑
i=1

[
−(2n)−1tT {(xixT

i )⊗ IK} t+ o(n−1x2‖t‖22)
]

825

= −2−1tT (ΣX ⊗ IK) t+ o(1).

where ΣX = limn→∞ n−1XTX . Therefore,

(XTX)
1/2 ˆ̄Ω

{
n−1Ξ̄TP⊥X Ξ̄

}−1/2 D→MNd×K (0, Id, IK)

since ‖n−1Ξ̄TP⊥X Ξ̄− IK‖2 = op(1).
We next define Ω be the that from the statement and proof of Lemma S4, i.e. 830

Ω = ˆ̄Ω
{
n−1Ξ̄TP⊥X Ξ̄

}−1/2
Û

where Û is a unitary matrix ensuring that

LTL = ÛT
{
n−1Ξ̄TP⊥X Ξ̄

}1/2
L̄TL̄

{
n−1Ξ̄TP⊥X Ξ̄

}1/2
Û

is diagonal with decreasing elements. Since the assumptions of Lemma S4 hold with Ψ̄ = IK , it is then
straightforward to adapt the proof of Lemma S3 to show that n1/2‖Ω − Ω̂‖ = op(1) under the assump- 835

tions of Theorem 3. The result then follows by an application of Slutsky’s Theorem.

S2.10. Two technical lemmas used in the proof of Lemma S2
We now state and prove two technical lemmas are used in the proof of Lemma S2. For these two

lemmas, we assume Y is distributed according to (S5) (as it is in Lemmas S1 and S2).

LEMMA S5. Let U =
(
u1 · · · uK

)
, V =

(
v1 · · · vK

)
,D = diag (d1, . . . , dK) and Ñ be as defined in 840

Lemmas S1 and S2 and suppose n
pL

T
sΣLk = Op (λk) for s ≤ k, where s, k ∈ [K]. Then

uT

sΣuk = Op

(
λ

1/2
k λ−1/2

s

)
.

Proof. We need to understand how

UTΣU = D−1V TÑTΣÑV D−1

behaves. First, let RiRT
i = L̃TΣiL̃ for i = 1, 2, 3 and define γ = p−1 tr

(
Σ2
)
. Then

Ri =


O
(
λ

1/2
1

)
0 · · · 0

O
(
λ

1/2
2

)
O
(
λ

1/2
2

)
· · · 0

...
...

. . .
...

O
(
λ

1/2
K

)
O
(
λ

1/2
K

)
· · · O

(
λ

1/2
K

)


and 845

ÑTΣÑ = L̃TΣL̃+ p−1/2L̃TΣẼ1 + p−1/2ẼT

1 ΣL̃+ γIK +Op

(
p−1/2

)
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The next quantity we need to determine is V D−1:

V D−1 = D−1 +


Op

(
λ
−3/2
1 p−1

)
Op

{
(λ1λ2p)

−1/2
}
· · · Op

{
(λ1λKp)

−1/2
}

Op

{
(λ1p)

−1
}

Op

(
λ
−3/2
2 p−1

)
· · · Op

{
(λ2λKp)

−1/2
}

...
...

. . .
...

Op

{
(λ1p)

−1
}

Op

{
(λ2p)

−1
}
· · · Op

(
λ
−3/2
K p−1

)

 = D−1 + e

and

RT

i V D
−1 = Op(1) +Op

{
(λKp)

−1/2
}
.

Then for M ∼MNK×K (0, IK , IK), we have

p−1/2ẼT

1 ΣL̃V D−1 ∼ p−1/2MRT

3V D
−1 = Op

(
p−1/2

)
.

Next850

D−1V T

(
L̃TΣL̃+ γIK

)
V D−1 = D−1

(
L̃TΣL̃+ γIK

)
D−1 + eT

(
L̃TΣL̃+ γIK

)
D−1

+D−1
(
L̃TΣL̃+ γIK

)
e+ eT

(
L̃TΣL̃+ γIK

)
e

where

eTL̃TΣL̃e = eTR1R
T

1e = Op

{
(λKp)

−1
}

and855

D−1
(
L̃TΣL̃+ γIK

)
e = D−1R1R

T

1e+Op

{
(λKp)

−1/2
}

= Op

{
(λKp)

−1/2
}
.

The second equality holds becauseD−1R1 = Op(1) andRT
1e = Op

{
(λKp)

−1/2
}

. Next, letA = L̃TΣL̃

and B = D−1 (A+ γIK)D−1. Then if s ≤ k, Ask = Op (λk) by assumption and

Bsk =
Ask + γδsk

dsdk
= Op

(
λk
dsdk

)
+

γ

dsdk
δsk = Op

(
λ

1/2
k λ−1/2

s

)
where δsk = I(s = k). Therefore, for s ≤ k (s, k ∈ [K]),860

[UTΣU ]sk = Op

{
λ

1/2
k λ−1/2

s + (λKp)
−1/2

}
= Op

(
λ

1/2
k λ−1/2

s

)
.

LEMMA S6. Let a1, a2 ∈ Rp be linearly independent unit vectors independent of Ẽ2 ∼
MNp×(n−K) (0,Σ, In−K) for K is a fixed constant. Recall from (S11) that R = p−1ẼT

2 Ẽ2 − ρIn−K
where ρ = p−1 tr(Σ). Then865

p−1aT

1 Ẽ2RẼ
T

2a2 = Op

{(
np−1

)2
+ np−3/2

}
.

Proof. Since K is a fixed constant not dependent on n or p, I will assume Ẽ2 ∼MNp×n (0,Σ, In) for
notational convenience.

p−1aT

1 Ẽ2RẼ
T

2a2 = p−2aT

1 Ẽ2Ẽ
T

2 Ẽ2Ẽ
T

2a2 − ρp−1aT

1 Ẽ2Ẽ
T

2a2

We will focus our efforts on understanding p−2aT
1 Ẽ2Ẽ

T

2 Ẽ2Ẽ
T

2a2. Define A =
(
a1 a2

)
, Ã = ΣA and Q ∈

Rp×(p−2) s.t. ATΣQ = 02×(p−2). Let PÃ = GGT where G ∈ Rp×2 and P⊥
Ã

= QQT. Since PÃ + P⊥
Ã

=
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Ip, we have 870

p−2aT

1 Ẽ2Ẽ
T

2 Ẽ2Ẽ
T

2a2 = p−2aT

1 Ẽ2Ẽ
T

2

(
PÃ + P⊥

Ã

)
Ẽ2Ẽ

T

2a2

= p−2aT

1 Ẽ2Ẽ
T

2PÃẼ2Ẽ
T

2a2 + p−2aT

1 Ẽ2Ẽ
T

2P
⊥
Ã
Ẽ2Ẽ

T

2a2

Since aT
i Σai ≤ c and ‖GTΣG‖2 ≤ c for some constant c > 0, ‖ẼT

2ai‖2 ∼ ‖MNn×1 (0, In, a
T
i Σai)‖2 =

Op

(
n1/2

)
for i = 1, 2 and ‖ẼT

2G‖2 ∼ ‖MNn×2 (0, In, G
TΣG)‖2 = Op

(
n1/2

)
. Then by Cauchy-

Schwartz, 875

p−2aT

1 Ẽ2Ẽ
T

2PÃẼ2Ẽ
T

2a2 = p−2 aT

1 Ẽ2︸ ︷︷ ︸
1×n

ẼT

2G︸︷︷︸
n×2

GTẼ2Ẽ
T

2a2 = Op

{(
np−1

)2}
By Craig’s Theorem, ẼT

ai and ẼT

Q are independent, since aT
i ΣQ = 0. We then have

p−2aT

1 Ẽ2Ẽ
T

2P
⊥
Ã
Ẽ2Ẽ

T

2a2 = p−2aT

1 Ẽ2Ẽ
T

2QQ
TẼ2Ẽ

T

2a2

Let B = Σ1/2QQTΣ1/2 and let H∆HT be its singular value decomposition. Note that max ∆ ≤ c
for some constant c > 0 since QQT is just a projection matrix. Therefore, ẼT

2QQ
TẼ2 ∼ JTJ , where

J ∼MNp×n (0,∆, In) and is independent of p−1/2ẼT

2ai = ãi ∈ Rn×1 where ‖ãi‖2 = Op

(
n1/2p−1/2

)
.

Define δ = p−1 tr (∆) = ρ+O
(
p−1
)
, γ = p−1 tr

(
∆2
)

and bi = ‖ãi‖−1
2 ãi. Then 880

p−2aT

1 Ẽ2Ẽ
T

2QQ
TẼ2Ẽ

T

2a2 ∼ ‖ã1‖2‖ã2‖2bT1p−1JTJb2 = ‖ã1‖2‖ã2‖2bT1

p
−1JT

1 J1 · · · p−1JT
1 Jn

...
. . .

...
p−1JT

1 Jn · · · p−1JT
nJn

 b2

bT1

p
−1JT

1 J1 · · · p−1JT
1 Jn

...
. . .

...
p−1JT

1 Jn · · · p−1JT
nJn

 b2 =

n∑
i=1

b1[i]b2[i]p−1JT

i Ji +
∑
i6=q

b1[i]b2[q]p−1JT

i Jq

n∑
i=1

b1[i]b2[i]p−1JT

i Ji =︸︷︷︸
Xi=

1
pJ

T
i Ji−δ

δbT1 b2 +

n∑
i=1

b1[i]b2[i]Xi︸ ︷︷ ︸
=X

var(X) =

n∑
i=1

b1[i]2b2[i]2 var (Xi) = 2γp−1
n∑
i=1

b1[i]2b2[i]2 ≤ 2γp−1

885

⇒
n∑
i=1

b1[i]b2[i]p−1JT

i Ji = δbT1 b2 +Op

(
p−1/2

)
= ρbT1 b2 +Op

(
p−1/2

)
. (S24)

Note that E

(∑
i6=q

b1[i]b2[q]p−1JT
i Jq

)
= 0, meaning

var

∑
i 6=q

b1[i]b2[q]p−1JT

i Jq

 = E


∑
i 6=q

b1[i]b2[q]p−1JT

i Jq

2
 .

Therefore,

var

∑
i6=q

b1[i]b2[q]p−1JT

i Jq

 = p−2
∑
i 6=q

∑
r 6=s

b1[i]b2[q]b1[r]b2[s]E {(JT

i Jq) (JT

r Js)} .
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We then need to go through various scenarios to evaluate the above expression.

1. i 6= r, s and q 6= r, s. Then,890

E {(JT

i Jq) (JT

r Js)} = 0

2. i = r.
(a) q 6= s

E {(JT

i Jq) (JT

i Js)} = E
{
JT

q E (JiJ
T

i | Jq, Js) Js
}

= E
(
JT

q ∆Js
)

= tr
{

∆E
(
JsJ

T

q

)}
= 0

(b) q = s

E {(JT

i Jq) (JT

i Jq)} = E
{
JT

q E (JiJ
T

i | Jq) Jq
}

= E
(
JT

q ∆Jq
)

= tr
(
∆2
)

= pγ

3. i = s

(a) q 6= r895

E {(JT

i Jq) (JT

r Ji)} = E
{
JT

q E (JiJ
T

i | Jq, Jr) Jr
}

= E
(
JT

q ∆Jr
)

= 0

(b) q = r

E
{

(JT

i Jq)
(
JT

q Ji
)}

= pγ

4. q = s, i 6= r (we already have the case q = s, i = r above).

E {(JT

i Jq) (JT

r Jq)} = 0

5. q = r, i 6= s (we already have the case q = r, i = s above).

E
{

(JT

i Jq)
(
JT

q Js
)}

= 0

Therefore,

p−2
∑
i 6=q

∑
r 6=s

b1[i]b2[q]b1[r]b2[s]E {(JT

i Jq) (JT

r Js)} = γp−1
∑
i 6=q

b1[i]2b2[q]2 + γp−1
∑
i6=q

b1[i]b2[i]b1[q]b2[q]

900 ∑
i6=q

b1[i]2b2[q]2 ≤
n∑
i=1

b1[i]2
n∑
q=1

b2[q]2 = 1

∑
i 6=q

b1[i]b2[i]b1[q]b2[q] =

n∑
i=1

b1[i]b2[i]

n∑
q 6=i

b1[q]b2[q], |
n∑
q 6=i

b1[q]b2[q]| ≤ ‖b1,−i‖2‖b2,−i‖2 ≤ 1

⇒ |
n∑
i=1

b1[i]b2[i]

n∑
q 6=i

b1[q]b2[q]| ≤


n∑
i=1

 n∑
q 6=i

b1[q]b2[q]

2

b1[i]2


1/2

‖b2‖2 ≤ ‖b1‖2‖b2‖2 = 1

Therefore var

(∑
i6=q

b1[i]b2[q]p−1JT
i Jq

)
≤ γp−1, meaning

p−2aT

1 Ẽ2Ẽ
T

2 Ẽ2Ẽ
T

2a2 = ‖ã1‖2‖ã2‖2ρbT1 b2 + ‖ã1‖2‖ã2‖2Op

(
p−1/2

)
+Op

{(
np−1

)2}
= ρp−1aT

1 Ẽ2Ẽ
T

2a2 +Op

(
np−3/2

)
+Op

{(
np−1

)2}
.905

Therefore,

p−1aT

1 Ẽ2RẼ
T

2a2 = Op

(
np−3/2

)
+Op

{(
np−1

)2}
.
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