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Supplementary Figures: 
 

 
 
Figure S1. Results from with and without the integration of TF weights in standard 
CARNIVAL. Results are shown for beta = 1. 
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Figure S2. Results from the integration of pathway weights in inverse CARNIVAL. Results are 
shown for beta = 0.5. 
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Figure S3. Comparison of the enrichment results of the perturbation-attributed pathway set in 
dysregulated pathways inferred with different tools. An enrichment of the perturbation-attributed 
pathway set among the significant pathways was determined. For GSEA, dysregulated pathways 
were inferred with the piano R-package to determine whether a certain pathway is  activated (up-
regulated) or inhibited (down-regulated). For CausalR and CARNIVAL, an over-representation 
analysis of up- or down-regulated solution nodes in the KEGG gene sets was used as a proxy 
instead. The combined results from StdCARNIVAL and CausalR are labeled as “CARCAU”. The 
significance level of 0.05 is indicated by the dotted lines. 
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Figure S4. Comparison of node connectivity distributions for networks from CARNIVAL and 
CausalR comparing to the prior knowledge network (PKN). 
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Figure S5. Combined IgAN-contextualized networks from CARNIVAL for all node penalties β 
in (0.03; 0.1; 0.3; 0.5; 0.8). Up-regulated nodes and activatory reactions are indicated in blue while 
down-regulated nodes and inhibitory edges are colored in red. Triangles correspond to 
transcription factors, diamonds represent input nodes and circles correspond to purely inferred 
nodes. The intensity of color refers to the average node activities from all node penalties.  
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Figure S6. Jaccard similarity measures of 100 networks generated by 70% down-sampling (top-
left) and by re-shuffling of transcription factor (TF) inputs’ labels (top-right) compared to the true 
IgAN network from actual data. The mean and standard deviation of the Jaccard similarity measure 
of the 70% down-sampling networks is 0.448 +/- 0.051 (mean +/- S.D.) while they are 0.065 +/- 
0.032 (mean +/- S.D.) from TF-labels reshuffling (bottom). The p-value from one-sided 
Komogorov-Smirnov test between the two sets of Jaccard similarity distribution is 3.72e-44.  
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Figure S7. Network topology measures from IgAN-contextualized networks from CARNIVAL at 
five different size penalty (beta=0.03,0.1,0.3,0.5,0.8) and from 100 randomized networks   with 
degree and sign preserved generated from the prior knowledge network. Dots and error bars 
represent the mean and standard deviation for each node in each category. Significant differences 
from t-test are highlighted with asterisks (*) after the protein names in the IgAN set. Question 
marks (?) were annotated when a significant test could not performed e.g. due to limited sample 
sizes. 
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Supplementary Tables: 
 
Table S1. Representative nodes of PROGENy pathway in CARNIVAL. A minimal number of  
representative nodes were chosen in a way that covers all associated signalling routes described in 
KEGG while avoiding overlaps between pathways and with DoRothEA TFs if possible. 
 

Pathway Representative nodes 

EGFR EGFR, ERBB2 

Hypoxia HIF1A 

JAK/STAT JAK1, JAK2, JAK3 

MAPK BRAF, ARAF, RAF1 

NFkB NFKB1 

PI3K PIK3CA, PIK3CB, PIK3CD, PIK3CG 

TGFb TGFBR1, TGFBR2, BMPR1A, BMPR1B, BMPR2 

TNFa TNFRSF1A, TNFRSF1B 

Trail CASP8, CASP10 

VEGF FLT1, FLT3, KDR, PDGFRA, PDGFRB 

p53 TP53 

Androgen AR 

Estrogen ESR1, ESR2 

WNT DVL1 
 
 
Table S2. Glomerular gene expression datasets. Microarray gene expression data for IgAN 
patients and healthy living donors (HLD) were accessed from the GEO database1. The accession 
number is shown together with the number of samples in each class (IgAN, HLD). 
 
Study GEO accession Platform HLD IgAN 

Berthier et al. (2012)2  GSE37460 GPL96 & GPL570 27 27 

Hodgin et al. (2014)3 GSE50469 GPL96 & GPL570 0 22 

Liu et al. (2017)4 GSE93789 GPL570 22 20 



Woroniecka et al. (2011)5 GSE30122 GPL571 6 0 

Berthier et al. (2012)2 GSE32591 GPL96 4 0 

 
 
Table S3. Top 20 nodes and edges with highest average network topology measures from the 
IgAN networks with different node penalty parameters (β in (0.03; 0.1; 0.3; 0.5; 0.8), see 
Methods). 
 

Top 20 In-degree 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

AR 8.2 0 8.2 0 0.0000 0.0095 
TP53 7.4 3.8 11.2 609.2 0.0024 1.0000 
STAT3 7.2 0.4 7.6 135.3 0.0000 0.0302 
MAPK1 6.4 11.2 17.6 1164.2 0.0308 0.0002 
STAT1 6.4 4.4 10.8 1071.7 0.0001 0.1163 
MAPK8 5.6 7.6 13.2 1007.1 0.2150 0.0000 
ATM 5.2 3 8.2 2550 0.0027 0.0002 
GSK3B 5.2 5.8 11 1854.6 0.0821 0.0142 
CDKN1A 5 1 6 170.125 0.0000 0.0056 
CREB1 5 0.2 5.2 22 0.0000 0.2396 
MEF2A 5 0 5 0 0.0000 0.0453 
CDK1 4.8 5 9.8 2218.3 0.0016 0.0040 
MEF2C 4.8 0 4.8 0 0.0000 0.0492 
SP1 4.8 1.8 6.6 76.4 0.0001 0.9537 
ABL1 4.6 7.2 11.8 1082.8 0.0170 0.0060 
IKZF1 4.6 0 4.6 0 0.0000 0.0522 
SRC 4.4 8.6 13 1623.6 0.0234 0.0020 
STAT6 4.2 1 5.2 137.6 0.0282 0.0589 
YAP1 4.2 2.6 6.8 824.1 0.0023 0.0137 
CTNNB1 3.8 2 5.8 86.2 0.0000 0.0083 

Top 20 Out-degree 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

MAPK3 3 11.8 14.8 910.5 1.0000 0.0000 
MAPK1 6.4 11.2 17.6 1164.2 0.0308 0.0002 
SRC 4.4 8.6 13 1623.6 0.0234 0.0020 
PRKACA 2 8.4 10.4 2557.4 0.0483 0.0079 
MAPK8 5.6 7.6 13.2 1007.1 0.2150 0.0000 
ABL1 4.6 7.2 11.8 1082.8 0.0170 0.0060 
CSNK2A1 1 6.6 7.6 195.4 0.1474 0.0124 
AKT1 3.4 5.8 9.2 2885.6 0.0277 0.0057 
GSK3B 5.2 5.8 11 1854.6 0.0821 0.0142 
CDK5 1 5.5 6.5 783.5 0.0014 0.0000 



CDK1 4.8 5 9.8 2218.3 0.0016 0.0040 
MAPK14 1 5 6 263.125 0.0382 0.0000 
PRKAA1 2.4 5 7.4 114.4 0.1819 0.0160 
STAT1 6.4 4.4 10.8 1071.7 0.0001 0.1163 
ATR 2.8 4 6.8 324 0.3459 0.0059 
TGFBR1 1.6 4 5.6 68.8 0.0018 0.0000 
TP53 7.4 3.8 11.2 609.2 0.0024 1.0000 
TGFBR2 1.6 3.6 5.2 337 0.0000 0.0068 
PPP1CA 1.25 3.5 4.75 631.25 0.0021 0.0002 
PTPN2 0 3.4 3.4 0 0.0037 0.0000 

Top 20 All-degree 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

MAPK1 6.4 11.2 17.6 1164.2 0.0308 0.0002 
MAPK3 3 11.8 14.8 910.5 1.0000 0.0000 
MAPK8 5.6 7.6 13.2 1007.1 0.2150 0.0000 
SRC 4.4 8.6 13 1623.6 0.0234 0.0020 
ABL1 4.6 7.2 11.8 1082.8 0.0170 0.0060 
TP53 7.4 3.8 11.2 609.2 0.0024 1.0000 
GSK3B 5.2 5.8 11 1854.6 0.0821 0.0142 
STAT1 6.4 4.4 10.8 1071.7 0.0001 0.1163 
PRKACA 2 8.4 10.4 2557.4 0.0483 0.0079 
CDK1 4.8 5 9.8 2218.3 0.0016 0.0040 
AKT1 3.4 5.8 9.2 2885.6 0.0277 0.0057 
AR 8.2 0 8.2 0 0.0000 0.0095 
ATM 5.2 3 8.2 2550 0.0027 0.0002 
CSNK2A1 1 6.6 7.6 195.4 0.1474 0.0124 
STAT3 7.2 0.4 7.6 135.3 0.0000 0.0302 
PRKAA1 2.4 5 7.4 114.4 0.1819 0.0160 
ATR 2.8 4 6.8 324 0.3459 0.0059 
YAP1 4.2 2.6 6.8 824.1 0.0023 0.0137 
HDAC5 3.6 3 6.6 36.6 0.0604 0.0379 
SP1 4.8 1.8 6.6 76.4 0.0001 0.9537 

Top 20 Betweenness 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

AKT1 3.4 5.8 9.2 2885.6 0.0277 0.0057 
PRKACA 2 8.4 10.4 2557.4 0.0483 0.0079 
ATM 5.2 3 8.2 2550 0.0027 0.0002 
CDK1 4.8 5 9.8 2218.3 0.0016 0.0040 
KAT5 1.4 2 3.4 1966.5 0.0003 0.0001 
GSK3B 5.2 5.8 11 1854.6 0.0821 0.0142 
SRC 4.4 8.6 13 1623.6 0.0234 0.0020 
CDKN1B 2 1 3 1466 0.0001 0.0000 
GRB10 2 1 3 1364 0.0000 0.0159 



PML 2 1 3 1291.25 0.0001 0.0252 
DVL1 1 1 2 1206.166667 0.0000 0.0000 
MAPK1 6.4 11.2 17.6 1164.2 0.0308 0.0002 
ABL1 4.6 7.2 11.8 1082.8 0.0170 0.0060 
STAT1 6.4 4.4 10.8 1071.7 0.0001 0.1163 
MAPK8 5.6 7.6 13.2 1007.1 0.2150 0.0000 
SMO 1 1 2 972.625 0.0001 0.0054 
MAPK3 3 11.8 14.8 910.5 1.0000 0.0000 
RET 1 2 3 905.125 0.0000 0.0025 
YAP1 4.2 2.6 6.8 824.1 0.0023 0.0137 
CDK5 1 5.5 6.5 783.5 0.0014 0.0000 

Top 20 Hub-score 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

MAPK3 3 11.8 14.8 910.5 1.0000 0.0000 
ATR 2.8 4 6.8 324 0.3459 0.0059 
MAPK8 5.6 7.6 13.2 1007.1 0.2150 0.0000 
PRKAA1 2.4 5 7.4 114.4 0.1819 0.0160 
CSNK2A1 1 6.6 7.6 195.4 0.1474 0.0124 
HDAC4 2.8 3 5.8 57.7 0.0851 0.0497 
GSK3B 5.2 5.8 11 1854.6 0.0821 0.0142 
STK11 1 3 4 417.4 0.0722 0.0067 
HDAC5 3.6 3 6.6 36.6 0.0604 0.0379 
HNF1B 1 1.8 2.8 73.2 0.0588 0.0000 
PRKACA 2 8.4 10.4 2557.4 0.0483 0.0079 
MAPK14 1 5 6 263.125 0.0382 0.0000 
MAPK1 6.4 11.2 17.6 1164.2 0.0308 0.0002 
STAT2 1.4 1 2.4 71.6 0.0282 0.0001 
STAT6 4.2 1 5.2 137.6 0.0282 0.0589 
AKT1 3.4 5.8 9.2 2885.6 0.0277 0.0057 
TRIM24 0 2 2 0 0.0239 0.0000 
SRC 4.4 8.6 13 1623.6 0.0234 0.0020 
ABL1 4.6 7.2 11.8 1082.8 0.0170 0.0060 
SMAD3 1 3 4 46 0.0126 0.0000 

Top 20 Authority-score 
Protein In-degree Out-degree All-degree Betweenness Hub-score Authority-score 

TP53 7.4 3.8 11.2 609.2 0.0024 1.0000 
SP1 4.8 1.8 6.6 76.4 0.0001 0.9537 
RUNX2 3.4 0 3.4 0 0.0000 0.7359 
GABPA 1.2 0 1.2 0 0.0000 0.6918 
ETS1 1.2 0 1.2 0 0.0000 0.6910 
JUN 3.8 2.2 6 111.1 0.0000 0.4111 
CREB1 5 0.2 5.2 22 0.0000 0.2396 
KMT2A 2 3 5 380.2 0.0001 0.1566 



PTPN6 1.4 2.2 3.6 175.8 0.0030 0.1449 
CTBP1 2 1 3 69.4 0.0000 0.1371 
JAK2 1 2 3 23.2 0.0039 0.1284 
STAT1 6.4 4.4 10.8 1071.7 0.0001 0.1163 
HNF4A 2 0 2 0 0.0000 0.0865 
VDR 2.2 0 2.2 0 0.0000 0.0689 
STAT6 4.2 1 5.2 137.6 0.0282 0.0589 
NR3C1 2 1 3 18 0.0000 0.0534 
IKZF1 4.6 0 4.6 0 0.0000 0.0522 
HDAC4 2.8 3 5.8 57.7 0.0851 0.0497 
MEF2C 4.8 0 4.8 0 0.0000 0.0492 
MEF2A 5 0 5 0 0.0000 0.0453 

 
 
Table S4. Results from literature search based on the list of up- and down-regulated nodes 
identified by CARNIVAL. ‘Hits’ refers to the number of these nodes being present together with 
the IgAN term. The suffixes ‘_up’ and ‘_dn’ refers to the activity of the nodes in CARNIVAL 
networks. To account for consistencies, only the nodes which are present in at least 4 out of 5 size 
penalty parameters (beta) being tested are included. No conflicting CARNIVAL node’s activity 
was observed.  
 

Hits CARNIVAL nodes 

8 JUN_up 

7 MAPK1_dn, MAPK3_up, SYK_up 

6 STAT3_dn 

4 CDK1_dn, MAPK8_up 

3 AKT1_dn, CTNNB1_up, MYC_dn 

2 CARD9_up, GABPA_up, JAK2_dn, RHOA_up, SP1_up, SRC_up, STAT1_up, 
STAT6_dn, VDR_dn, ZEB2_dn 

1 ATF1_dn, CDKN1A_up, CDKN1B_up, HDAC2_dn, HDAC4_dn, KMT2A_up, 
PRKACA_dn, TBX21_up, TP53_up, TRAF6_up 

0 ABL1_up, ACTL6A_dn, AR_dn, ARHGAP1_up, ARHGEF12_up, ATAD2_dn, 
ATF2_dn, ATM_dn, ATR_up, CAMKK1_up, CARM1_up, CDK4_dn, CDK5_dn, 
CDK5RAP3_dn, CDKN2B_up, CEBPA_up, CIITA_up, CKS1B_dn, CLK1_dn, 
CREB1_dn, CSNK2A1_dn, CSNK2B_dn, CTBP1_dn, DDX20_dn, DUSP7_up, 



DYRK1B_dn, EEF1E1_up, ELK1_dn, ETS1_up, FOXL2_dn, FYN_dn, GSK3B_up, 
HCK_up, HDAC5_dn, HNF1A_dn, HNF1B_dn, HNF4A_dn, HOXD9_up, IKZF1_up, 
IRF1_up, IRF2_up, IRF4_up, KAT2B_dn, KAT5_dn, LAMTOR3_dn, MAP2K3_dn, 
MAP3K1_up, MAP3K7_up, MAP4K1_up, MAPK14_up, MED14_up, MEF2A_up, 
MEF2C_up, MEIS1_up, MTNR1A_dn, MUTYH_up, MYT1_up, NCOA3_up, PAX7_up, 
PCBD1_dn, POU2AF1_up, POU2F2_up, POU5F1_up, PPP1CA_up, PPP1CB_up, 
PPP2R2C_dn, PRDM1_up, PRKAA1_up, PTPN21_up, PTPN6_dn, PTPRB_up, 
PTPRJ_up, RAD50_dn, RELB_up, RET_up, RFX1_up, RFX5_up, ROCK2_up, 
RUNX1_up, RUNX2_up, SIRT2_up, SMO_up, SPI1_up, STAT2_up, STK11_up, 
TCF4_up, TCF7_up, TEAD1_up, TGFBR1_up, TGFBR2_up, WNT7A_dn, YAP1_up 

 
Table S5. Comparison of p-values from the two-step inference analysis of CARNIVAL and GSEA 
results. The p-values of CARNIVAL results are the average values from the CARNIVAL results 
with different node penalty parameters (β in (0.03; 0.1; 0.3; 0.5; 0.8), see Methods). 
 

Pathway CARNIVAL GSEA 

Up Down Up Down 

ADHERENS_JUNCTION 3.97E-07 0.005333067 3.32E-07 0.000477927 

TGF_BETA_SIGNALING_
PATHWAY 

0.001361965 0.417998022 7.55E-05 0.003303530 

TIGHT_JUNCTION 0.230886127 0.001114261 0.221616881 8.40E-05 

FOCAL_ADHESION 0.000289652 0.287633245 0.000211657 0.226049943 

NEUROTROPHIN_SIGNAL
ING_PATHWAY 

0.0004987 0.508766561 0.000426883 0.347757834 

MAPK_SIGNALING_PATH
WAY 

0.000571613 0.05861374 0.000426327 0.034538337 

WNT_SIGNALING_PATH
WAY 

0.001277748 0.020018325 0.001512523 0.002791867 

VASCULAR_SMOOTH_ 
MUSCLE_CONTRACTION 

0.007026133 0.222632998 0.001953213 0.112084215 

ERBB_SIGNALING_PATH
WAY 

0.002337064 0.08835585 0.001873277 0.044712518 

CELL_CYCLE 0.027777764 0.066435369 0.00204617 0.035192772 

  



Supplementary Texts: 
 
Text S1. ILP implementation. 
 
We re-implemented the integer linear programming (ILP) formulation of causal reasoning problem 
presented in Melas et al.6 in the R programming language. A summarized description of the ILP 
formation is shown as follows:  
 
A signaling network 𝐺 is an interaction graph defined by a set of signed and directed reactions 𝑖 =
1,2, . . . , 𝑛', and a set of nodes 𝑗 = 1,2, . . . , 𝑛). Thereby, each reaction 𝑖 is characterized by an 
ordered pair consisting of source species 𝑆+ and target species 𝑇+ with 𝑆+, 𝑇+ ∈ {1,2, . . . , 𝑛)}. The 
reaction sign is denoted by 𝜎+ ∈ 	 {−1,1} and distinguishes between activation (𝜎+ = 1) and 
inhibition (𝜎+ = −1). The ILP variable definitions are summarized in Table 1 and provide a key to 
the used notation. 
 
Table 1. The list of ILP variables and their descriptions 
 
Variable Description 

𝑢+4 ∈ 	 {0,1} Potential of reaction 𝑖 to activate its target node 

𝑢+7 ∈ 	 {0,1} Potential of reaction 𝑖 to inhibit its target node 

𝜎+ ∈ 	 {−1,1} Sign of reaction 𝑖	

𝑥94 ∈ 	 {0,1} Potential of node 𝑗 to be activated 

𝑥97 ∈ 	 {0,1} Potential of node 𝑗 to be inhibited 

𝑥9 ∈ 	 {−1,0,1} Predicted activation/inhibition state of species 𝑗	

𝑚9 ∈ 	 {−1,0,1} Activation/inhibition state of measured species 𝑗	

𝐼9 ∈ 	 {−1,0,1, 𝑁𝑎𝑁} Activation/inhibition state of perturbed species 𝑗; 𝑁𝑎𝑁 represents the 
unknown state 

𝐵9 ∈ 	 {−1,0,1} Auxiliary variable to determine the state perturbed species 𝑗 once the 
input value 𝐼9 = 𝑁𝑎𝑁 

𝑑9 ∈ [0,𝑀] Auxiliary distance variables assigned to each node 𝑗 where 𝑀is a 
sufficiently large number (default: 𝑀 = 100) 

𝐴9 ∈ [0,2] Auxiliary variable representing the absolute difference between the 
inferred and measured species 𝑗. 

 
    



The variables in Table 1 are determined during the linear programming optimisation according to 
the following set of constraints of causal reasoning principle. The activation state of a reaction 𝑖 is 
defined by the activity of its source node 𝑋E+ and the reaction sign 𝜎+. The reaction has a potential 
to activate its target node (𝑢+4 = 1), if and only if 𝜎+ ⋅ 𝑥E+ = 1. This occurs in two cases: either the 
source node is activated (𝑥9 = 𝑆+ = 1) and has an activating effect on its target node (𝜎+ = 1); or 
the source node is inhibited (𝑥9 = 𝑆+ = −1) and has an inhibiting effect (𝜎+ = −1). Vice versa, a 
reaction has the potential to downregulate its target node (𝑢+7 = 1), if and only if 𝜎+ ⋅ 𝑥E+ = −1.   
 

𝑢+4 ≥ 𝜎+𝑥9 where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 	𝑗	 ∈ 	 {1,2, . . . , 𝑛)}	 … 𝑐1
	 	 

𝑢+7 ≥ −𝜎+𝑥9 where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 	𝑗	 ∈ 	 {1,2, . . . , 𝑛)} … 𝑐2
	 	 

𝑢+4 ≤ 	1− 𝑢+7 where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	 … 𝑐3
	 	 

𝑢+4 ≤ 𝜎+𝑥9 	+	𝑢+7 where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 	𝑗	 ∈ 	 {1,2, . . . , 𝑛)}	 … 𝑐4
	 	 

𝑢+7 ≤ 	−𝜎+𝑥9 	+	𝑢+4 where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 	𝑗	 ∈ 	 {1,2, . . . , 𝑛)} … 𝑐5
	 	 

 
For the definition of the activation state of a node 𝑥9, two cases can be distinguished: For the non-
input nodes, the activity of these nodes is defined by the potentials of incoming reactions. If and 
only if at least one incoming reaction has the potential to activate (𝑢+4: 𝑇+M9 = 1), the node can 
have the potential to be activated (𝑥94 = 0 ∨ 1). Vice versa, a node can only have the potential to 
be down-regulated (𝑥97 = 0 ∨ 1) if at least one incoming reaction has the potential to inhibit 
(𝑢+7: 𝑇+M9 = 1). A node is then up-regulated (𝑥9 = 1), if there is exclusively a potential to be up-
regulated (𝑥94 = 1), and is down-regulated (𝑥9 = 	−1) if there is exclusively a potential to be down-
regulated (𝑥97 = 1). If none or both of the potentials exist, the node will remain neutral (𝑥9 = 0). 
 

𝑥94 ≤ 𝑢+4+:OPM9  where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 		𝑗	 ∈ 	 {1,2, . . . , 𝑛)}	 … 	𝑐6
	 	 

𝑥97 ≤ 𝑢+7+:OPM9  where 𝑖	 ∈ 	 {1,2, . . . , 𝑛'}	; 		𝑗	 ∈ 	 {1,2, . . . , 𝑛)}	 … 𝑐7
	 	 

 
For perturbed/input nodes, the activation state can be user-defined (𝑥9 = 𝐼9). In the case where the 
perturbed node is known but the activation/inhibition state remains unknown, the notation 𝑁𝑎𝑁 
can be assigned. The state of 𝑥9 is equal to 𝐵9 in this case and will then take any of the three states 
𝑥9 ∈ 	 {−1,0,1}. All remaining input nodes which were not defined for its activation state in the 
input list will always take the value 0 and will not influence the system. 
 

𝑥9 = 𝑥94 − 𝑥97 + 𝐵9 where 𝑗	 ∈ 	 {1,2, . . . , 𝑛)}	 … 𝑐8
	 	[1] 

𝑥9 = 𝐼9 where 𝑗	 ∈ 	I	; 		𝐼9 ∈ {−1,0,1}	 … 𝑐8
	 	[2] 

𝑥9 = 𝐵9 where 𝑗	 ∈ 	S− T			  … 𝑐8
	 	[3] 

𝐵9 = 0 where 𝑗	 ∈ S	 ∪ 	T − 𝐼	 … 𝑐8
	 	[4] 

 
In addition, feedback loops are removed given that effects mediated through those are highly 
dynamic and hardly interpretable from a static snapshot as in an interaction network. For instance, 
positive feedback loops can lead to internal signals independent to external perturbations. These 
were constrained through a distance variable 𝑑9. Thereby, the distance of all nodes connected to a 
perturbation node is set to a value larger than zero, while all others are defined to be zero. As a 
consequence, only nodes connected to a perturbation can be deregulated. The distance increases 



from source node to target node if the interaction is active, i.e. 𝑢+4 = 1 ∨ 𝑢+7 = 1, and is not allowed 
to pass the distance threshold 𝑀, which is considerably larger than expected path lengths. 
 

𝑥+4 		≤ 	𝑑9  … 𝑐R	 	[1] 
𝑥+7 		≤ 	𝑑9  … 𝑐R	 	[2] 

𝑑OP ≥ 	𝑑EP + 1−𝑀 + 𝑢+4𝑀 … 𝑐R	 	[3] 
𝑑OS ≥ 	𝑑EP + 1−𝑀 + 𝑢+7𝑀 … 𝑐R	 	[4] 

𝑑9 ≤ 	𝑀 … 𝑐R	 	[5] 
 
 
Text S2. Additional parameter settings and the inverse CARNIVAL pipeline. 
      
It should be noted that, while the objective function is able to rank network solutions according to 
the pre-defined criteria as described in the manuscript, this does not imply that the best-scoring 
network solutions from each parameter setting need to be similar. We therefore also explored the 
results generated from multiple 𝛼-to-𝛽 ratios. While larger node penalties frequently did not 
produce solutions, a node penalty between  0.03 and 1.5 resulted in similar results and similar 
performance for standard CARNIVAL. Given that inverse CARNIVAL was found to be more 
sensitive towards changes in node penalty,  a value between 0.03 and 0.5 is recommended for 
inverse CARNIVAL. Summarised results from the study of multiple 𝛼-to-𝛽 ratios can be found in 
Supplementary Text S3. 
      
The inverse CARNIVAL pipeline allows network inference without protein target information. 
While the ILP formulation itself requires known target proteins, a list of all potential perturbed 
nodes can be directly generated from the prior knowledge network, and can be used to capture all 
potential paths. In this study, we generated this list from all nodes with only outgoing and no 
incoming edges. 
      
In the original ILP formulation, input nodes are not subjected to the node penalty and were already 
pre-defined with regard to their activity state. In inverse CARNIVAL, even if the activity state of 
the inputs are unknown, an input node penalty is still desired to limit the number of input nodes in 
the solution network. This can be achieved by adding an extra perturbation node to the prior 
knowledge network which has both outgoing activating and inhibiting edges to all potential input 
nodes. This perturbation node then serves as an unpenalized target of perturbation and can be 
linked to all potential input nodes without restricting their activity state. These potential input 
nodes are then penalized as normal additional nodes if deregulated. 
 
 
Text S3. Summarised results from the study of multiple 𝛼-to-𝛽ratios. 

1. Standard CARNIVAL  
 
While the original study by Melas et al. chose parameters in a way that one fitted measurement 
justifies up to five additional nodes (𝛼/𝛽 = 5), it is unclear how strongly changes in the node 



penalty 𝛽 affect the solutions obtained and why this particular ratio was selected. To evaluate the 
sensitivity of the method to changes in this penalty ratio, the mismatch penalty was set to 𝛼 = 5 
and the effect of changes in node penalty tested around the parameter values of 𝛽 = [0; 2].  
 
As expected by its definition, it was found that the number of nodes and interactions dropped with 
increasing node penalty (Figure ST1). In contrast, the overall interaction to node ratio and the 
number of models did not show a clear trend (results not shown). Only 45% of the perturbations 
(9 out of 20) solutions were derived from CPLEX with a node penalty of 𝛽 = 2. Comparison 
between the solutions derived with each node penalty in each perturbation revealed that the 
solutions changed with modified node penalties. However, for the standard CARNIVAL 
benchmarking results, similar node penalties lead to similar results and the sign is not contradicting 
over all considered node penalties for 96.9% (3,955/4,082) of the nodes. This indicates that the 
node penalty has an effect which might result in alternative, but rarely contradicting solutions. 
       

 
    
Figure ST1: Effects of changes in node penalty β. Overall, the number of nodes and interactions 
decreases with increasing node penalty, while the number of models and the interaction to node 
ratio do not show consistent trends. The Jaccard Index between the union of signed nodes obtained 
with different β is generally high between similar node penalties and decreases with increasing 
changes in β. Only the solutions with TF weights are compared in the figures, but similar trends 
were observed without TF weights. 
      
To evaluate the effect of modifications on the node penalty 𝛽 with respect to the ability of 
CARNIVAL to capture upstream alterations, the inferred node activities were first compared with 
the experimental phosphoprotein levels. However, only 3-4 of these phosphoproteins were 
predicted as dysregulated by CARNIVAL on average and could be matched with an activity 
inferred from experimentally measured phosphoprotein levels. Due to the limited availability of 
phosphoprotein levels, meaningful statistical testing could not be performed. As an alternative 
approach, the performance was evaluated based on the agreement with expected KEGG pathways 
with a two-step inference approach instead (see Methods). 
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Figure ST2: Enrichment of the perturbation-attributed pathway set in dysregulated 
pathways inferred from CARNIVAL over different node penalty β. The KEGG enrichment of 
the attributed pathway set in the deregulated pathways shows overall similar results over different 
node penalty values. Generally, the attributed pathway set is slightly more enriched in activated 
than in inhibited pathways according to average p-values from 20 perturbations. The figure 
compares only solutions with TF weights, but similar trends were observed without TF weights. 
      
Only minor fluctuations are observed in the enrichment of the perturbation-attributed pathway set 
over different node penalties and a general trend or optimum is not noticeable. Additionally, it 
should be noted that the perturbation-attributed pathway set averaging all p-values from 20 
perturbations is slightly more significantly enriched in activated than inhibited pathways (Figure 
ST2), which means that the expected perturbation-attributed pathways are more enriched in 
activated pathways. For CARNIVAL with known perturbation, results with a node penalty of 𝛽 = 
1 are selected for display given that no improvement can be observed by deviating from the original 
mismatch to node penalty ratio of Melas et al. 
 
In addition, we also explored the effect of different node penalties on the results from the two-step 
enrichment analyses. Results are shown in Supplementary Figure ST3 below. 
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Figure ST3. Number of positive results in the SBVimprover benchmark study from the 
StdCARNIVAL pipeline with different node penalty ‘beta’ parameters. The results are 
classified according to the number of positive results with only significant enrichment of the up-
regulated nodes in CARNIVAL network (UpSigOnly) and those with also insignificant enrichment 
of the down-regulated nodes in CARNIVAL network (UpSigDnNonSig). 

 

According to the results in Figure ST3, we found slight deviations on the number of positive 
enrichment results among the range of betas from 0.001 to 1.5. Of note, there is no positive 
enrichment results from the StdCARNIVAL networks with beta=2. This is due to the much smaller 
size of these networks as demonstrated in Figure ST1 where there are insufficient numbers of 
nodes to perform the over-representation and enrichment analyses.      

2. Inverse CARNIVAL  
 
As a starting point, inverse CARNIVAL was first run with the previously used TF weights and a 
node penalty of 𝛽 = 1. However, this resulted in networks with zero similarity to the previous 
solutions with known targets of perturbation in all cases. Further investigations revealed that all of 
the derived nodes are TFs inferred from DoRothEA and at the same time in the list of potential 



input nodes (Figure ST3). Given that these nodes only possess outgoing but not incoming reactions 
they can only appear as input nodes, which explains why zero similarity between inverse and 
standard CARNIVAL was observed. 
    

 
 
Figure ST4: Effects of changes in node penalty β on solution nodes. Without known 
perturbation, the inverse CARNIVAL pipeline is more sensitive towards changes in 𝛽. With a node 
penalty of 1, all appearing nodes are TFs predicted by DoRothEA, which are by definition not 
penalized. 
     
In Figure ST4, the effect of the node penalty was also screened for inverse CARNIVAL and 
showed that the number of nodes dropped more rapidly with increasing node penalty. Also its 
solutions were hence more sensitive to adaptations in 𝛽 than the ones of CARNIVAL with known 
perturbation. Given that clear trends or optima were again not identifiable by a comparison of 
KEGG enrichment performance over 𝛽 (results not shown), a node penalty of 𝛽 = 0.5 was chosen 
for further benchmarking given that this resulted in similar numbers of nodes compared to 
CARNIVAL with known perturbation. 
 
 
Text S4. Benchmark CARNIVAL versus DoRothEA and PROGENy. 
 
Given that the CARNIVAL pipeline relies on the processed information from DoRothEA and 
PROGENy, we therefore performed two independent studies to illustrate the performance of 
CARNIVAL in comparison to the ones of its constituting tools.  
 
On the comparison of CARNIVAL versus DoRothEA, as DoRothEA also operates at the 
individual node/protein level (i.e. transcription factors [TFs]), we ran the two-step enrichment 
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analyses using CARNIVAL nodes (DoRothEA+PROGENy) versus using the original 50 input 
TFs from DoRothEA (Figure ST5). 
 

 
 
Figure ST5. Comparison of  two-step enrichment results from StdCARNIVAL versus DoRothEA 
(OnlyTF).  
 
Based on the results in Figure ST5, they showed that there is no enrichment from many 
stimuli/perturbations of the “OnlyTF” set: four TF have no results [AREG, C12iEDAP, CNTF, 
NTF3] while another four have only results from up-regulated TFs [flagellin, HBEGF, IL11, 
ODN2006]. Upon counting positive results (i.e. significant enrichment in the up-regulated part), 
stdCARNIVAL captured 5-7 enriched pathways while “onlyTF” captured only 3. Nevertheless, it 
should be noted that the “OnlyTF” results captured two pathways which CARNIVAL could not 
(IFNg and TNFa) and this is in line with the GSEA results (see Suppl. Figure S3). This reflects 
that certain information might be lost along the analytical pipeline moving from TFs towards 
pathway level - although CARNIVAL still delivered positive results for more cases. 
 
Regarding the comparison of results from CARNIVAL versus pure pathway activity inference 
from PROGENy, we would like to highlight the fact that they are not directly comparable: 
CARNIVAL gives results at the individual node/protein level while PROGENy summarizes 
information and reports results at the pathway level. One indirect comparison could be performed 
by examining the (significant) pathway scores obtained by PROGENy and the p-values from over-
representation analysis of CARNIVAL nodes of those pathways. We found four KEGG pathways 
in the curated MSigDB dataset that could represent PROGENy pathways: EGF (ErBB), MAPK 
(MAPK), PI3K (phosphoinositide) and Jak-Stat (JAK_STAT), see Table ST1. 

OnlyTFs (DoRothEA)

CARNIVAL with TF&PW weights

AR
EG

C1
2i

ED
AP

CN
TF

EG
F

FG
F8

fla
ge

llin

FS
L1

HB
EG

F

IF
NG IG
F2

IL
11

IL
1B IL

4

in
su

lin

NT
F3

O
DN

20
06

PD
G

FB

SH
H

TG
FA

TN
FA

0

1

2

3

0

1

2

3

−l
og

10
(p

va
l)

down−regulated
up−regulated



 
Table ST1. Comparison of PROGENy scores versus the p-values (pVal) from over-representation 
analysis (ORA) of up-regulated (Up) and down-regulated (Dn) nodes based on StdCARNIVAL 
results in the expected KEGG pathways according to each perturbation. 
 

Perturbation Expected Pathways PROGENy score ORA-Up-pVal ORA-Dn-pVal 

AREG EGFR 0.287 0.0546 0.1829 

 MAPK 0.5588 0.1571 0.0523 

 PI3K 0.7138 0.0908 NA 

EGF EGFR 1 0.0560 0.0697 

 MAPK 1 0.0298 0.7037 

 PI3K -0.1734 0.1165 NA 

IFNG JAK.STAT 0.8826 0.0807 0.2852 

IGF2 PI3K -0.9272 0.1478 0.8854 

IL4 JAK.STAT 0.9006 0.0139 0.5497 

IL11 JAK.STAT -0.925 0.0049 0.5676 

 MAPK 0.7932 0.0004 0.1369 

insulin PI3K 1 0.2038 NA 

TGFa EGFR 1 0.0048 0.4137 

 MAPK 1 0.0012 0.5916 

 PI3K 1 0.4468 0.3208 

 
In general, PROGENy scores make sense for most of the stimuli/perturbations in the SBVimprover 
dataset, with some exceptions. IL11 is known to activate JAK-STAT3 and subsequent ERK-
MAPK pathways. The PROGENy score of JAK.STAT is negative for IL11 stimulation, while 
CARNIVAL captured correctly JAK.STAT including the downstream MAPK pathway. The case 
of IGF2 is less conclusive as IGF2 could bind both to IGF1R (activating PI3K) and IGF2R (leading 
to lysosomal degradation). PROGENy predicted that PI3K is strongly down-regulated but 
CARNIVAL predicted the opposite although not significantly. Lastly, EGF is known to activate 
PI3K but the PROGENy score was negative, while CARNIVAL showed a low (yet not significant) 
p-value on the up-regulated part. These cases represent the findings from PROGENy that might 



be contradicting with known biology while CARNIVAL capture them better. In some cases 
though, PROGENy captured expected signals that were not strong enough in CARNIVAL (e.g. 
insignificant enrichment for PI3K pathway in the TGFa case).  
  
In summary, These two studies showed that CARNIVAL, with the addition of network knowledge 
and subsequent computations, offers complementary results to the TF and pathway scores from 
DoRothEA and PROGENy, respectively. Nine out of 15 results from CARNIVAL enrichment 
agreed with the sign of PROGENy scores (p-value threshold at 0.1) while CARNIVAL identified 
the same positive enrichment of IL1B case versus DoRothEA.  Nevertheless, it should be noted 
that the positive results from these two tools did not always add up to the ones from CARNIVAL. 
Therefore, we propose CARNIVAL users to perform functional analyses at different levels and 
analyze these results altogether to get a broader overview for further interpretation and validation. 
 
 
Text S5. Fluorescence immunohistology. 
 
For fluorescence immunohistology we used 3 biopsies collected from healthy renal transplantation 
donors and compared with 3 biopsies collected for primary diagnosis from IgAN patients. Patients 
had active IgAN to be included as demonstrated by IgA deposition in glomeruli. Renal needle 
biopsy specimens were initially collected in PBS to remove blood contamination upon biopsy. 
Washed tissue specimens were then fixed in normal formalin (48h) and subsequently embedded 
in paraffin blocks and sectioned on a microtome at a thickness of 10um. Sections were then 
deparaffinized and antigen-unmasked using a heat-mediated antigen retrieval buffer (Abcam) for 
2h at 1000C. Sections were washed 3 times, blocked in 10% donkey serum in PBS (1h) and 
incubated with appropriate primary antibodies (mouse anti-RhoA; and rabbit anti beta-catenin; 
both from Abcam. Goat anti-IgA1 from Sigma). Primary antibodies were used at 1:100 dilution in 
10% donkey serum and incubated with sections for 16h. Sections were washed 3 times in PBS-
tween and incubated for 2h using donkey anti-mouse (AlexaFluor 647), donkey anti-rabbit 
(AlexaFluor 568) and donkey anti-goat (AlexaFluor 488) IgGs. Finally, sections were washed 3 
times and mounted using VectaShield mounting solution (H1000). Images were taken on a Zeiss 
Axioscope coupled to a TissueGnostics imaging suite and a 20x lens. The same channel settings 
were used for all imaged sections (100ms exposure for 488 and 400ms exposure for 568 and 647). 
 
 
Text S6. Application of CARNIVAL to the CCLE dataset. 
 
Recently, Ghandi et al. published an updated dataset on the Cancer Cell Line Encyclopedia 
(CCLE) which contains RNAseq data at the transcriptomics level as well as reverse phase protein 
array (RPPA) data at the (phospho-)proteomic level7. To illustrate that CARNIVAL is also 
applicable to RNAseq data in addition to the microarray datasets as demonstrated in the 
SBVimprover and IgAN studies, we applied CARNIVAL to contextualize regulatory signaling 
networks of 1019 cancer cell lines based on their basal gene expression. Subsequently, we 
compared average CARNIVAL nodes’ activity to the level of phosphorylated proteins from RPPA 
experiment where we identified good correlations for many signaling proteins. 
 



Regarding transcriptomics data processing, raw RNAseq count data were formatted into the digital 
gene expression (DGE) class with the function DGElist and the library size was generated with 
the function calcNormFactors from the edgeR package8. Then, the voom function from the limma 
package was applied to transformed count data into log2 count per million (logCPM) scaled by 
the library size9. We subsequently applied a z-score transformation of each gene across all cell 
lines in order to make the basal gene expressions of all cancer cell lines relatively comparable. The 
processed z-score transformed logCPM RNAseq data are compatible with the DoRothEA and 
PROGENy pipelines which allows the calculating of transcription factor and pathways scores, 
respectively, as the inputs for CARNIVAL. 
 
As the CCLE dataset contains basal gene expressions of cancer cell lines, there are not clear targets 
of perturbation, and we thus applied the InvCARNIVAL pipeline using Omnipath as the prior 
knowledge network (PKN)10. Then, we correlated the average CARNIVAL nodes’ activities to the 
level of phosphorylated proteins per antibody using Pearson and Spearman correlation measures. 
Complete results of correlation analyses are shown in Table ST2 and the plots of CARNIVAL 
node activities versus the level of phosphorylated proteins for top 2 correlated and anti-correlated 
antibodies are shown in Figure ST5. 
 
Table ST2. Correlation measures between average CARNIVAL nodes’ activities and their 
corresponding phosphoprotein levels from the RPPA experiment in the CCLE dataset. The name 
of targeted molecules which have more than one detecting antibodies were labelled by the tag 
numbers. The targeted molecules with corresponding antibodies were ranked based on their 
averaged Pearson and Spearman correlations in the Mean column. 
 

Target Antibody Name Pearson Spearman Mean 

ERBB2 HER2_pY1248_Caution 0.5464 0.6837 0.61505 

EGFR_1 EGFR_pY1068_Caution 0.4214 0.4683 0.44485 

YAP1 YAP_pS127_Caution 0.3631 0.3332 0.34815 

JUN c.Jun_pS73 0.3001 0.2885 0.2943 

RPS6KA1_2 p90RSK_pT573_Caution 0.265 0.2831 0.27405 

SHC1 Shc_pY317 0.34 0.1518 0.2459 

STAT3 STAT3_pY705 0.1989 0.2905 0.2447 

NFKB1 NF.kB.p65_pS536_Caution 0.2308 0.2524 0.2416 

CHEK1 Chk1_pS345_Caution 0.2567 0.217 0.23685 

ARAF A.Raf_pS299_Caution 0.2854 0.177 0.2312 



MDM2 MDM2_pS166 0.2328 0.1812 0.207 

MTOR mTOR_pS2448_Caution 0.1064 0.3 0.2032 

AKT1_3 PRAS40_pT246 0.159 0.1865 0.17275 

AKT2_1 Akt_pS473 0.1527 0.1366 0.14465 

RAF1 C.Raf_pS338 0.1446 0.1353 0.13995 

SRC_1 Src_pY416_Caution 0.1463 0.1289 0.1376 

MAPK1_2 p38_pT180_Y182 0.1144 0.118 0.1162 

MAPK8 JNK_pT183_Y185 0.1131 0.1162 0.11465 

FOXO3 FOXO3a_pS318_S321_Caution 0.0943 0.1174 0.10585 

MAPK1_1 MAPK_pT202_Y204 0.1097 0.0959 0.1028 

PEA15 PEA15_pS116 -0.0465 0.2476 0.10055 

RPS6KA1_1 p90RSK_pT359_S363_Caution 0.0862 0.1001 0.09315 

MAPK14 p38_pT180_Y182 0.0981 0.0844 0.09125 

AKT1_1 Akt_pS473 0.1009 0.0806 0.09075 

AKT1_2 Akt_pT308 0.095 0.0752 0.0851 

MAPK3 MAPK_pT202_Y204 0.0626 0.0887 0.07565 

GSK3B_2 GSK3_pS9 0.0622 0.0825 0.07235 

CTNNB1 beta.Catenin_pT41_S45 0.0509 0.0669 0.0589 

AKT3_1 Akt_pS473 0.0348 0.0828 0.0588 

EGFR_2 EGFR_pY1173 0.0603 -0.0101 0.0251 

GSK3B_1 GSK3.alpha.beta_pS21_S9 -0.0331 -0.0052 -0.01915 

GSK3A_1 GSK3.alpha.beta_pS21_S9 -0.0296 -0.0359 -0.03275 

GSK3A_2 GSK3_pS9 -0.0425 -0.0352 -0.03885 

AKT2_2 Akt_pT308 0.0183 -0.0968 -0.03925 



PRKAA1 AMPK_pT172 -0.0514 -0.0657 -0.05855 

CHEK2 Chk2_pT68_Caution -0.0834 -0.0997 -0.09155 

SRC_2 Src_pY527 -0.1092 -0.0818 -0.0955 

RPS6KB1 p70S6K_pT389 -0.2219 -0.0768 -0.14935 

PRKCA PKC.alpha_pS657_Caution -0.173 -0.1565 -0.16475 

AKT3_2 Akt_pT308 -0.1356 -0.2073 -0.17145 

ESR1 ER.alpha_pS118 -0.2279 -0.2962 -0.26205 

PRKCD PKC.delta_pS664 -0.2975 -0.2771 -0.2873 

BRAF B.Raf_pS445 -0.4018 -0.3669 -0.38435 

RB1 Rb_pS807_S811 -0.4991 -0.52 -0.50955 

PTPN11 SHP.2_pY542_Caution -0.9368 -0.4 -0.6684 

 
Given that the average CARNIVAL nodes’ activities which were generated from the family of 
alternative solutions might be sensitive to noise, we therefore selected only the corresponding 
phosphorylated protein levels of the CARNIVAL nodes which have consistent activities of either 
1 or -1 to ensure that all network solutions agree whether the respective nodes are up- or down-
regulated, respectively. We then performed an additional statistical analysis with the Student’s t-
test (using the function t.test from the built-in stats R-package) with adjusted p-value with FDR to 
determine if there are any significant in the phosphorylated protein levels between the 1 and -1 
groups. Subsequently, we plotted the effect size (t-value) and the minus log10 p-value of the results 
as shown in a volcano plot in Figure ST6. 
 



 
 
Figure ST6. Effect size and significance levels based on the differences in phosphoprotein levels 
of the corresponding CARNIVAL nodes with average activities of 1 and -1. A volcano plot 
comparing between the effect size (t-values) and the significance level (p-values) in minus log10 
scale was demonstrated. The signaling proteins with p-value less than 0.1 were labeled in green 
and highlighted with name tags. 
 
According to the results in Figure ST6, the majority of signaling proteins do not pass the significant 
level of FDR=0.1. For those which passed this significance threshold, 12 molecules have positive 
t-values i.e. the phosphorylated levels of the node/molecule which have CARNIVAL node activity 
of 1 are significantly higher than those of the nodes with CARNIVAL nodes’ activity being -1. On 
the other hand, we also observed 3 molecules which have significant negative t-values i.e. RB1, 
PRKCD and ESR1. A possible explanation for the RB1 case lies on the fact regarding the state of 

AKT1_1
AKT1_2

AKT1_3

EGFR_1

ESR1

JUN

MAPK1_1
MAPK1_2NFKB1

PRKCD

RB1

RPS6KA1_2

SRC_1

STAT3
YAP1

0

5

10

15

20

−10 −5 0 5
t

−l
og

10
(p

Va
l)

marker
padj<0.1
padj>=0.1

Volcano Plot PP−data: Effect Size vs −log10(pval) : n=34



phosphorylation versus the activity of this signaling protein. RB1 binds to E2F transcription factors 
which control cell cycle in a hypophosphorylated state. Upon the stimulation of ligands that 
promote cell division, RB1 is hyperphosphorylated at the pS807 and pS811 phosphosites which 
will then release E2Fs to initiate the cell cycle circuit11. The phosphorylated state of RB1 is 
therefore inverse to its state of activity that CARNIVAL predicts. The observed inverse correlation 
of this RB1 is hence explainable. For PRKCD, the role of the detected phosphosite (S664) was not 
well-documented whether it is activatory or inhibitory. The function of measured phosphosite for 
ESR1 (S118) was annotated as activatory but the activity of this node was indeed defined by 
DoRothEA as ESR1 is a transcription factor. Thus, in this case study CARNIVAL correctly 
captured the activation of 87 % (13 out of 15) proteins (including RB1). In particular, the 
components of major signaling pathways including ERBB, PI3K/Akt, Jak/Stat, NFkB and cell 
cycle were still correctly captured. 
 
To conclude, this independent CARNIVAL study demonstrated that the CARNIVAL pipeline is 
also capable of integrating RNAseq datasets as inputs. With proper data scaling, CARNIVAL can 
also be applied to generate contextualized regulatory signaling networks from single-sample gene 
expression data such as the updated CCLE dataset. In addition, we showed that CARNIVAL 
nodes’ activities correlate well to the corresponding phosphorylated level of the majority of 
signaling proteins. These findings highlight the flexibility of CARNIVAL for data integration with 
diverse data types and also ensure that the CARNIVAL nodes’ activities correspond to the actual 
activity of signaling proteins that they aim to represent. 
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