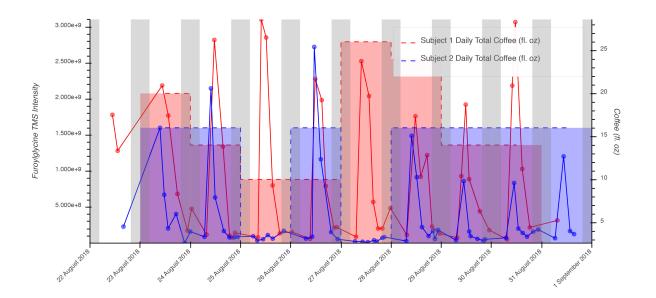
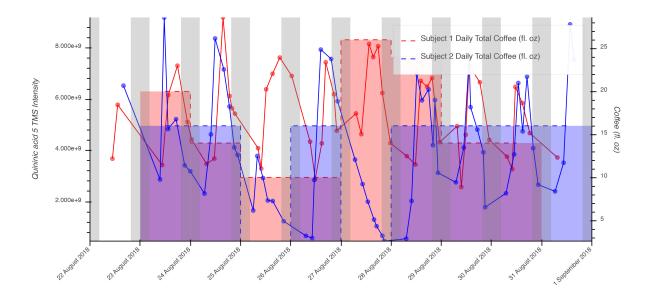
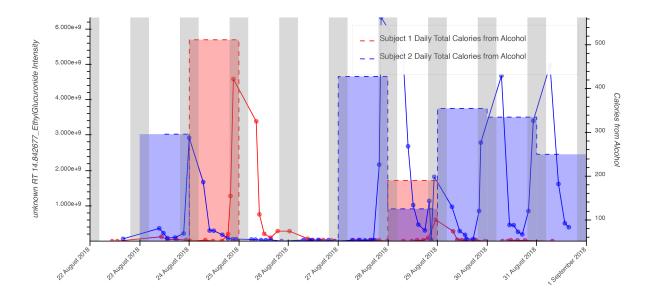
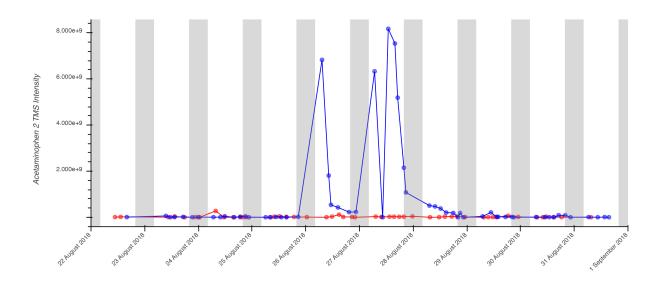

Real time health monitoring through urine metabolomics

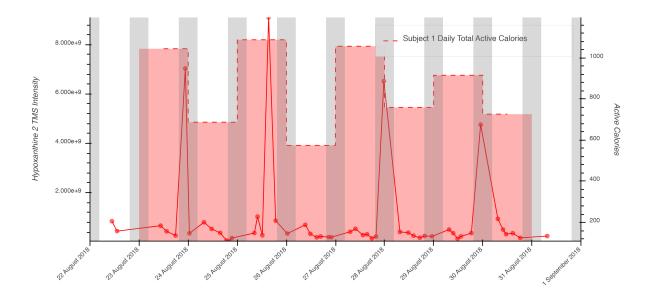

Ian J. Miller¹, Sean R. Peters², Katherine A. Overmyer³, Brett R. Paulson^{1,3}, Michael S. Westphall^{1,4}, and Joshua J. Coon^{1,2,4*}

¹National Center for Quantitative Biology of Complex Systems, Madison, WI, ²Department of Chemistry, University of Wisconsin-Madison, Madison, WI, ³Morgridge Institute for Research, Madison, WI, ⁴Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI


*Correspondence to: Joshua J. Coon, Ph.D. Professor, Departments of Chemistry and Biomolecular Chemistry University of Wisconsin-Madison 425 Henry Mall, Room 4426 Madison, WI 53706 jcoon@chem.wisc.edu


Supplementary Figure 1. PCA-based quality control analysis. (a) Samples colored by Subject and sized by volume. (b) Density plot of sample volumes for Subject 1 and Subject 2. (c) Sample points colored by run order. (d) Sample points colored by run day. See **Supplementary Dataset 3** for quantitative values.


Supplementary Figure 2. Intensity of furoylglycine TMS over time for both subjects. Coffee (fl. oz) vs. log2-furoylglycine TMS (daily average intensity); repeated measures r = 0.617, p = 0.011, q = 0.201, dof = 14.


Supplementary Figure 3. Intensity of quininic acid 5 TMS over time for both subjects. Coffee (fl. oz) vs. log2-quininic acid 5 TMS (daily average intensity); repeated measures r = 0.787, p = 2.93e-4, q = 0.0884, dof = 14.


Supplementary Figure 4. Intensity of ethyl glucuronide over time for both subjects. Calories from Alcohol vs. log2-ethyl glucuronide (daily average intensity); repeated measures r = 0.657, p = 0.006, q = 0.0508, dof = 14.

Supplementary Figure 5. Intensity of acetaminophen 2 TMS over time for both subjects. No quantitative data were recorded for acetaminophen consumption, so correlation metrics are not available.

Supplementary Figure 6. Intensity of hypoxanthine 2 TMS over time for both subjects. Active Calories vs. log2-hypoxanthine 2 TMS (daily average intensity); Spearman's Rho: 0.833, p = 0.0102, q = 0.472, n = 8.

Supplementary Figure 7. Intensity of hydrocaffeic acid 3 TMS over time for both subjects. Sleep (hrs) vs. log2-hydrocaffeic acid 3 TMS (daily average intensity); Spearman's Rho: -0.857, p = 0.0137, q = 0.551, n = 8.

Daily Mean ± (StDev)	Subject 1	Subject 2	App/Hardware
Dietary Calories (kcal)	2,904 ± (516)	1,793 ± (448)	Lose It!
Carbohydrates (g)	295 ± (60)	146 ± (37)	Lose It!
Fiber (g)	30 ± (15)	32 ± (11)	Lose It!
Sugar (g)	75 ± (33)	83 ± (37)	Lose It!
Total Fat (g)	120 ± (29)	63 ± (25)	Lose It!
Saturated Fat (g)	46 ± (17)	26 ± (12)	Lose It!
Protein (g)	143 ± (38)	66 ± (27)	Lose It!
Cholesterol (mg)	352 ± (214)	180 ± (112)	Lose It!
Sodium (mg)	3,372 ± (983)	2,063 ± (790)	Lose It!
Active Calories (kcal)	916 ± (214)	NA	Apple Watch
Sleep (hrs)	7.1 (1.2)	NA	Sleep Cycle

Supplementary Table 1. Summary statistics for biometric measurements

Supplementary Dataset 1. Excel file with annotated metabolites and associated diseases from HMDB (hmdb_info.xlsx).

Supplementary Dataset 2. Excel file for HMDB disease associations for all available urine metabolites. (hmdb_disease_metabolite_count.xslx).

Supplementary Dataset 3. Excel file with combined data for metabolites and samples (combined_sample_data.xlsx).

Supplementary Dataset 4. Excel file with correlation analysis results (biometric_correlations.xlsx).