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1 Indices of Information and of Algorithmic Com-
plexity

Here we describe alternative measures to explore correlations from an information-
theoretic and algorithmic (hence causal) complexity perspective.

1.1 Shannon Entropy

Central to information theory is the concept of Shannon’s entropy, which quan-
tifies the average number of bits needed to store or communicate a message.
Entropy determines that one cannot store (and therefore communicate) a mes-
sage with n different symbols in less than log(n) bits. In this sense, Entropy
determines a lower limit below which no message can be further compressed,
not even in principle. Another application (or interpretation) of Shannon’s in-
formation theory is as a measure for quantifying the uncertainty involved in
predicting the value of a random variable.

Shannon defined the Entropy H of a discrete random variable X with pos-
sible values x1, . . . , xn and probability distribution P (X) as:

H(X) = −
n∑

i=1

P (xi) log2 P (xi)

where if P (xi) = 0 for some i, the value of the corresponding summand 0 log2(0)
is taken to be 0.

1.1.1 Entropy Rate

The function R gives what is variously denominated as rate or block Entropy,
and is Shannon Entropy over blocks or subsequences of X of length b. That is,

HR(X) =
b=|X|
min
b=1

H(Xb)
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If the sequence is not statistically random, then HR(X) will reach a low
value for some b, and if random, then it will be maximally entropic for all
blocks b. HR(X) is computationally intractable as a function of sequence size,
and typically upper bounds are realistically calculated for a fixed value of b (e.g.
a window length). Notice that, as discussed in the main text, having maximal
Entropy does not by any means imply algorithmic randomness (c.f. 1.3).

1.2 Lossless compression algorithms

Two widely used lossless compression algorithms were employed. On the one
hand, Bzip2 is a lossless compression method that uses several layers of compres-
sion techniques stacked one on top of the other, including Run-length encoding
(RLE), Burrows–Wheeler transform (BWT), Move to Front (MTF) transform,
and Huffman coding, among other sequential transformations. Bzip2 compresses
more effectively than LZW, LZ77 and Deflate, but is considerably slower.

On the other hand, Compress is a lossless compression algorithm based
on the LZW compression algorithm. Lempel–Ziv–Welch (LZW) is a lossless
data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry
Welch, and is considered universal for an infinite sliding window (in practice the
sliding window is bounded by memory or choice). It is considered universal in
the sense of Shannon Entropy, meaning that it approximates the Entropy rate
of the source (an input in the form of a file/sequence). It is the algorithm of
the widely used Unix file compression utility ‘Compress’, and is currently in the
international public domain.

1.3 Measures of Algorithmic Complexity

A binary sequence s is said to be random if its Kolmogorov-Chaitin complex-
ity [7, 10, 4] C(s) is at least twice its length. It is a measure of the computational
resources needed to specify the object. Formally,

C(s) = min{|p| : T (p) = s}

where p is a program that outputs s running on a universal Turing machine T .
C as a function taking s to the length of the shortest computer program that
produces s is semi-computable, and upper bound estimations are possible. The
measure is today the accepted mathematical definition of randomness, among
other reasons because it has been proven to be mathematically robust by virtue
of the fact that several independent definitions converge to it.

The invariance theorem guarantees that complexity values will only diverge
by a constant (e.g. the length of a compiler, a translation program between T1

and T2) and will converge at the limit. Formally,

|C(s)T1 − C(s)T2 | < c
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1.3.1 Lossless Compression as Approximation to C

Lossless compression is traditionally the method of choice when a measure of al-
gorithmic content related to Kolmogorov-Chaitin complexity C is needed. The
Kolmogorov-Chaitin complexity of a sequence s is defined as the length of the
shortest computer program p that outputs s running on a reference univer-
sal Turing machine T . While lossless compression is equivalent to algorithmic
complexity, actual implementations of lossless compression (e.g. Compress) are
heavily based upon Entropy rate estimations [13, 14] that mostly deal with sta-
tistical repetitions or k-mers of up to a window length size L, such that k ≤ L.

1.3.2 Algorithmic Probability as Approximation to C

Another approach consists in making estimations by way of a related measure,
Algorithmic Probability [6, 9]. The Algorithmic Probability of a sequence s
is the probability that s is produced by a random computer program p when
running on a reference Turing machine T . Both algorithmic complexity and
Algorithmic Probability rely on T , but invariance theorems for both guarantee
that the choice of T is asymptotically negligible.

One way to minimise the impact of the choice of T is to average across a
large set of different Turing machines, all of the same size. The chief advantage
of algorithmic indices is that causal signals in a sequence may escape entropic
measures if they do not produce statistical regularities. And it has been the case
that increasing the length of k in k-nucleotide models of structural properties
of DNA has not returned more than a marginal advantage.

The Algorithmic Probability [10] (also known as Levin’s semi-measure [8]) of
a sequence s is a measure that describes the expected probability of a random
program p running on a universal prefix-free Turing machine T producing s.
Formally,

m(s) =
∑

p:T (p)=s

1/2|p|

The Coding theorem beautifully connects C(s) and m(s):

C(s) ∼ − logm(s)

1.3.3 Bennett’s Logical Depth

Another measure of great interest is logical depth [2]. The logical depth (LD) of
a sequence s is the shortest time logged by the shortest programs pi that produce
s when running on a universal reference Turing machine. In other words, just
as algorithmic complexity is associated with lossless compression, LD can be
associated with the shortest time that a Turing machine takes to decompress the
sequence s from its shortest computer description. A multiplicative invariance
theorem for LD has also been proven [2]. Estimations of Algorithmic Probability
and logical depth of DNA sequences were performed as determined in [6, 9].
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Unlike algorithmic (Kolmogorov-Chaitin) complexity C, logical depth is a
measure related to ‘structure’ rather than randomness. LD can be identified
with biological complexity [3, 5] and is therefore of great interest when compar-
ing different genomic regions.

1.4 Measures Based on Algorithmic Probability and on
Logical Depth

The Coding theorem method (or simply CTM) is a method [6, 9] rooted in the
relation between C(s) and m(s) specified by Algorithmic Probability [10, 8], that
is, between frequency of production of a sequence from a random program and
its Kolmogorov-Chaitin complexity as described by Algorithmic Probability.
Essentially, it uses the fact that the more frequent a sequence the lower its
Kolmogorov-Chaitin complexity, and sequences of lower frequency have higher
Kolmogorov-Chaitin complexity. Unlike algorithms for lossless compression,
the Algorithmic Probability approach not only produces estimations of C for
sequences with statistical regularities, but it is deeply rooted in a computational
model of Algorithmic Probability, and therefore, unlike lossless compression, has
the potential to identify regularities that are not statistical (e.g. a sequence such
as 1234...), that is, sequences with high Entropy or no statistical regularities but
low algorithmic complexity [13, 12].

Let (n,m) be the space of all n-state m-symbol Turing machines, n,m > 1
and s a sequence, then:

D(n,m)(s) =
|{T ∈ (n,m) : T produces s}|

|{T ∈ (n,m)}|
where T is a standard Turing machine as defined in the Busy Beaver problem
by Radó [11] with 4 symbols (in preparation for the calculation of the DNA
alphabet size).

Then, using the relation established by the Coding theorem, we have:

CTM(s) = − log2(D(n,m)(s))

That is, the more frequently a sequence is produced the lower its Kolmogorov-
Chaitin complexity, and vice versa. CTM is an upper bound estimation of
Kologorov-Chaitin complexity.

From CTM, a measure of Logical Depth can also be estimated–as the com-
puting time that the shortest Turing machine (i.e. the first in the quasi-
lexicographic order) takes to produce its output s before halting. CTM thus
produces both an empirical distribution of sequences up to a certain size, and
an LD estimation based on the same computational model.

Because CTM is computationally very expensive (equivalent to the Busy
Beaver problem [11]), only short sequences (currently only up to length k = 12)
have associated estimations of their algorithmic complexity. To approximate
the complexity of genomic DNA sequences up to length k = 12, we calculated
D(5, 4)(s), from which CTM(s) was approximated.
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Table 1: Spearman correlation values of complexity score functions vs. the
Wedge dinucleotide model prediction of DNA curvature on 20 synthetically gen-
erated DNA sequences depicted in Table 4

GC Entropy Entropy Compress BZip2 BDM LD
content rate (4)

rho -0.45 -0.44 -0.57 -0.58 -0.45 -0.57 0.65
p 0.047 0.051 0.0094 0.0079 0.048 0.0083 0.0019

To calculate the Algorithmic Probability of a DNA sequence (e.g. the slid-
ing window of length 147 nt) we produced an empirical Algorithmic Probability
distribution from (5, 4) to compare with by running a sample of 325 433 427 739
Turing machines with up to 5 states and 4 symbols (the number of nucleotides
in a DNA sequence) with empty input (as required by Algorithmic Probability).
The resulting distribution came from 325 378 582 327 non-unique sequences (af-
ter removal of those sequences only produced by 5 or fewer machines/programs).

1.5 Relation of BDM to Shannon Entropy and GC Con-
tent

The Block Decomposition Method (BDM) is a divide-and-conquer method that
can be applied to longer sequences on which local approximations of C(s) using
CTM can be averaged, thereby extending the range of application of CTM.
Formally,

BDM(s, k) =
∑
sk

log(n) + CTM(r)

where the set of subsequences sk is composed of the pairs (r, n), where r is an
element of the decomposition of sequence s of size k, and n the multiplicity of
each subsequence of length k. BDM(s) is a computable approximation from
below to the algorithmic information complexity of s, C(s). BDM approxima-
tions to C improve with smaller departures (i.e. longer k-mers) from the Coding
Theorem method. When k decreases in size, however, we have shown [14] that
BDM approximates the Shannon Entropy of s for the chosen k-mer distribu-
tion. In this sense, BDM is a hybrid complexity measure that in the ‘worst case’
behaves like Shannon Entropy, and in the best approximates C. We have also
shown that BDM is robust when, instead of partitioning a sequence, overlapping
subsequences are used, but this latter method tends to over-fit the value of the
resultant complexity of the original sequence that was broken into k-mers.
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Table 2: Distance in number of nucleotides to local minimum (local maximum
for LD and greatest local min/max for GC content) around a window of length
73 nts. In all cases, the same sequence was used and was assembled by flanking
true nucleosomal regions with pseudo-randomly generated sequences with the
same GC content as the mean of the GC content of the nucleosomal regions.
Even in cases when GC content is not informative (by design) because neither
the local min or max values were found closer to the centres than 20 nts on
average (and median of 22), max values of BDM were better able to pinpoint
nucleosome centres in a large number of cases and with an accuracy of less than
10 nts on average (and a median of less than 7 nts). Entropy was found to be
off by around 11.5 nts on average (median of 10 nts), lossless compression by
more than 21 nts (median of 36), and LD (max values) by less than 7 nts on
average (median 4.5 nts). Unlike Kaplan’s, BDM and LD are informative but
training-free, followed closely by entropy.

LD
601 603 605 5Sr DNA pGub chicken β−

globulin

3 12 13 14 12 8

msat CAG TATA CA NoSecs TGGA TGA BadSecs

6 3 5 2 4 3 4 3

BDM
601 603 605 5Sr DNA pGub chicken β−

globulin

15 11 19 22 15 6

msat CAG TATA CA NoSecs TGGA TGA BadSecs

8 1 2 0 29 1 2 6

Entropy
601 603 605 5Sr DNA pGub chicken β−

globulin

15 2 14 12 10 8

msat CAG TATA CA NoSecs TGGA TGA BadSecs

17 22 3 31 8 6 4

GC content
601 603 605 5Sr DNA pGub chicken β−

globulin

32 25 36 25 15 25

msat CAG TATA CA NoSecs TGGA TGA BadSecs

16 32, 26 22 16 18 26

Compression
601 603 605 5Sr DNA pGub chicken β−

globulin

36 4 36 36 36 36

msat CAG TATA CA NoSecs TGGA TGA BadSecs

12 5 3 4 36 3 2 36
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Table 3: 14 Experimental nucleosome sequences [1]. Only the first 6 have known
dyads

name dyad sequence
position

601 74 ACAGGATGTATATATCTGACACGTGCCTGGAGACTAGGGAGTA

ATCCCCTTGGCGGTTAAAACGCGGGGGACAGCGCGTACGTGCG

TTTAAGCGGTGCTAGAGCTGTCTACGACCAATTGAGCGGCCTCG

GCACCGGGATTCTCCAG

603 154 CGAGACATACACGAATATGGCGTTTTCCTAGTACAAATCACCCCA

GCGTGACGCGTAAAATAATCGACACTCTCGGGTGCCCAGTTCGC

GCGCCCACCTACCGTGTGAAGTCGTCACTCGGGCTTCTAAGTACG

CTTAGGCCACGGTAGAGGGCAATCCAAGGCTAACCACCGTGCAT

CGATGTTGAAAGAGGCCCTCCGTCCTTATTACTTCAAGTCCCTGG

GGTACCGTTTC

605 132 TACTGGTTGGTGTGACAGATGCTCTAGATGGCGATACTGACAGG

TCAAGGTTCGGACGACGCGGGATATGGGGTGCCTATCGCACATT

GAGTGCGAGACCGGTCTAGATACGCTTAAACGACGTTACAACCC

TAGCCCCGTCGTTTTAGCCGCCCAAGGGTATTCAAGCTCGACGCT

AATCACCTATTGAGCCGGTATCCACCGTCACGACCATATTAATAG

GACACGCCG

5Sr DNA 74, 92 AACGAATAACTTCCAGGGATTTATAAGCCGATGACGTCATAACAT

CCCTGACCCTTTAAATAGCTTAACTTTCATCAAGCAAGAGCCTAC

GACCATACCATGCTGAATATACCGGTTCTCGTCCGATCACCGAAG

TCAAGCAGCATAGGGCTCGGTTAGTACTTGGATGGGAGACCGCC

TGGGAATACCG

pGub 84, 104 GATCCTCTAGACGGAGGACAGTCCTCCGGTTACCTTCGAACCACGT

GGCCGTCTAGATGCTGACTCATTGTCGACACGCGTAGATCTGCTAG

CATCGATCCATGGACTAGTCTCGAGTTTAAAGATATCCAGCTGCCC

GGGAGGCCTTCGCGAAATATTGGTACCCCATGGAATCGAGGGATC

chicken β- 125 CTGGTGTGCTGGGAGGAAGGACCCAACAGACCCAAGCTGTGGTC

globulin TCCTGCCTCACAGCAATGCAGAGTGCTGTGGTTTGGAATGTGTGA

GGGGCACCCAGCCTGGCGCGCGCTGTGCTCACAGCACTGGGGTG

AGCACAGGGTGCCATGCCCACACCGTGCATGGGGATGTATGGCGC

ACTCCGGTATAGAGCTGCAGAGCTGGGAATCGGGGGG

mouse minor ATTTGTAGAACAGTGTATATCAATGAGCTACAATGAAAATCATGGA

satellite AAATGATAAAAACCACACTGTAGAACATATTAGATGAGTGAGTTA

CACTGAAAAACACATCCGTTGGAAACCGGCAT

CAG AGCAGCAGCAGCAACAGTAGTAGAAGCAGCAGCACTAACGACAG

CACAGCAGTAGCAGTAATAGAAGCAGCAGCAGCAGCAGTAGCAG

TAGCAGCAGCAGCAGCAGCAATTTCAACAACAGCAGCAGCAGCT

TATA AGGTCTATAAGCGTCTATAAGCGTCTATGAACGTCTATAAACGTCT

ATAAACGCCTATAAACGCCTATAAACGCCTATACAAGCCTATAAAC

GCCTATACACGTCTATGCACGACTATACACGTCT

CA GAGAGTAACACAGGCACAGGTGTGGAGAGTAACACAGGCACAG

GTGTGGGAGAGTGACACACAGGCACAGGTGAGGAGAGTACACA

CAGGCACAGGTGTGGAGAGCACACACAGGTGCGGAGAG

NoSecs GGGCTGTAGAATCTGATGGAGGTGTAGGATGGATGGACAGTATGA

CAAAAGGGTACTAGCCTGGGACAGCAGGATTGGTGGAAAGGTTA

CAGGCAGGCCCAGCAGGCTCGGACGCTGTATAGAG

TGGA AGATGGATGGATGATGGATGGATGATGGATAGATGGATGATGGAT

GGATGGATGATGATGGATGAATAGATGGATGGATGGATGATGGAT

GGATGGACGATGGATGGATAGATGGATGGATGG

TGA ATAGATGGATGAGTGGATGGATGGGTGGATGGATAGATGGGTGG

ATGGGTGGATGGGTGGATGGATGATGGATGGATGAGTGGATGGA

TGGATGGATGGGTGGATGGGTGGACGG

BadSecs TCTAGAGTGTACAACTATCTACCCTGTAGGCATCAAGTCTATTTCGG

TAATCACTGCAGTTGCATCATTTCGATACGTTGCTCTTGCTTCGCTAG

CAACGGACGATCGTACAAGCAC
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Table 4: The 20 short DNA sequences artificially generated covering a wide
range of patterns and regularities used to find informative measures of DNA
curvature.

AAAAAAAAAAAA ATATATATATAT AAAAAATTTTTT

AAAAAAAAATAA AAAAAAAACAAT AAGATCTACACT

ATAGAACGCTCC ACCTATGAAAGC TAGGCGGCGGGC

TCGTTCGCGAAT TGCACGTGTGGA CTAAACACAATA

CTCTCAGGTCGT CTCGTGGATATC CCACGATCCCGT

GGCGGGGGGTGG GGGGGGGCGGGC GGGGGGCCCCCC

GCGCGCGCGCGC GGGGGGGGGGGG
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Figure 1: Evaluation of nucleosome 601 DNA sequence in the Online Algorith-
mic Complexity Calculator available free at http://complexitycalculator.

com/. To reproduce scores between 0 and 1 as reported in all the results, it
suffices to rescale all values between 0 and 1.
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