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Estimating the Genome-wide Mutation Rate
with Three-Way Identity by Descent

Xiaowen Tian,1,* Brian L. Browning,2 and Sharon R. Browning1,*

The two primarymethods for estimating the genome-widemutation rate have been counting de novomutations in parent-offspring trios

and comparing sequence data between closely related species. With parent-offspring trio analysis it is difficult to control for genotype

error, and resolution is limited because each trio provides information from only two meioses. Inter-species comparison is difficult to

calibrate due to uncertainty in the number of meioses separating species, and it can be biased by selection and by changing mutation

rates over time. An alternative class of approaches for estimating mutation rates that avoids these limitations is based on identity by

descent (IBD) segments that arise from common ancestry within the past few thousand years. Existing IBD-based methods are limited

to highly inbred samples, or lack robustness to genotype error and error in the estimated demographic history. We present an IBD-based

method that uses sharing of IBD segments among sets of three individuals to estimate the mutation rate. Our method is applicable to

accurately phased genotype data, such as parent-offspring trio data phased usingMendelian rules of inheritance. Unlike standard parent-

offspring analysis, our method utilizes distant relationships and is robust to genotype error. We apply our method to data from 1,307

European-ancestry individuals in the Framingham Heart Study sequenced by the NHLBI TOPMed project. We obtain an estimate of

1.29 3 10�8 mutations per base pair per meiosis with a 95% confidence interval of [1.02 3 10�8, 1.56 3 10�8].
Introduction

Mutation adds new genetic variation to populations. This

genetic variation is crucial for evolution, and it affects the

amount of information available for many common ge-

netic analyses such as genotype imputation, estimation

of relatedness, and estimation of ancestral origins. Accu-

rate estimation of the genome-wide mutation rate is

important for inferring key demographic parameters

such as the timing of population splits.1 Genome-wide

mutation rate estimates are also helpful for understand-

ing the evolution of mutation rate.2 Despite its impor-

tance, measuring mutation rates has been difficult. The

direct approach to mutation rate estimation involves

sequencing nuclear families and counting de novo muta-

tions in the offspring. However, there are only a small

number of de novo mutations per offspring (typically

40–120 genome-wide in humans)3 and it is difficult to

distinguish true mutations from genotype errors and so-

matic mutations.4 The choice of filters to remove variants

with higher rates of genotype error and the assessment of

false positive and false negative rates is somewhat arbi-

trary, which makes it possible for researchers to uninten-

tionally choose filters and methods for assessing error

rates that produce an estimate of mutation rate that is

close to previously published estimates. Indeed, a recent

review found that pedigree-based estimates of mutation

rate appear underdispersed, suggesting a lack of indepen-

dence across studies.4

An alternative approach to estimating mutation rates

that is less susceptible to genotype error and that uses

mutation across large numbers of meiosis is based on the
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comparison of the human genome with the genomes of

closely related species, calibrated by the fossil evidence

for the dates of splits between species. The estimates

from these inter-species comparisons can be biased by

selection, incorrect estimate of average generation length,

uncertainty in dating the fossil record, and changes in mu-

tation rates over time. Genome-wide mutation rate esti-

mates from family-based studies are approximately half

as high as estimates from inter-species comparisons, sug-

gesting that inter-species estimates are inflated.1

An alternative approach to mutation rate estimation

uses identity by descent (IBD) segments. An IBD segment

is a shared portion of a chromosome inherited intact

(except for small regions of gene conversion) by two indi-

viduals from a common ancestor. The inherited segment

will have an identical sequence of alleles in both individ-

uals, except at positions that have mutated since the com-

mon ancestor or that were affected by gene conversion.

The length of an IBD segment provides information on

the number of meioses linking the two haplotypes

through their common ancestor, while mismatches in

the haplotype sequences provide information regarding

the total number of mutations from those meioses. The

use of IBD segments to estimate mutation rates has the po-

tential to combine the best features of inter-species and

parent-offspring comparisons. Large samples of distantly

related individuals can be assayed, leading to assessment

of mutations from a large number of meioses. Since IBD

looks back thousands rather than millions of years, there

is no danger of confounding the mutation rate in modern

humans with that in ancestral human groups and closely

related species.
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Figure 1. An Example of the Coalescent Tree that Links Three
Haplotypes
In this example, A, B, and C are the IBD haplotypes that form a set
of three-way IBD. Haplotypes A and B coalesce g1 generations
before the present, while C and the common ancestor of A and
B coalesce g1 þ g2 generations before the present. The true tree is
unknown, and this figure demonstrates one possible tree linking
the three haplotypes.
Recently, Palamara et al. proposed an IBD-based method

for estimating mutation rates from accurately phased

whole-genome sequence data, such as that obtained from

parent-offspring trios.5 Whereas ordinary trio-based ana-

lyses use only meioses within trios, Palamara et al.’s

approach uses meioses from IBD between pairs of trio

offspring, and thus it draws on many more meiosis than

methods that count only de novo mutations. Palamara

et al.’s method accounts for the effect of genotype error

on mutation counts through a regression of the apparent

number of mutations in an IBD segment on the estimated

time to most common ancestor (TMRCA) of the IBD

segment, since the rate of genotype errors is not influenced

by the TMRCA, but the number of mutations increases pro-

portionally with the TMRCA. However, genotype error can

also affect other key aspects of IBD-basedmutation rate esti-

mation in addition to mutation counts, such as the estima-

tion of IBD segment lengths and the estimation of the pop-

ulation’s demographic history. The latter two aspects are

critical for estimating the TMRCAs of the IBD segments. Pal-

amara et al.’s study considered the effect of genotype error

on mutation counts, but not its effect on mis-estimation

of IBD segment lengths or incorrectly inferred demographic

history. In this study, we find that Palamara et al.’s method

can give biased estimates ofmutation rate, with the amount

of bias depending on the level of genotype error and

whether the true or inferred demographic history is used.

Another IBD-based approach uses heterozygous geno-

types within segments of autozygosity in individuals

from populations with high parental relatedness.6,7 Ad-

vantages of this method over a general IBD-based method

is that it is easier to accurately infer long segments of autoz-

gyosity than short segments of IBD, and no estimation of

demographic history is needed because one needs only

to estimate the degree of parental relatedness of each indi-

vidual. A limitation is that it is applicable only to popula-

tions for which consanguineous marriages are common.

Another approach that utilizes autozygosity rather than

between-individual IBD is based on comparing local het-

erozygosity with estimated TMRCAs along the genome
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for the two haplotypes in an outbred individual.8 This

latter method incorporates mutations resulting frommeio-

ses far back in human history, much further back than IBD-

based approaches, and thus requires a very high-resolution

recombination map for accurate estimation. Another

disadvantage of this method is that it is computationally

demanding, and thus it can be applied only to a very small

number of individuals, which leads to low precision.

We present a likelihood-based method for estimating

genome-wide averagemutation rates from sets of three indi-

viduals who share a single haplotype identical by descent.

We count rare variants shared by two of the three individ-

uals. This avoids the use of singleton variants which have

higher genotype error rates,9,10 and it requires that two ge-

notype errors are needed to create any false apparent muta-

tion. The third individual who is IBD with the first two and

does not carry the rare alleles provides information on the

age of the mutations through the length of IBD sharing be-

tween this individual and the other two.We incorporate the

distribution of the length of IBD segments, the probability

of time to coalescence, the mutation rate, and genotype

error into a likelihood function which we maximize to esti-

mate the mutation rate. Our method is applicable to accu-

rately phased sequence data, such as that obtained from

parent-offspring data.
Material and Methods

Coalescence Probabilities for Three Haplotypes
Our calculations are based on the Wright-Fisher model, which has

discrete generations.11 In a coalescent tree for three haplotypes

(Figure 1), there are two coalescence events: the first coalescence,

between haplotypes A and B, occurred g1 generations before pre-

sent, and the second coalescence, between C and the common

ancestor of A and B, occurred g1 þ g2 generations ago. We write

N[g] for the diploid effective size g generations in the past. The

probability that two present-day haplotypes coalesce at generation

g, given that they haven’t coalesced more recently, is the probabil-

ity that they both are assigned the same ancestor out of the 2N[g]

ancestral haplotypes existing in generation g. This probability is 1/

(2N[g]). Thus the probability that the two haplotype don’t coalesce

is 1 � 1/(2N[g]). Similarly, the probability that no pair of haplo-

types among three present-day haplotypes coalesce at generation

g, given that none of these haplotypes have coalesced more

recently, is the product of the probability that the second

haplotype is assigned an ancestor that is different from the first

haplotype’s ancestor, and the probability that the third haplotype

is assigned an ancestor that is different from the other two ances-

tors, which is (1 � 1/(2N[g]))(1 � 2/(2N[g])). Thus, the probability

of no coalescences in generations 1 to g1 � 1 is

Yg1�1

g¼1

�
1� 1

2N½g�
��

1� 2

2N½g�
�
:

Using similar reasoning, the probability of a coalescence be-

tween a given pair of haplotypes (A and B) but no coalescence

with the third haplotype (C) at generation g1, given no coales-

cences more recently, is (1 � 1/(2N[g1]))(1/(2N[g1])). The probabil-

ity of no coalescence between C and the common ancestor of
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Figure 2. An Example of Three-Way IBD
This figure illustrates one possible IBD sharing configuration
among three haplotypes denoted A, B, and C. The IBD segment
shared by A and B starts at x1, ends at x3, and is colored black.
The IBD segment shared by A and C starts at x2, ends at x4, and
is colored blue. The IBD segment shared by B and C starts at x2,
ends at x3, and is colored red. The gray region from x2 to x3 is
the IBD region shared jointly by A, B, and C.
A and B between generations (g1 þ 1) and (g1 þ g2 � 1) isQg1þg2�1
g¼g1þ1 ð1 � 1 =ð2N½g�ÞÞ. The probability of coalescence between

C and the common ancestor of A and B at generation g1 þ g2,

given that this coalescence has not occurred more recently, is

1/(2N[g1 þ g2]). Thus, the overall probability of this coalescent

tree (which we refer to as ‘‘tree3’’ since it is a tree for three

haplotypes) is

Pðtree3Þ¼
( Yg1�1

g¼1

�
1� 1

2N½g�
��

1� 2

2N½g�
�)

1

2N½g1�
�
1� 1

2N½g1�
�

�
( Yg1þg2�1

g¼g1þ1

�
1� 1

2N½g�
�)

1

2N½g1 þ g2�:

Probability Distribution of IBD Lengths Given the

Coalescent Tree
A genetic map is used to convert physical base pair positions to

genetic positions in Morgans (one Morgan equals one hundred

centiMorgans). By definition, the recombination rate is 1 per

Morgan per meiosis at any point in the genome. We also assume

that recombinations occur as a Poisson process.12

Let g be the number of generations to the most recent common

ancestor of two haplotypes at a given randomly chosen genomic

position. If we look on one side of the given position, the length

of the IBD segment on that side is exponentially distributed

with rate 2g per Morgan since any recombination occurring in

either of the lineages would end the IBD segment. Therefore, if

we look both upstream and downstream of the chosen site, the

distribution of the length of an IBD segment is the sum of two in-

dependent exponential distributions each with rate 2g per

Morgan; that is, the length has a gamma distribution with shape

2 and rate 2g per Morgan. We next extend this result to three-

way IBD sharing.

When three haplotypes are jointly identical by descent at a

given point in the genome, the lengths of IBD sharing around

that position can vary. We consider not only the three-way region

over which all three haplotypes are identical by descent, but also

the larger region over which any two of the three haplotypes are

identical by descent, because the pairwise IBD segment lengths

provide information about the coalescent tree (the ordering of

the coalescence events and the coalescence times) in the three-

way IBD region. For example, looking to the left of the given posi-

tion, haplotype C may cease to be IBD with haplotypes A and B at
The American
some position, and then at some more distant position A and B

also cease to be IBD (Figure 2). In Figure 2, x1, x2, x3, x4, are the po-

sitions of changes in IBD status measured in Morgans. In this

example, the IBD segment shared by haplotypes A and B starts

at x1 and ends at x3; the IBD segment shared by A and C starts at

x2 and ends at x4; and x2 to x3 is the region shared jointly by A,

B, and C. Then if the coalescent tree corresponding to the segment

of three-way IBD sharing is that shown in Figure 1, the length of

the IBD segment shared jointly by A, B, and C has a gamma distri-

bution with shape 2 and rate 3g1 þ 2g2 per Morgan, because the

total number of meioses in the coalescent tree is 3g1 þ 2g2, and a

recombination on any one of those meioses will end the joint

IBD segment. When the first recombination occurs to end the

three-way IBD at the right end (at position x3), the probability

that B is lost rather than A or C is g1/(3g1 þ 2g2), and in this case

the length of the pairwise IBD segment shared by A and C to the

right of x3 is exponentially distributed with rate 2g1 þ 2g2 per

Morgan. Similarly, when the first recombination occurs to end

the three-way IBD at the left end (at position x2), the probability

that C is lost rather than A or B is (g1 þ 2g2)/(3g1 þ 2g2), and in

this case the length of the IBD segment shared by A and B to the

left of x2 is exponentially distributed with rate 2g1 per Morgan.

In this way, we can calculate the probability of the IBD lengths

(which we refer to as ‘‘IBD3’’ since they summarize the three-

way IBD sharing for three haplotypes) for any possible coalescent

tree. Table S1 gives the probabilities P(IBD3jtree3) for each possible

configuration of IBD segments.
Probability Distribution of Mutation Counts Given the

Coalescent Tree
Given amutation rate m per base pair per meiosis, and assuming the

infinite sites model,13 the number of mutations accumulated

within a genome region of length l base pairs over g meioses has a

Poisson distribution with mean lgm. If the coalescent tree is that

shown in Figure 1, inwhichhaplotypes A andB coalesce first, before

coalescing with C, with g2 being the number of meioses from the

common ancestor of A and B to the common ancestor of all three

haplotypes, then the number of mutations shared by haplotypes

A and B but not C across a region of l base pairs within the three-

way IBD sharing region is distributed as Poisson(lg2m). Some

apparent mutations in this region may actually be the result of

genotype error. We assume that the rate e of errors of this type

(i.e., a miscalled allele in a specific two of three haplotypes) is con-

stant and does not depend on the coalescence times. Thus, across a

region of l base pairs, the number of errors of this type is Poisson

with rate le. In consequence, the number of apparent mutations

shared by A and B but not C (real mutations and errors) across

the region is Poisson with rate lðg2m þ eÞ. In contrast, considering

two of three haplotypes that are not the first coalescing pair, such

as haplotypes A and C for this coalescent tree, any apparent muta-

tions shared by these two haplotypes but not the third will be geno-

type errors rather than real mutations because they are inconsistent

with the coalescent tree (the probability of recurrent mutation is

negligible and is ignored under the infinite sites model). Thus, the

number of such apparent mutations between any two haplotypes

that do not coalesce first is modeled as Poisson with rate le.

For a given labeling of the three IBD haplotypes, let ‘‘mut3’’

denote the vector (nAB, nAC, nBC) containing the number of

apparent mutations shared by haplotypes A and B but not C

(nAB), by haplotypes A and C but not B (nAC), and by haplotypes

B and C but not A (nBC) across the region in which all three
Journal of Human Genetics 105, 883–893, November 7, 2019 885



haplotypes are IBD. An apparent mutation is an allele that is

shared by two of the three haplotypes and has frequency less

than the maximum allele frequency threshold. The maximum

allele frequency threshold is chosen to be large enough so that

all true mutations will be included in the counts and is never set

to a value above 0.5. Thus, if two of the three haplotypes share

the major allele, this will not contribute to the apparent mutation

count.

Let Pm;eðmut3 j tree3; IBD3Þ denote the probability of the vector

of apparent mutations given the coalescent tree and the IBD end-

points if the mutation rate is m and the error rate is e. Note that

after conditioning on tree3, the distribution of the number of mu-

tations depends on the IBD endpoints only through the base pair

length l of the three-way IBD region on which the apparent muta-

tions are counted. If tree3 is the coalescent tree shown in Figure 1,

then

Pm;eðmut3 j tree3; IBD3Þ

¼ expð � lðg2mþ eÞÞ½lðg2mþ eÞ�nAB
nAB!

expð�leÞ½le�nAC
nAC!

expð�leÞ½le�nBC
nBC!

:

Gene conversion can also introduce variants that are carried by

two of the three haplotypes. While we do not incorporate gene

conversion directly into our likelihood, we account for its effects

with a post-processing regression step that is described in the

section on correction for gene conversion.
The Mutation-Rate Likelihood
The sections above present the components needed to obtain the

overall mutation-rate likelihood. Here we combine these compo-

nents to give the overall likelihood for one set of three-way IBD

for three haplotypes around a given position in the genome. The

data provide multiple such sets of three-way IBD, and we multiply

the likelihoods for each such set. Such sets of three IBD haplotypes

are not fully independent, because IBD often occurs in clusters of

more than three haplotypes, and we analyze each subset of three

haplotypes from such a cluster. Thus, the overall likelihood

obtained by multiplication is a composite likelihood.

For each set of three IBD haplotypes that we observe in the data,

with IBD lengths recorded in IBD3andapparentmutation counts re-

corded in mut3, the likelihood of the mutation rate and error rate

given the data can be obtained using the law of total probability as

Lðm; eÞ¼ Pm;eðIBD3;mut3Þ ¼
X
tree3

Pm;eðIBD3;mut3; tree3Þ

¼
X
tree3

Pm;eðmut3 j tree3; IBD3ÞPðIBD3 j tree3ÞPðtree3Þ

The sum over possible coalescent trees, tree3, includes an infin-

ite number of possible trees, but only those with low to moderate

coalescent times are consistent with the long IBD segments that

we use. In practice we restrict the sum to positive integer coales-

cent times g1 % 300 and g2 % 300, as these limits proved to be suf-

ficient in our simulation studies and data analyses, and we sum

over the three possible orderings of the coalescent events.

With a large number of such sets of three IBDhaplotypes, we can

estimate the mutation rate with precision. We numerically maxi-

mize the composite likelihood by performing a grid search

(Figure S1). To reduce the computing time required for performing

a grid search,we use adaptive grids.Wefirst obtain estimates for the

mutation rate and the error rate from a coarse search grid. We then

refine the estimates by applying a finer search grid to a targeted area

based on the confidence interval of the initial estimates.
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We use bootstrap resampling to assess the precision of the esti-

matedmutation rate. We resample chromosomes with replacement

and obtain a maximum likelihood estimate from the sampled chro-

mosomes in each bootstrap sample. The 95% confidence interval is

determined from the 2.5th and 97.5th percentiles of 10,000

bootstrap estimates.
IBD Detection and Mutation Ascertainment
We used Refined IBD14 in BEAGLE v.4.1 to detect pairwise IBD seg-

ments from phased genotypes using only diallelic SNPs with mi-

nor allele frequency 10% or higher, with a minimum LOD score

threshold of 3 and a minimum length threshold of 1 cM. The

minor allele frequency threshold reduces computation time

compared to using more variants and ensures that recent muta-

tions that could contribute to the mutation rate estimation are

not used in the IBD detection. We used a minimum length

threshold of 1 cM because most IBD segments with a LOD score

of 3 or higher have length greater than 1 cM, and because using

a smaller threshold would increase computation time. Refined

IBD uses a haplotype-based method to detect IBD segments.

Consequently, genotype errors and haplotype phase errors can

result in gaps in the estimated IBD segments and underestimation

of the length of IBD segments. We filled gaps between two de-

tected IBD segments for the same pair of haplotypes when the

gap between the IBD segments had a length less than 0.5 cM

and the gap contained at most two positions at which the geno-

types for the two individuals were inconsistent with IBD

(Figure S2). This gap-filling step has been shown to make IBD

length estimation robust to genotype errors.15 Our data are phased

using parent-offspring trio relationships; hence phasing is highly

accurate. After the gap-filling step, we impose a 3 cM minimum

length threshold on the pairwise IBD segments. We then find

overlapping IBD segments shared by sets of three individuals. In

the three-way IBD regions (e.g., region ABC from x2 to x3 in

Figure 2), we should have detected IBD between all three pairs of

the three individuals (e.g., AB, AC, and BC in Figure 2). If one of

the three IBD segments was not detected (for example if we found

AB and AC but not BC), we do not include the three-way IBD

segment in the analysis. Because the detected IBD is based on

haplotype identity-by-state, the endpoints are necessarily consis-

tent between the three pairwise IBD segments (e.g., AC and BC

have the same reported left endpoint x2 in Figure 2).

When counting possible mutations, we trim 0.5 cM from each

end of the region in which we detect three-way IBD sharing. The

reason for this trimming is that the observed identity by state

often extends somewhat beyond the true IBD region.5,14 The num-

ber of apparent mutations is the number of rare variants shared by

two of the three individuals in this trimmed region. We then

adjust the base pair length, l , of shared region in the calculation

of Pm;eðmut3 j tree3; IBD3Þ accordingly.
For analyses with IBDMUT,5 we inferred IBD segments using

GERMLINE.16 We ran GERMLINE with the ‘‘-haploid’’ flag allowing

themaximumnumber ofmismatchingmarkers (‘‘-err_hom’’ flag) to

be 1 or 2 (2 for the Framingham Heart Study analysis, to match the

Genomes of the Netherlands analysis in Palamara et al.5).
Effective Population Size Estimation
We used IBDNe17 to infer the effective population size. The input

to the IBDNe program was the set of pairwise gap-filled IBD seg-

ments with a minimum length of 2 cM. For effective population

size estimation on the Framingham Heart Study data, we used
ber 7, 2019



the whole dataset of 4,166 individuals. We identified 13,211 pairs

of closely related individuals as those with total length of detected

IBD segments exceeding 5% of the genome length, and we

removed IBD segments corresponding to such pairs from the

IBDNe analysis. The estimated recent effective population size

for the Framingham Heart Study data is shown in Figure S3.

Correction for Gene Conversion
Gene conversion copies variants from one haplotype onto

another. Gene conversion can create the appearance of mutation

events in the three-way IBD, because a gene conversion event

occurring between the common ancestor of the twomost-recently

coalescing haplotypes and their common ancestor with the third

haplotype may introduce a variant that is shared by the two

most-recently coalescing haplotypes but not by the third haplo-

type. The rate of gene-conversion variants in a set of three IBD

haplotypes is proportional to the number of generations, g2,

between the more recent coalescence time and the less recent coa-

lescence time (Figure 1), as is the number of mutation variants. A

major difference between gene-conversion variants and mutation

variants is that mutation variants tend to be rare, while gene-con-

version variants tend to be common. The probability that an allele

is changed via gene conversion is proportional to the heterozygos-

ity of the variant in the population, at the time of the gene conver-

sion, because the recipient allele is only changed if the donor allele

(the ancestral individual’s other allele) is different from it. Com-

mon variants have higher heterozygosity and hence are more

likely to be changed via gene conversion.

We thus use only the less-common variants when counting mu-

tations, applying a maximum allele frequency filter. However, gene

conversion affects low-frequency variants to some extent (albeit less

than the effect on high-frequency variants), and one cannot set the

allele frequency threshold too low or one risks removing some

actual mutations. Hence, we apply a modified version of the regres-

sion adjustment developed by Palamara et al.5

Consider an allele frequency threshold, f. Only alleles with fre-

quency below this threshold will be included in the apparent muta-

tion counts. If f is sufficiently large, then all mutations occurring on

the branch from the most recent common ancestor of all three IBD

haplotypes to the most recent common ancestor of the two most

recently related IBD haplotypes will have frequency less than f

and will be included in the mutation count. If the length of this

branch is g2 generations, then the expected number of such muta-

tions contributing to the overall mutation count across a region of

length l basepairs is lg2m, as previously described. During the g2mei-

oses occurring on this branch, the expected number of basepairs

involved in a gene conversion event is lg2q, where q is the rate of

gene conversion initiation (per bp per generation) multiplied by

the mean gene conversion tract length (in bp). Let hf denote the

rate of heterozygosity (per bp), excluding variants with minor allele

frequency greater than f. The probability that a given base is

changed and that the change is to an allele with frequency less

than f, conditional on the base being involved in a gene conversion

event, is the probability that the position was heterozygous in the

individual in which the gene conversion took place and that the

heterozygous genotype had the minor allele on the donor haplo-

type, which is hf/2. Thus the expected contribution to themutation

rate count from gene conversion is lg2qhf =2, the total expectedmu-

tation rate count is lg2ðm þ qhf =2Þþ le, and the nominal mutation

rate estimated by our method is m�
f ¼ mþ qhf =2. Thus if we apply

the method with different values of f (and corresponding different

values of hf), we can regress the estimated nominal mutation rate
The American
estimates bm�
f against estimated frequency-bounded heterozygositybhf to obtain an estimate of the mutation rate m in the intercept of

the regression.

In the above, we implicitly assumed that the frequency-bounded

heterozygosities, hf, are fixed across time and geography. Although

this assumption may appear doubtful, in fact autosomal heterozy-

gosities are almost identical across populations in Europe,18 for

example, even including Finland which has experienced a recent

population bottleneck. Thus, for relatively homogeneous (single

continental-level ancestry) populations, the assumption of stable

heterozyosities gives a reasonable approximation.

For a given allele frequency threshold f, the estimated heterozy-

gosity is

bhf ¼
X
i

2pi
�
1� pi

�
1fpi < fg

�
L

where the sum is over all variants (indexed by i) in a genome of to-

tal length L basepairs. The minor allele frequency of each such

variant is pi and 1fpi < f g is the indicator function that takes value

1 if the minor allele frequency is less than f and 0 otherwise.

Here we use the expected heterozygosity based on allele frequency

and assuming Hardy-Weinberg equilibrium, whereas we could

instead use observed heterozygosity; we find that the two ap-

proaches give almost equal estimates in the simulated data and

Framingham Heart Study data (data not shown).

To perform the regression, we use only allele frequency thresh-

olds that are large enough tominimize the possibility of excluding

some true mutations. We thus use frequency thresholds between

0.1 and 0.5 in the regression (following Palamara et al.5). We

choose to use an upper bound of 0.5 to maximize the amount of

data in the regression, and we use a lower bound of 0.1 which is

high enough to ensure that no true mutations are excluded, yet

not so high as to exclude much data from the regression. We

also analyzed the data using lower bounds of 0.05 and 0.2 to

ensure that the results were robust to this choice. For each fre-

quency threshold, f, we estimate themutation rate bm�
f , considering

as potential mutations only variants with frequency below the

threshold. We estimate heterozygosity bhf across all variants in

the data with frequency below the threshold. We then perform

the regression, with the y axis (mutation rate) intercept providing

a gene-conversion-adjusted estimate of mutation rate.
Data Simulation
We evaluated the performance of the proposed method on simu-

lated data with known haplotype phase. For all simulated datasets,

the simulated genome size was 30 chromosomes of 100 Mb each,

with a mutation rate of 1.303 10�8 per base pair per meiosis and a

constant recombination rate of 1.0 3 10�8 per base pair per

meiosis. We used ARGON,19 a discrete-time Wright-Fisher process

simulator, to simulate data under three different demographic sce-

narios: a population with exponentially growing population size

and increases in growth rate over time (the ‘‘super-exponential’’

model), a homogeneous population with constant population

size (the ‘‘homogenous’’ model), and an admixed population

with exponentially growing population size (the ‘‘admixture’’

model). We also used MaCS,20 a Markovian coalescent simulator,

to simulate data with gene conversion under a ‘‘European-Amer-

ican’’ demographic history.

In the ‘‘super-exponential’’ scenario, we simulated genome-wide

data for 10,000 diploid individuals with a demographicmodel that

matches the heterozygosity, magnitude of linkage disequilibrium,
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Figure 3. Estimated Mutation Rates under Different Rates of
Genotype Error
The simulated mutation rate is 1.30 3 10�8 per base pair per
meiosis and is indicated with the red dotted line. Point estimates
(shapes) and 95% confidence intervals (bars) are shown. The
maximum allele frequency threshold for the variants used for
the mutation rate estimation is 3.75%. Two different simulation
models, the homogeneous model (blue squares) and the admixed
model (yellow circles) are assessed at error rates of 1 3 10�4, 5 3
10�4, and 1 3 10�3. Errors are simulated using the ‘‘unbiased’’
genotype error scheme (described in Material and Methods).
and rate of IBD observed in the UK10K sequence data.21 The de-

mographic model has an initial population size of 24,000 in the

distant past, with an out-of-Africa reduction to 3,000 occurring

5,000 generations ago. The population begins to grow 1.4% per

generation 300 generations ago. The growth rate increases to 6%

and 25% at 60 and 10 generations ago, respectively. The final effec-

tive population size is around 21 million.

In the ‘‘homogeneous’’ scenario, we simulated 2,000 homoge-

neous diploid individuals with a constant effective population

size of 10,000 diploid individuals.

In the ‘‘admixture’’ scenario, we simulated 400 admixed diploid

individuals with non-constant effective population size and pop-

ulation structure. The population size was 15,000 until 1,000 gen-

erations ago, at which time a population split occurred, resulting

in two subpopulations with sizes of 10,000 and 5,000. The two

subpopulations merged together (admixed) 20 generations ago

and then grew at a rate of 1.44% per generation to a current size

of 20,000.

The ‘‘European-American’’ model uses the demographic his-

tory that we inferred using IBDNe from samples in Framingham

Heart Study (Figure S3) for generations 1–300, with a population

size of 24,000 prior to 5,000 generations ago and a reduction to

6,930 occurring 5,000 generations ago. We simulated 2,000

diploid individuals under this scenario. The simulation included

gene conversion, with a gene-conversion initiation rate of

1.0 3 10�8 per base pair per meiosis and mean conversion tract

length of 100 bp.22

We created two versions of the simulated data, each with a

different type of genotype error. The first type of genotype error in-

cludes both false positive errors (major allele miscalled as minor)

and false negative errors (minor allele miscalled as major). For dia-

llelic SNPs with minor allele frequency p, we give each allele a

probability minðd;2pÞ of being changed to the other allelic form

(major to minor or vice versa), with the error rate d taking values

of 0.01%, 0.05%, and 0.1% for the homogeneous and admixture

models. As the computation time is high for the super-exponential

model due to the large sample size, we only added an error rate of

0.02% for this model. We refer to this first error scheme as ‘‘unbi-

ased’’ error because the rate of error doesn’t depend on whether

the true allele is the major or minor allele. For rare variants,
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most of the added errors under this scheme are false positive er-

rors, because there are relatively few minor alleles that could be

changed to the major allele. We also wanted to further investigate

the effect of false negative error, which may be more prevalent for

rare variants. Thus we created a second set of data in which we

added only false negative error. For variants with m minor allele

copies present in the dataset, we give each copy probability 0:5m

of being changed to the major allele. We refer to this second error

scheme as ‘‘false-negative’’ error. For both types of genotype error,

the errors are added prior to IBD detection; therefore, the presence

of genotype errors can affect IBD detection, subsequent inference

of demographic history with IBDNe, andmutation ascertainment.
Results

Simulation Study

Under the super-exponential scenario with a genotype

error rate of 0.02%, we obtained a mutation rate estimate

of 1.29 3 10�8 per base pair per meiosis with a 95% confi-

dence interval of [1.281 3 10�8, 1.301 3 10�8] (the simu-

lated mutation rate is 1.3 3 10�8). We also obtained accu-

rate estimates of mutation rate under the homogeneous

and admixture simulation scenarios (Figure 3). Accuracy

is maintained even with the highest rate of genotype error

considered (0.1%), but at high rates of genotype error,

fewer segments of IBD are detected and hence confidence

intervals are wider.

We also applied IBDMUT, the pairwise IBD method of

Palamara et al.,5 to the dataset simulated under the su-

per-exponential scenario. In the IBDMUT analysis, we

used IBD segments estimated by GERMLINE16 with one

or two allowed mismatching sites and we used the same

estimated demographic history as we used for our method,

obtained using IBDNe. Since IBDMUT requires more than

250 gigabytes of memory to process the full simulated da-

taset, we analyzed a subset of 2,000 individuals. We

observe biased estimates of mutation rate whether allow-

ing for one or two mismatches, whether using the true or

estimated demographic history, and whether or not the

data include genotype errors (Figure S4). Up to 8% relative

bias is observed.

We investigated the impact on our method of false nega-

tive errors, in which copies of theminor allele aremiscalled

as the major allele, by adding genotype errors according to

our ‘‘false-negative’’ genotype error scheme to the homoge-

neous simulated dataset. In this setting, variants with

lower allele frequency are more susceptible to false nega-

tive error. These rare variants are usually carried by long

IBD segments since they generally arose recently. Hence

three-way IBD that involves very long pairwise IBD seg-

ments has the most potential to be affected by false nega-

tive error. To control the downward bias caused by false

negative error, we thus restricted the analysis to IBD seg-

ments with length below some threshold. Reducing the

maximum length threshold reduces the number of IBD

segments that can be used, thus increasing the variance

of the estimation. We found that a threshold of 6 cM
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Figure 4. Estimated Mutation Rates under False Negative
Genotype Errors
Data were simulated under the ‘‘homogeneous’’ model, and errors
were added using the ‘‘false-negative’’ genotype error scheme
(described in Material and Methods). The simulated mutation
rate is 1.30 3 10�8 per base pair per meiosis and is indicated
with the red dotted line. We set different thresholds on the
maximum length of IBD segments (x axis) to control the impact
of false negative errors. The maximum allele frequency threshold
for the variants used for the mutation rate estimation is 3.75%.
Point estimates (dots) and 95% confidence intervals (bars) are
shown.
provides good control of potential downward bias due to

false negative errors while not overly increasing the vari-

ance of estimation (Figure 4).

In the data simulated with gene conversion under the

European-American scenario, we find that the estimated

mutation rate continues to increase with increasing

maximum frequency of the alleles included in the analysis

(Figure 5), as expected under gene conversion. In contrast,

under the same simulation scenario but without gene con-

version events, we observe that the estimates of mutation

rate remain the same for maximum allele frequencies

above 2.5%. To correct for the impact of gene conversion

events, we performed a regression on heterozygosity (see

Material and Methods; Figure 5) and obtained a mutation

rate estimate of 1.34 3 10�8 per base pair per meiosis

with a 95% confidence interval of [1.30 3 10�8, 1.38 3

10�8] (the simulated mutation rate is 1.3 3 10�8). When

we adjusted the lower bound on the range of allele fre-

quency thresholds used in the regression (from 0.1), we ob-

tained similar results: 1.33 3 10�8 [1.30 3 10�8, 1.37 3

10�8] for a lower bound of 0.05 and 1.35 3 10�8 [1.30 3

10�8, 1.39 3 10�8] for a lower bound of 0.2.
TOPMed Framingham Heart Study Data

The Framingham Heart Study data from the NHLBI

TOPMed Project that we analyzed consist of high-coverage

sequence data on 4,166 subjects with European ancestry

(dbGaP: phs000974.v2.p2). We restricted all our analyses

to diallelic SNPs passing quality control filters, and we

used the Rutgers genetic map.23 We identified 697

mother-father-offspring trios and performed trio-based

phasing using BEAGLE v.4.0.24 Trio-based phasing has

high accuracy for both common and rare variants because

Mendelian inheritance constraints determine the haplo-

type phase in the parents and offspring at most positions.
The American
There were 1,362 unique parents from the 697 trios. By

using trio parents rather than offspring for the analysis,

we double the sample size, and the phasing is well deter-

mined except at those small number of points of

crossing-over in the meioses from trio parents to trio

offspring. We ran principal component analysis (PCA) on

these parents. In order to account for relatedness in the

PCA, we removed 194 individuals who were closely related

to others in the sample (total length of detected IBD seg-

ments exceeding 40 cM on chromosome 22) when

computing the principal components, and then deter-

mined PC scores of the excluded samples by projecting

them onto the principal component axes. We found two

distinct clusters on the second principal component

(PC2 > 0.05 and PC2 % 0.05; Figure S5), and we inferred

the demographic history of each cluster separately using

IBDNe. We found that the cluster with PC2 > 0.05 experi-

enced a recent severe population bottleneck around 30

generations ago (Figure S6), which is consistent the demo-

graphic history of the Ashkenazi Jewish population.25

Although our method is robust to population structure

(Figure 3), we conservatively removed the 55 samples

with PC2 > 0.05 from the mutation rate analysis. We

also present results without the exclusion.

As for the analysis of simulated data, we used Refined

IBD14 in BEAGLE v.4.1 to detect pairwise IBD segments

from the phased genotypes using only diallelic SNPs with

minor allele frequency 10% or higher. After filling short

gaps between segments (Material and Methods), we

removed segments with length less than 3 cM or larger

than 6 cM. Our simulation study (reported above) showed

that removal of segments larger than 6 cM reduces the

potential impact of false negative errors.

We excluded regions with extremely high levels of IBD

from the analyses. We find that these regions are mainly

in areas of the genome with low marker density, such as

around centromeres. In such regions, the IBD detection

method tends to overestimate the IBD segment lengths,

because identity by state extending beyond the end of

the IBD segment may cover a large genetic distance. To

perform this exclusion, we calculated the level of three-

way IBD along the genome in windows of 500 base pairs

and removed any three-way IBD that overlapped windows

for which the three-way IBD level exceeded the 99th

percentile. Regions that were outside the limits of the ge-

netic map were also removed from the analysis. In addi-

tion, some regions of the genome did not contribute to

the estimation because they contained no three-way IBD.

After removing all these regions, the remaining data

covered 2.01 gigabases across the autosomes. Many of

the excluded regions are near the centromeres and telo-

meres due to poor data quality or low variant density in

those areas (Figure S7).

We ran analyses with a range of maximum allele fre-

quencies (Figure S8). The estimates increase as themaximum

allele frequency increases, as expectedwithgene conversion.

We thus applied regression on heterozygosity to correct for
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Figure 5. Estimated mutation rates in
simulated data with gene conversion, as
a function of the average heterozygosity
of included variants.
Data were simulated under the ‘‘European-
American’’ model with gene conversion
(see Material and Methods). The blue
dashed line is the fitted regression line;
the y axis intercept of this line gives an
overall estimate of mutation rate that
is adjusted for the effects of gene conver-
sion. Points corresponding to maximum
allele frequency thresholds of 0.1–0.5
are included in the regression (filled
points on the plot), as lower thresholds
may exclude some true mutations (open
points on the plot). For each maximum

allele frequency threshold, the average heterozygosity was calculated (x axis) and the mutation rate estimate was obtained (y axis).
The simulated mutation rate is 1.3 3 10�8 and is shown with the horizontal red dashed line.
gene conversion (see Material and Methods). Our corrected

estimate is 1.29 3 10�8 with 95% confidence interval

[1.02 3 10�8, 1.56 3 10�8] (Figure 6). For comparison,

when we don’t exclude the individuals who were outliers

(PC2> 0.05) on the principal components analysis, the esti-

mate is 1.213 10�8 with 95%CI [1.003 10�8, 1.453 10�8].

When we apply the exclusions but change the lower bound

on the maximum allele frequency, the estimates are 1.243

10�8 [1.02 3 10�8, 1.46 3 10�8] for a lower bound of 0.05

and1.36310�8 [0.98310�8, 1.73310�8] for a lowerbound

of 0.2.

We also applied IBDMUT5 to these data. We used the

same estimated demographic history as for our method

(see Material and Methods and Figure S3), and we used

IBD segments estimated by GERMLINE.16 Regions with

extremely high levels of pairwise IBD sharing were

excluded from the analysis. We removed any segments

that overlapped regions in which the pairwise IBD level ex-

ceeded the 99th percentile. We further removed segments

with length less than 3 cM or larger than 6 cM from the

analysis. The mutation rate estimate was 1.31 3 10�8

with 95% confidence interval [1.20 3 10�8, 1.42 3 10�8].

In this case, IBDMUT’s estimate is consistent with our esti-

mate, although our simulations show that this will not

always be the case. IBDMUT has a narrower confidence in-

terval because IBDMUT makes use of more meioses. Our

method uses the meioses only between the coalescence

of the first two haplotypes and their coalescence with the

third haplotype in each set of three IBD haplotypes, while

IBDMUT uses all the meioses for each pair of IBD haplo-

types, including more recent meioses.
Discussion

In this paper, we have presented a method for estimating

mutation rates based on IBD segments shared among sets

of three individuals, and we provide an estimate of muta-

tion rate for individuals of European descent from the Fra-

mingham Heart Study. Our analysis includes only single-

nucleotide substitutions; indels and other structural
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variants are excluded from the analysis. The data underly-

ing our analysis cover 2.01 gigabases of the autosomes. Our

estimate is 1.29 3 10�8 per base pair per meiosis with 95%

confidence interval [1.02 3 10�8, 1.56 3 10�8]. Software

for our method (METIBD3) is freely available (see Web

Resources).

Ourestimate is consistentwithpreviouspedigree-based es-

timates of mutation rate that range from 0.97 3 10�8 to

1.36 3 10�8 per base pair per meiosis.3,4,7,9,26–31 A major

and difficult to quantify source of uncertainty in pedigree-

based estimates is the choice of quality control filters to

reduce the impact of genotype error. Overly stringent

filteringwill depress themutation rate estimate.4 In contrast,

our method accounts for genotype error by modeling it,

allowing for much reduced dependence on filtering. Pedi-

gree-based methods are also affected by somatic mutation,

unless three generations of individuals are genotyped.4 Our

method is robust to somatic mutations, because suchmuta-

tions will be carried by only one of the three IBD individuals

that we consider, and thus will not be counted.

The estimated mutation rate from our three-way IBD

method applied to data from the Framingham Heart Study

is significantly lower than that estimated by Palamara et al.

with their pairwise-IBD-basedmethod applied to data from

the Genome of the Netherlands study, which was 1.66 5

0.04 3 10�8.5 The Genomes of the Netherlands data

analyzed by Palamara et al. have lower average sequence

read depth, and thus are likely to have a higher rate of er-

ror, which could bias the results.

Our mutation rate estimate is consistent with estimates

from two other IBD-based methods: An estimate of

1.615 0.263 10�8 (confidence interval here given as esti-

mate523 standard error, rather than estimate5 standard

error given in the original publication) based on segments

of ancient autozygosity in eight European and Asian

individuals,8 and an estimate of 1.45 5 0.05 3 10�8 based

on segments of recent autozygosity in British-Pakistani

individuals.6

Our approach uses IBD segments detected with the

haplotype-based Refined IBD algorithm applied to phased

data from parent-offspring trios. Unlike pedigree-based
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Figure 6. EstimatedMutation Rates from
the Framingham Heart Study Data as a
Function of the Average Heterozygosity
of Included Variants
The dashed line represents the fitted regres-
sion line; the y axis intercept of this line
gives an overall estimate of mutation rate
that is adjusted for the effects of gene con-
version. Points corresponding to maximum
allele frequency thresholds of 0.1–0.5 are
included in the regression (filled points on
the plot), as lower thresholds may exclude
some true mutations (open points on the
plot). For each maximum allele frequency
threshold, the average heterozygosity was
calculated (x axis) and the mutation rate
estimate was obtained (y axis).
mutation rate estimation, our method uses cross-family

IBD to identify mutations arising over a much larger num-

ber of meiosis. The difficulty of distinguishing genotype

error from true mutations is handled through statistical

modeling and is also reduced by requiring that the variants

be seen in at least two of three identical-by-descent indi-

viduals. While the a priori rate of error for a very low fre-

quency variant may be relatively high, evidence for a

long IBD segment shared by the two individuals carrying

the variant greatly increases the chance that the allele calls

for that variant are accurate in those individuals.

When estimating mutation rate, the most serious type

of genotype error is false positive error in which a major

allele is called as the minor allele. These errors signifi-

cantly increase the apparent mutation rate if not appropri-

ately accounted for. Our method has strong control of

these false positive errors through our error rate modeling.

In addition, false negative errors, in which aminor allele is

called as the major allele, can also have an effect, some-

what reducing the apparent mutation rate. Genotype er-

ror rates are highest for rare and singleton variants because

variant callers use databases of common SNPs to calibrate

their results.32 With our method, singleton variants

are ignored. Furthermore, the lowest frequency non-

singleton variants, such as variants with only two or three

copies in a large dataset, are very recent and have a rela-

tively greater impact on mutation counts for the longest

IBD segments which represent very recent common

ancestry. Thus, we are able to significantly reduce the

impact of false negative errors by excluding the very

longest IBD segments.

Another potential source of error is gene conversion,

which inserts existing alleles from one haplotype onto

another haplotype. Such alleles can then differ between

IBDhaplotypes, whichmimics the signal ofmutation. How-

ever, most of the alleles inserted due to gene conversion are

common alleles with high heterozygosity, while recent mu-

tations are low in frequency. Thus, applying regression on

heterozygosity corrects for gene conversion.5

Our method is based on mutations that occurred since

common ancestors living at most several hundred genera-

tions ago, which is more recent than continental-level
The American
population split times. Thus, there is potential to distinguish

differences in mutation rates between populations, which

may be due to differing environmental exposures or average

parental ages.3,6 With larger sample sizes in future studies,

there is also the potential to obtain mutation rate estimates

forparticular genomic regionsorother subsetsof thegenome,

incontrast to thegenome-wideestimation thatweperformed

here. At present our method requires accurately phased rare

variants, which restricts the applicability of the method to

data that include families. If ourmethodwere to be extended

to account for phasing uncertainty, it would be applicable to

analysis of larger datasets of unrelated individuals, which

would increase the precision of the estimates.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.09.012.
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Beagle 4.0, https://faculty.washington.edu/browning/beagle/b4_0.

html

Beagle 4.1, https://faculty.washington.edu/browning/beagle/b4_1.
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dbGaP, https://www.ncbi.nlm.nih.gov/gap

IBDNe, http://faculty.washington.edu/browning/ibdne.html

METIBD3 (Mutation rate estimation through three-way IBD),

https://github.com/tianxiaowen/mutation_phased/

Refined IBD, http://faculty.washington.edu/browning/refined-ibd.

html
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Figure S1: An example of the likelihood contour for the mutation rate. Data were simulated 
under the “super-exponential” model with errors simulated using the “unbiased” genotype error 
scheme (described in Methods). The simulated mutation rate is 1.30×10-8 per base pair per 
meiosis, and the error rate is 0.02%. The sample size is 2000 individuals. The likelihood is a 
function of two parameters: the mutation rate, and an error parameter 𝜖𝜖 which is used to control 
for false apparent mutations cause by genotyping errors. The error parameter 𝜖𝜖 is less than the 
genotype error rate because many genotype errors are removed by the requirement that two of 
the three IBD haplotypes carry the allele. We use an adaptive search grid to find the values of the 
parameters that maximize the likelihood.  



 
 
Figure S2: An example of the gap-filling procedure. The three detected Refined IBD segments 
for one pair of haplotypes are shown in (1) as ab, cd, and ef. If the gap bc, between the ab and cd 
segments has a maximum length of 0.5 cM and the maximum number of genotypes in bc that 
are inconsistent with IBD is 2, this gap will be filled, as shown in (2). Similar rules are applied to 
the gap de between the cd and ef segments.  
  



 
 

 
Figure S3: Estimated recent effective population size for the Framingham sample. Generations 
before present are shown on the x-axis, and estimated effective population size is shown on the 
y-axis. The black line gives the estimated size while the gray region gives the 95% bootstrap 
confidence intervals. The reduction in estimated effective size approximately 10 generations ago 
likely reflects the bottleneck effect of European migration to the US. A similar estimated 
bottleneck was seen in analysis of European-ancestry individuals sampled from Memphis, 
Tennessee.1  



 
Figure S4: Estimated mutation rates from IBDMUT.  Data were simulated under the “super-
exponential” model with errors simulated using the “unbiased” genotype error scheme 
(described in Methods). The simulated mutation rate is 1.30×10-8 per base pair per meiosis and 
is indicated with the red dotted line. The sample size is 2000 individuals. We used GERMLINE for 
IBD segment detection with different values for the number of allowed mismatch sites. Genotype 
errors were added before IBD detection and thus influence the accuracy of IBD inference. We 
show results when using the inferred effective population size from IBDNe based on the Refined 
IBD segments (left panel), and also show results when using the true effective population size 
from the simulation model (right panel). Point estimates (dots) and 95% confidence intervals 
(bars) are shown. Results from our method (METIBD3) on the same data are shown for 
comparison.  



 
Figure S5: The first two principal components for genetic data from 1362 founders in 
Framingham Heart Study. The dashed line indicates PC2=0.05, which separates the two clusters 
of individuals.  



 
Figure S6: Estimated effective population size of two clusters of individuals from the 
Framingham Heart Study. Generations before present are shown on the x-axis, and estimated 
effective population size is shown on the y-axis.  The solid line in black represents the estimated 
size from samples with PC2 less than or equal to 0.05, while the solid line in red represents the 
estimated size from samples with PC2 greater than 0.05.  The shaded region gives the 95% 
bootstrap confidence intervals. 



 
 
Figure S7: Examples of 3-way IBD coverage along the genome. Levels of three-way IBD are 
shown in windows of 500 base pairs for two representative chromosomes. Black bars represent 
regions with zero 3-way IBD coverage after removing IBD segments of length greater than 6 cM. 
Blue bars represent regions excluded from the analysis due to extremely high levels of apparent 
IBD sharing. Orange bars represent regions not covered by the Rutgers recombination map. 



 
Figure S8: Estimated mutation rate from the Framingham Heart Study data as a function of 
maximum allowed allele frequency. Point estimates (dots) and 95% confidence intervals (bars) 
are shown.   



Three-way IBD sharing (IBD3) 𝑃𝑃(IBD3 |tree3) 
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𝑃𝑃4 

Table S1: Probabilities for all possible three-way IBD segment configurations. The right column 
gives the probability of the IBD segment configuration in the left column, conditional on the 3-
haplotype coalescent tree, tree3, being the tree shown in Figure 1 (haplotypes A and B coalesce 
𝑔𝑔1 generations ago and their common ancestor and haplotype C coalesce 𝑔𝑔1 + 𝑔𝑔2 generations 
ago). The corresponding probability is given by one of the equations represented by 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,𝑃𝑃4 
below. The positions 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 of changes in IBD status are measured in Morgans.  
Let 𝐺𝐺1(𝑥𝑥; 𝜆𝜆) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝑥𝑥 denote an exponential distribution and 𝐺𝐺2(𝑥𝑥) = (3𝑔𝑔1 + 2𝑔𝑔2)2𝑥𝑥𝑒𝑒−(3𝑔𝑔1+2𝑔𝑔2)𝑥𝑥 
denote the gamma distributions with shape parameter 2 and rate parameter 3𝑔𝑔1 + 2𝑔𝑔2.  Then 

𝑃𝑃1 =
(𝑔𝑔1 + 2𝑔𝑔2)𝑔𝑔1
(3𝑔𝑔1 + 2𝑔𝑔2)2 𝐺𝐺2(𝑥𝑥3 − 𝑥𝑥2)𝐺𝐺1(𝑥𝑥2 − 𝑥𝑥1; 2𝑔𝑔1)𝐺𝐺1(𝑥𝑥4 − 𝑥𝑥3; 2𝑔𝑔1 + 2𝑔𝑔2) 

𝑃𝑃2 =
(𝑔𝑔1 + 2𝑔𝑔2)𝑔𝑔1
(3𝑔𝑔1 + 2𝑔𝑔2)2 𝐺𝐺2(𝑥𝑥3 − 𝑥𝑥2)𝐺𝐺1(𝑥𝑥2 − 𝑥𝑥1; 2𝑔𝑔1 + 2𝑔𝑔2)𝐺𝐺1(𝑥𝑥4 − 𝑥𝑥3; 2𝑔𝑔1) 

𝑃𝑃3 =
𝑔𝑔12

(3𝑔𝑔1 + 2𝑔𝑔2)2
𝐺𝐺2(𝑥𝑥3 − 𝑥𝑥2)𝐺𝐺1(𝑥𝑥2 − 𝑥𝑥1; 2𝑔𝑔1 + 2𝑔𝑔2)𝐺𝐺1(𝑥𝑥4 − 𝑥𝑥3; 2𝑔𝑔1 + 2𝑔𝑔2) 

𝑃𝑃4 =
(𝑔𝑔1 + 2𝑔𝑔2)2

(3𝑔𝑔1 + 2𝑔𝑔2)2
𝐺𝐺2(𝑥𝑥3 − 𝑥𝑥2)𝐺𝐺1(𝑥𝑥2 − 𝑥𝑥1; 2𝑔𝑔1)𝐺𝐺1(𝑥𝑥4 − 𝑥𝑥3; 2𝑔𝑔1) 

The probabilities corresponding to any three-way coalescent tree can be found by appropriate 
relabeling of the haplotypes.  
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