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Figure S1. Boxplots comparing A) log10 total Class C ROH lengths of UPD true positives 

in the 23andMe dataset, which are identified using IBD analysis (left) and of simulated 

UPD cases (right) (t-test p-value = 0.94) and B) total number of Class C ROHs of UPD true 

positives (left) and of simulated UPD cases (right) (t-test p-value = 0.04).  Because the 

number of Class C ROH differed significantly between real UPD cases and simulated UPD 

cases (panel B, t-test p-value < 0.05), we did not train on this variable in our classifiers and 

instead train on total Class C ROH length (panel A, t-test p-value > 0.05). 
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Figure S2. Distributions of isodisomy proportion in simulated UPD cases for each of 23 

chromosomes.  We simulated 1000 cases of UPD for each chromosome for each cohort based 

on genotype data from 23andMe.  We see that, though the distribution of cases varies between 

chromosomes, every subtype of UPD (hetUPD, in which 0% isodisomy occurs; isoUPD, in 

which 100% isodisomy occurs; and partial isoUPD, in which an intermediate proportion between 

0 and 100% isodisomy occurs) is produced on each chromosome by our simulation method. 
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Figure S3. Example ideograms showing ROH locations (Class A ROH in blue, Class B 

ROH in red and Class C ROH in green). These were drawn from six simulated UPD cases 

and two simulated controls to illustrate the classification problem our ROH-based supervised 

classifiers faced. A) Ideogram of ROH in a control with unrelated parents, B) hetUPD of 

chromosome 1 with unrelated parents, C) partial isoUPD of chromosome 1 with unrelated 

parents, D) isoUPD of chromosome 1 with unrelated parents, E) control with related parents, F) 

hetUPD of chromosome 1 with related parents, G) partial isoUPD of chromosome 1 with related 

parents, and H) isoUPD of chromosome 1 with related parents.  These figures show that long 

ROH can occur in partial isoUPD and isoUPD cases as well as individuals with related parents, 

and further illustrate that hetUPD cannot be identified based on ROH. 
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Figure S4. Boxplots comparing log10 ROH lengths (in bp) between UPD true negatives 

(TN, blue) and UPD true positives (TP, red) in the 23andMe dataset across the three 

length classes of ROH, from left to right: 1) Class A, the shortest ROH; 2) Class B, 

intermediate length ROH; 3) Class C, the longest ROH.  ROH length class boundaries for 

each cohort are determined by GARLIC using gaussian mixture modeling (Table S1).  Only 

Class C ROH lengths differ significantly between UPD true negatives and true positives (t-test 

p-value < 0.05). 
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Figure S5. Area under the ROC curve (auROC) versus isodisomy proportion on the 

simulated chromosome.  We found that auROC increases with isodisomy proportion on the 

simulated chromosome.  Our classifiers perform best when isodisomy spans at least 20-50% of 

the chromosome. 
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Figure S6. The per chromosome distribution of clinical UPD cases published in the 

literature to date1 (see Web Resources, accessed 11/29/18).  More than one case has been 

observed on each autosome except 19 and the X chromosome. Published UPD cases seem to 

cluster on chromosomes 6, 7, 11, 14 and 15, which contain clusters of imprinted genes that 

cause clinical phenotypes (Figure S7).  There are 1869 matUPD cases in total and 881 patUPD 

cases in total, suggesting that matUPD is about twice as common as patUPD. 
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Figure S7. Correlation between imprinted gene counts and published UPD rates and UPD 

rates in the 23andMe duos.  A) The per chromosome distribution of imprinted gene counts 

(see Web Resources, accessed 06/28/19). B) We find that the ratio of per chromosome UPD 

rates from published cases to the per chromosome UPD rates from 23andMe duos is 

significantly correlated with the number of imprinted genes on each chromosome (Pearson’s 

correlation = 0.70, p-value = 0.0003).  C) We also find that the per chromosomes rates of UPD 

from 23andMe duos are not significantly correlated with the number of imprinted genes 

(Pearson’s correlation = -0.32, p-value = 0.13).  Chromosomes are colored by centromeric type: 

metacentric chromosomes are shown in red, submetacentric chromosomes in green and 

acrocentric chromosomes in blue.   

 



 

Figure S8. Violin plots of ROH length distributions (in Mb) for eight cohorts in the 

23andMe database.  The cohorts are colored by continental ancestry group: Middle Eastern 

(yellow), European (blue), South Asian (red), East Asian (pink), and admixed (grey).  ROH were 

identified using GARLIC, which divides inferred ROH into three classes based on length. These 

plots show A) all classes combined, B) class A, the shortest ROH, C) class B, intermediate 

length ROH, and D) class C, the longest ROH.  These plots recapitulate patterns of ROH length 

distributions seen in published analyses of ROH across global populations.2,3 
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Figure S9. Receiver operating characteristic curves for 23 UPD classifiers (one per 

chromosome) trained on simulated individuals based on A) Latino cohorts (TPR between 

0.76 and 0.98 when FPR is fixed at 0.01), B) South European cohorts (TPR between 0.75 and 

0.99 when FPR is fixed at 0.01), C) African American cohorts (TPR between 0.79 and 0.99 

when FPR is fixed at 0.01), D) East Asian cohorts (TPR between 0.74 and 1 when FPR is fixed 

at 0.01), E) Ashkenazi Jewish cohorts (TPR between 0.51 and 0.899 when FPR is fixed at 

0.01), F) Middle Eastern cohorts (TPR between 0.62 and 0.88 when FPR is fixed at 0.01), and 

G) South Asian cohorts (TPR between 0.63 and 0.84 when FPR is fixed at 0.01).  Plots A-D 

show ROC curves with auROC > 0.9, which lead to successful classification in real data, 

whereas plots E-G show classifiers that perform relatively poorly on simulated testing data 

(auROC < 0.9).  The cohorts in plots E-G, Ashkenazi Jewish, Middle Eastern and South Asian, 

are known to have practiced endogamy and so high levels of consanguinity may be confounding 

UPD detection for these classifiers. 

 



 

Figure S10. Receiver operating characteristic curves for 5 UPD classifiers in northern 

European true positives and true negatives from IBD-based UPD detection.  We further 

validated our classifiers using true positives and true negatives from IBD-based UPD detection, 

specifically, we analyzed northern European true positives with ROH spanning at least 20% of 

the UPD chromosome and northern European true negatives.  All 5 ROC curves shown here 

have auROC > 0.95 and using our chosen probability cutoff of 0.9, we identified 85% of the 

northern European true positives (TPR) and we did not classify any of the northern European 

true negatives as putative UPD cases (FPR). 

 



   

Figure S11.  Ideograms of ROH for 22 ROH-based UPD cases we identified in the UK 

Biobank.  We applied our ROH-based classifiers to 431,094 northern European individuals 

from the UK Biobank and identified 172 putative cases of UPD across 21 autosomes and the X 
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chromosome (we did not classify any UPD cases on chromosome 20).  This figure shows 

ideograms of ROH for 22 of the 172 putative cases, randomly drawn to illustrate ROH patterns 

of UPD cases of each chromosome for which we classify UPD; blue rectangles along the 

chromosomes represent Class A ROH, red rectangles represent Class B ROH, and green 

rectangles represent Class C ROH. 
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Figure S12. Manhattan plots of GWAS of UPD incidence, stratified by parental sex. (A) 

GWAS of all parents of UPD cases (both mothers and fathers), adjusted for sex; (B) GWAS of 

mothers of UPD cases only; and (C) GWAS of fathers of UPD cases only. There are no variants 

reaching genome-wide significance and the few hits reaching suggestive association level (p-

value < 1x10-6) are likely false positives based on gene annotations. 

 

 

Figure S13. The age distribution of fathers of UPD true negatives (blue) and that of 

fathers who are parents of origin of UPD true positives (patUPD cases, yellow) in the 

23andMe dataset.  Fathers of UPD cases are significantly older than fathers of true negatives 

(Wilcoxon p-value = 3.29 x 10-5).  However, we do not observe a significant difference in 

Wilcoxon p
= 3.29e-05

Wilcoxon p
= 0.826



paternal age when we restrict analysis to fathers who are parents of origin of UPD children 

(Wilcoxon p-value = 0.286). 

 

 

Figure S14. Correlation between per-chromosome UPD rate in published clinical cases1 

(see Web Resources) and per-chromosome aneuploidy rate in published pre-

implantation embryo data.4 Chromosomes are colored by centromeric type: metacentric 

chromosomes are shown in red, submetacentric chromosomes in green and acrocentric 

chromosomes in blue.  In contrast to our results of correlation between per chromosome UPD 

rates in the 23andMe dataset and those from PGS data (Figure 4A), these two rates are not 

significantly correlated (Pearson’s correlation = 0.2; p-value = 0.34).  This is expected since 

clinical cases are likely biased towards chromosomes causing serious medical phenotypes. 

 

 

 



Population Class A Lengths (bp) Class B Lengths (bp) Class C Lengths (bp) 

Northern European 
(23andMe) 

16,639-476,876 476,877-1,244,859 1,244,867-53,180,213 

Northern European 
(UK Biobank)  

2,308-808,025 808,026-2,398,796 2,398,803-137,730,942 

Southern European 24,862-554,584 554,589-1,590,178 1,591,210-18,452,311 

African American 27,649-591,299 591,321-1,720,202 1,721,681-47,567,224 

Ashkenazi Jewish 19,879-571,582 571,595-1,578,587 1,578,882-40,139,153 

East Asian 15,640-385,089 385,093-963,677 963,692-17,530,267 

Latino 10,032-561,786 561,789-1,616,663 1,616,842-38,806,880 

Middle Eastern 30,028-617,344 617,354-1,882,483 1,883,339-53,080,779 

South Asian 25,273-585,458 585,514-1,735,929 1,736,607-49,036,678 

Table S1. Boundaries (in base pairs) for each of three length classes of ROH across nine 

cohorts in the 23andMe database and the UK Biobank.  Class boundaries were calculated 

using Gaussian mixture modeling on ROH length distributions in UPD true negatives from each 

of the eight cohorts in the 23andMe dataset and from all northern Europeans in the UK Biobank. 

 

 

 

 

 

 

 

 



Quantitative phenotype 

Mean 
phenotype 
in UPD 
true 
negatives 

Standard 
deviation 
(SD) of 
phenotype 
in UPD 
true 
negatives 

Mean 
phenotype 
in UPD 
true 
positives 

SD of 
phenotype 
in UPD 
true 
positives 

Sample 
sizes in 
UPD true 
negatives 

Sample 
sizes in 
UPD true 
positives 

amount_of_stress 2.58 1.2 2.64 0.9 20790 25 

beighton_hypermobility_qtl 2.11 2.1 4 2.8 6182 <5 

birthweight 121.11 21.7 124.5 14.8 3441 <5 

bmi 25.87 5.6 24.97 4.6 110256 97 

bmi_qnorm -0.2 1 -0.35 0.9 110255 97 

cup_size 4.96 1.6 4.5 0.7 3522 <5 

dass_any 2.71 3 3.28 3.5 30326 32 

empathy_qt 46.18 13.9 47.67 17.9 4795 <5 

height 67.87 3.9 67.07 4 110285 97 

height_qnorm 0.04 1 -0.15 1.1 110284 97 

iqb.age_started_reading 4.08 1.3 4.22 1.2 16867 18 

mind_in_eyes_qnorm 0.14 1 -1.09 1 11972 5 

perceived_stress_qt 15.75 7.3 15.53 7.9 16103 17 

personality_activity 4.69 2 5.18 1.6 16086 11 

personality_aesthetics 8.95 2.7 9 2.4 15869 11 

personality_agreeableness 24.7 5.8 27 4.9 15856 11 

personality_altruism 11.31 2.9 12.45 2.3 15962 11 

personality_anxiety 7.55 3.9 8.36 3.9 15913 11 

personality_assertiveness 9.42 5.1 9.27 4.3 15953 11 

personality_compliance 7.69 2.5 7.82 2.6 16055 11 

personality_conscientiousness 24.68 6.2 22.73 5.8 15856 11 

personality_depression 3.82 2.2 4.64 2.3 15978 11 

personality_extraversion 16.34 7.4 16.55 6.3 15903 11 

personality_ideas 14.67 3.3 13.73 3.7 15888 11 

personality_neuroticism 15.35 7 16.73 7 15897 11 

personality_openness 29.64 6 28.18 5.6 15842 11 

personality_order 4.73 2.2 4.36 2.1 16064 11 



personality_self_discipline 13.55 3.6 12.36 3.6 15870 11 

self_esteem 6.24 1.9 5.57 2.3 18912 21 

shoe_size 10.74 1.4 10.83 1.2 20922 18 

shoe_size_normalized -0.08 1 -0.11 0.9 19238 16 

shoe_size_qnorm -0.07 1 -0.07 0.9 19238 16 

systemizing_qt 72.19 21.6 44.67 16.3 4983 <5 

vocab_tx -1.73 0.5 -1.69 0.5 12754 14 

weight 169.94 42.6 160.3 36.1 110285 97 

weight_qnorm -0.18 1 -0.41 1 110277 97 

Table S3. Summary statistics and sample sizes for 36 quantitative phenotypes tested in 

PheWAS.  We tested for association between UPD of each of the chromosomes with at least 

one UPD case and 36 quantitative phenotypes across five categories (cognitive, personality, 

morphology, obesity and metabolic traits).  Where possible, we also tested for association 

between matUPD and patUPD of each of the chromosomes separately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UPD type Phenotype Effect Size (95% CI) P-values (Uncorrected) 
patUPD1 Any Bariatric Surgery 3.79 (1.39 6.20) 0.0020 

UPD1 Type 2 Diabetes 3.19 (0.87 5.50) 0.0070 

UPD3 Hyperglycemia 4.73 (2.32 7.13) 0.0001 

UPD3 Type 2 Diabetes 4.04 (1.08 7.00) 0.0076 

UPD6 Hyperglycemia 4.38 (1.60 7.15) 0.0020 

UPD6 Type 2 Diabetes 3.90 (1.12 6.68) 0.0060 

UPD6 Weight -2.02 (-3.38 -0.65) 0.0038 

UPD6 Height -1.99 (-3.40 -0.59) 0.0055 

UPD7 Self-rated attractiveness -4.20 (-7.08 -1.32) 0.0042 

UPD7 Life satisfaction -3.75 (-6.53 -0.97) 0.0081 

UPD8 Birth weight -5.31 (-8.21 -2.41) 0.0003 

UPD8 Autism 3.73 (1.36 6.11) 0.0021 

UPD8 Memory Loss 4.19 (1.37 7.02) 0.0036 

UPD8 Altitude Sickness -4.11 (-6.90 -1.32) 0.0038 

UPD8 Likes to play with ideas -8.36 (-14.59 -2.13) 0.0086 

UPD8 Autism Spectrum 3.14 (0.78 5.49) 0.0090 

matUPD15 Autism Spectrum 5.47 (2.42 8.51) 0.0004 

UPD15 Self-rated math ability -3.53 (-6.09 -0.96) 0.0071 

patUPD16 Type 2 Diabetes 7.72 (4.72 10.73) 4.596 x 10-7 

patUPD16 Hyperglycemia 6.05 (3.22 8.88) 2.778 x 10-5 

patUPD16 High Cholesterol 3.29 (0.84 5.74) 0.0084 

matUPD21 Feels left out of social activity -3.52 (-5.93 -1.11) 0.0042 

UPD22 Autism Spectrum 3.61 (1.93 5.30) 2.557 x 10-5 

Table S4. Phenotypes significantly associated with UPD of chromosomes 1, 3, 6, 7, 8, 15, 

16, 21 and 22 (p-value < 0.01). Traits with at least two cases (or two measurements for 

quantitative traits) are shown in bold.  We tested for association between UPD of each of the 

chromosomes and 208 phenotypes (Tables S2-3) across five categories (cognitive, personality, 



morphology, obesity and metabolic traits). Where possible, we also tested for association 

between matUPD and patUPD of each of the chromosomes separately.  Effect sizes shown are 

odds ratios. 

 

Supplemental Methods 

Genome-Wide Association Study 

For the genome-wide association study (GWAS) of UPD, we restricted participants to a set of 

individuals who have European ancestry determined through an analysis of local ancestry 

described in the Methods section. A maximal set of unrelated individuals was chosen for each 

analysis using a segmental identity-by-descent (IBD) estimation algorithm.5 Individuals were 

defined as related if they shared more than 700 cM IBD, including regions where the two 

individuals share either one or both genomic segments IBD. This level of relatedness (roughly 

20% of the genome) corresponds approximately to the minimal expected sharing between first 

cousins in an outbred population. When selecting individuals for case/control phenotype 

analyses, the selection process is designed to maximize case sample size by preferentially 

retaining cases over controls. Specifically, if both an individual case and an individual control 

are found to be related, then the case is retained in the analysis.  

 

Imputation panels created by combining multiple smaller panels have been shown to give better 

imputation performance than the individual constituent panels alone.6 To that end, we combined 

the May 2015 release of the 1000 Genomes Phase 3 haplotypes7 with the UK10K imputation 

reference panel8 to create a single unified imputation reference panel. To do this, multiallelic 

sites with 𝑁 alternate alleles were split into 𝑁 separate biallelic sites. We then removed any site 

whose minor allele appeared in only one sample. For each chromosome, we used Minimac39 to 

impute the reference panels against each other, reporting the best-guess genotype at each site. 

This gave us calls for all samples over a single unified set of variants. We then joined these 



together to get, for each chromosome, a single file with phased calls at every site for 6,285 

samples. Throughout, we treated structural variants and small indels in the same way as SNPs. 

 

In preparation for imputation we split each chromosome of the reference panel into chunks of no 

more than 300,000 variants, with 10,000 variants overlapping on each side. We used a single 

batch of 10,000 individuals to estimate Minimac3 imputation model parameters for each chunk. 

To generate phased participant data for the v1 to v4 platforms, we used an internally-developed 

tool at 23andMe, Inc., Finch, which implements the Beagle graph-based haplotype phasing 

algorithm10, modified to separate the haplotype graph construction and phasing steps. Finch 

extends the Beagle model to accommodate genotyping error and recombination, in order to 

handle cases where there are no consistent paths through the haplotype graph for the individual 

being phased. We constructed haplotype graphs for all participants from a representative 

sample of genotyped individuals, and then performed out-of-sample phasing of all genotyped 

individuals against the appropriate graph. For the X chromosome, we built separate haplotype 

graphs for the non-pseudoautosomal region and each pseudoautosomal region, and these 

regions were phased separately. For the 23andMe participants genotyped on the Illumina 

Global Screening Array-based platform (see “Genotyping and Quality Control” section), we used 

a similar approach, but using a new phasing algorithm, Eagle2.11 

 

We imputed phased participant data against the merged reference panel using Minimac3, 

treating males as homozygous pseudo-diploids for the non-pseudoautosomal region. 

We computed association test results for the genotyped and the imputed SNPs. We assessed 

association by logistic regression assuming additive allelic effects. For tests using imputed data, 

we used the imputed dosages rather than best-guess genotypes. We also included covariates 

for age, gender, the top five principal components to account for residual population structure, 



and indicators for genotype platforms to account for genotype batch effects. The association 

test p-value we report was computed using a likelihood ratio test, which in our experience is 

better behaved than a Wald test on the regression coefficient. For quantitative traits, association 

tests were performed by linear regression. Results for the X chromosome were computed 

similarly, with male genotypes coded as if they were homozygous diploid for the observed allele. 

 

Principal component analysis was performed independently for each ancestry, using ~65,000 

high quality genotyped variants present in all five genotyping platforms. It was computed on a 

subset of one million participants randomly sampled across all the genotyping platforms. PC 

scores for participants not included in the analysis were obtained by projection, combining the 

eigenvectors of the analysis and the SNP weights. 
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