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Supplemental Table Titles and Legends

Supplemental Table 1: Performance on different neural architectures. The table reports (1)
mIOU scores of ecDNA, chromosomes, nuclei, and cytoplasm, and (2) precision and recall scores
for ecDNA for each variant of neural architecture tested. Related to Figure 2a, b, c.

Supplemental Table 2: Precision and recall scores for ecSeg and ecDetect on entire data
set. The table reports (1) the precision and recall scores for ecSeg and ecDetect, (2) ground truth
ecDNA counts per image, and (3) the predicted numbed of ecDNA from ecSeg for each of the 483
images in the data set. Related to Figure 2f.

Supplemental Table 3: Performance on test data set. Precision and recall scores from ecSeg
and ecDetect for the 7 cell lines in the test set. Related to Figure 2d,e.

Supplemental Table 4: Entropy. The entropy and entropy efficiency for all cell lines present across
the entire data set (training, validation, and test). Related to Figure 2g.

Supplemental Table 5: Drug treatment ecDNA counts Sheet 1 has raw ecDNA counts for both
control and case for week 0,2, and 4. Sheet 2 has the entropy values for the cases in week 0, 2, and
4. Related to Figure 3d, ¢, f, g.
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Transparent Methods

Data set. We started with a data set from (Turner et al. 2017). To capture relevant spatial
information, cells were cultured according to standard protocol, and Karyomax was added to enrich
for cells in metaphase. Cells were collected and treated with a 0.075 M KCIl hypotonic solution
for 10 minutes, followed by fixation in 3 : 1 methanol/glacial acetic acid solution. Interphase
and mitotic cells were dropped onto humidified glass slides, and mounting medium with DAPI
was applied to the slides. Cells in metaphase were imaged with an Olympus BX43 microscope
equipped with a QiClick CCD camera. No 3D imaging was performed. Our dataset contains 483
images of dimensions 1392 x 1040 sampled from 27 different tumor cell lines. All images were
stained with 4,6-diamidino-2-phenylindole (DAPI). DAPI is a blue-fluorescent stain that binds to
any DNA structure represent in the sample. Thus, in our data set, it defines ecDNA, chromosomal,
and nucleic regions. Some components in the image are also stained with fluorescence in situ
hybridization (FISH) for specific probes on the ecDNA. However, we ignored the FISH signals
when constructing our ground truth as (a) some ecDNA may not carry the probe target due to
heterogeneity, and (b) not all targets are bound by the probe. Thus, extrachromosomal FISH
signals validate ecDNA, but absence of FISH signals is not indicative of a lack of ecDNA.

We cropped these 483 images into 9,660 patches of 256 x 256. Some patches were purely
background and we only included patches with at least 1% of the total area being covered in DAPI.
We were left with 5949 usable patches. We split this data set such that 60% was used for training
(3570 patches), 20% for validation (1190 patches), and the final 20% for reporting test results (1189
patches).

Ground Truth Labeling. Manual identification of ecDNA can be laborious as a single image can
easily contain more than 200 ecDNA elements, sometimes up to 500. Thus, we built a software,
using off-the-shelf morphological operations, to toggle a region as being ecDNA or not. The ground
truth was then obtained through a manual annotation process using that software. To reduce the
annotator’s work, we seeded the process by providing ecDetect annotations which the annotator
could then toggle on or off.

We used Otsu’s thresholding to binarize the gray-scale image (Otsul979). The adaptive
method demarcated the nuclei and chromosomes, but the smaller and lower intensity ecDNA were
marked as background. We smoothed the edges of the chromosomes and nuclei by performing
an open operation, which is an erosion of the connected components followed by a dilation. We
next used Bradley local thresholding (Bradley2007), an adaptive thresholding algorithm, to per-
form ecDNA annotations. Bradley local thresholding uses a sliding average filter and checks if the
brightness of the center pixel is T% lower than the mean intensity of the pixels in the window. If
it is lower, then the pixel is set to black or otherwise set to white. We used a window size of 3 x 3
pixels and a threshold value of T' = 3%. This allowed us to segment the image to a finer resolution
with ecDNA predictions. We post-processed ecDNA segmentation by removing stray components

that were less than 15 pixels in size, filling in any holes, removing spurs, and performing an open
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operation on each of the connected components. Notably, the process missed many true ecDNA,
but the coarse segmentation was useful for training the U-net.

However, for the 96 test set images (1189 patches), where we needed a more precise accounting
of false negative and false positives, we used additional annotators who refined the predictions by
manually examining each image and correcting any ecDNA that were falsely classified during the

coarse annotation.

Segmentation. Inspired by the U-Net, we used a modified fully convolutional neural network
presented in Fig. 1f. We optimized the architecture by performing grid search over the network’s
hyper-parameters. We varied the number of filters in the first layer ({16,32,64}), input patch
sizes ({1282,2562,5122}) and L2 regularization ({1,0.1,0.01,0.001,0.0001}). We applied multi-
scale context aggregation using dilated convolution (Yu and Koltun 2015). We found that although
the chromosomal IoU increased, the ecDNA precision and recall remained the same. We also
experimented with pre-trained weights from VGG16 trained on ImageNet. However, because Im-
ageNet contains images of everyday objects, our model had a more difficult time generalizing to
the microscopy images. In each case, we minimized loss on the network variants using the Adam
optimizer on 8 GeForce GTX 1080 Ti GPUs. We trained the network on the training set and used
the validation set to evaluate loss and mloU. The training was halted if the loss on the validation
set did not change for 7 epochs (the ‘patience’ time). The test data was a “holdout” set that was
only used for final quantification of the model and had no direct effect on the training itself. The
performance was optimized on a network with 32 filters in the first layer and doubling the number
of filters in each layer, input image sizes of 256 x 256, and a L2 regularization parameter of 0.0001.

We decided not to perform any data augmentation through warping and stretching. The relative
size and shapes of ecDNA are very critical, and often times, certain ecDNA are almost the size of
chromosomes, such as in the COLO205 cell line Supplementary Fig. 1. Any warping and stretching
could cause the ecDNA and chromosomes to be indistinguishable even for the human eye. Rotations
were not used either as our images have no rotational significance. All the images were taken from a
top-down view with no bias towards orientation. Finally, as we collected data from a large number
of cell lines, we had sufficient variation in our dataset.

We denoted each ground truth image as a collection of pixels P with the goal of classifying the
pixels into one class from C = {b,n, h, e}, representing background (b), nucleus (n), chromosome
(h), and ecDNA (e). The ground truth was described by a binary function y.(x) € {0,1} for all
x € P, c € C. Additionally, Y. y.(z) = 1 for all pixels, enforcing a single class assignment. For
each x € P, ¢ € C, the network outputs a class score, P.(x) € [0,1]. We trained the network to

minimize a custom loss function defined below.

Loss function. We defined loss L as a weighted binary cross entropy (BCE) minus the Sgrensen-

Dice coefficient (Dice). Specifically, the BCE loss for class ¢ was computed using;:

BCE[z] = —% 3 [yc(a:) In (ﬁ) + (1 = ye(a)) In (1 - ﬁ)} .

ceC
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Similarly, we compute Dice loss as:

2 P.-
Dice = [1— ZC c'Ye ]

2e (Pellt + llyell)

We used weights to boost the under-represented classes. Let ny, ny,, ng, n. denote the total number
of pixels belonging to each class in background, nuclei, chromosome, and ecDNA, respectively, for

the entire training and validation dataset. As ny >> n,, > np > n., we assigned weight w, to each

N
we, =max 4 1, —
Ne

Correspondingly, the weight of a pixel was given by:

class ¢ € {b,n, h,e} as follows:

[
and the net loss was computed using

L= % Z wg (BCE[z] 4 Dice)

To prevent over-fitting, we trained for 45 epochs with an early stopping “patience” of 7 which

stopped training if the loss on the Validation set did not improve for 7 epochs.

Accuracy. For each class ¢, and threshold 7 € T, where 7 = {0.05,0.1,0.5}, define an indicator

0.-(z) = {1if P.(x) > 7;0 otherwise}. Define the mean Intersection over Union (mloU) score

1 1 Ocr-ye
M=— — :
7] ZT: C XC: 10crll1 + llyellx

across all classes as:

Post-processing of segmentation. Post-training, the network outputs a 256 x 256 matrix O,
with
Olz] = argmax P.(x)
C

To filter noise, we computed connected components for each class. Connected components are
regions of adjacent pixels with the same class value. We filled all holes in each of the connected
components such that the hole is assigned the same class as the surrounding pixels. We performed
secondary size thresholding on the ecDNA elements such that all ecDNA components less than 15
pixels are marked as background and those greater than 125 pixels are marked as chromosomes.
We also removed any ecDNA that were attached to the edges of chromosomes or nuclei as these

regions are often just spurs of the larger class.

Accuracy Metrics. To compute component level accuracy, we computed true positive, false
positive, and false negative rates. If the centroid of a predicted ecDNA component was within a 5

pixel euclidean distance of the centroid of a ground truth ecDNA component, we marked this as
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a true positive (TP). If there are no ground truth ecDNAs within that distance, we classified the
component as a false positive (FP). We found that the average area of ecDNA across our entire
dataset was 75 pixels and thus a distance threshold of \/m ~ 5 pixels ensures that ecDNAs
detected on the periphery of the boundary from the annotated center pixel is still considered a true
positive. Inversely, if there were no predicted ecDNAs within a 5 pixel distance of a ground truth

annotation, we classified it as a false negative (FN). We compute our precision and recall for each

image as:
TP
precision = ’I‘ID——{—FID
recall = L
TP + FN

We also measured accuracy using the F1 score, a harmonic average of precision and recall.

precision X recall

Fl1=2x —
precision + recall

Entropy and Entropy efficiency. Consider a sample with n cells. Let n; (respectively p; = =+

denote the number (respectively, fraction) of cells with ¢ copies. We defined heterogeneity of copy

number using Shannon entropy:

Mo =— pilogspi,
7

Hn
logoy m

The entropy efficiency, defined by normalizes the value between 0 (no heterogeneity) and 1

(maximum heterogeneity).

Drug Treatment Quantification. We cultured GBMa39 cells as neurospheres under serum-free
conditions (DMEM/F12 basal media with 1X Glutamax, EGF, FGF, and heparin). Cells were
cultured in 5 uM Erlotinib. The EGFR-containing ecDNA was quantified via ecSeg at 0, 2, and 4

weeks.

Evolutionary model for ecDNA driven copy number. Consider an initial population of
cells, with each cell carrying k > 0 copies of an oncogene on ecDNA. We modeled the population
using a discrete generation Galton-Watson branching process (Bozic et al. 2010). In this simplified
model, each cell in the current generation containing k& amplicons (amplifying an oncogene) either
dies with probability dj, or replicates with probability by to create the next generation. We set the

selective advantage

b_k 1+fm,oz(k), 0<k< M, (4)
dy, B 0 otherwise
dp, = 1—10b (5)

In other words, cells with k copies of the amplicon stop dividing after reaching a limit of M,
amplicons. Otherwise, they have a selective advantage for 0 < k < M,, where the strength

of selection (by — di, < fm,o(k)) is governed by parameters m, «. Initially, the selective advantage
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increases with increasing copies, but later diminishes due to increasing metabolic load. We modeled
this by defining
; (0<k<M,),

fm,a(k) = M
Healm (Ms < k < M,).

(6)

Here, parameters m and « are the ‘mid-point’, and ‘steepness’ parameters of the logistic function, re-
spectively. Initially, fy, (k) grows linearly, reaching a peak value of fy, (k) = 1 for k = M. As the
viability of cells with large number of amplicons is limited by available metabolites (Pavlova2016),
fm,a(k) decreases logistically in value for & > M, reaching fy, (k) — 0 for k& > M,. We model the
decrease by a sigmoid function with a single mid-point parameter m s.t. fy, o(m) = % The ‘steep-
ness’ parameter « is automatically adjusted to ensure that max{l — fy, o(Ms), fm,a(My)} — 0. We
empirically chose M, = 20, m = 100, = 0.1 to match a mean copy number of 50 ecDNA per cell
observed prior to drug treatment.

The addition of a drug targeting the oncogene provides a disadvantage (negative fitness) to
cells carrying extra copies of the oncogene. Therefore, after drug treatment, we used the selective

function
e(k—r)

fr,a(k) = (7)

fr.a(k) provides negative selection pressure causing a steep decline in the average number of ecDNA
per cell. We simulated the effect of the drug using r € {5,20,50,100}, o € {0.07,0.04,0.03}.
Supplementary Figure 5 shows the values for a = 0.04. We observed that » = 20,a = 0.04 best

- 1+ ec(k—r)"

matched the empirical observations with Eb treatment (Figure 3d).

FISH analysis. ecSeg also incorporates FISH analysis. It allows the user to specify the color of
the FISH signal used to illuminate the gene of interest and the intensity threshold 7' (7" = 120
by default). It then extracts binary images highlighting only the pixels that have the minimum
intensity in the appropriate color channel and additionally marks the pixels as either ecDNA or
chromosomes. ecSeg outputs a table containing the total number of FISH pixels, the fraction of
FISH pixels that are also marked as ecDNA, and the fraction marked as chromosomal for each

image in the user-specified file path.

DATA AND SOFTWARE AVAILABILITY

ecSeg is available at https://github.com/ucrajkumar/ecSeg. The accession number for the data
reported in this paper is 10.17632 : m7n3zvg539.3.
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Supplemental Figures

Ground truth

Prediction

Supplemental Figure 1: Incorrect classification of chromosomes as nuclei in COLO205.
(a) DAPI of original image from cell line COLO205. (b) Ground truth annotation with intact
nuclei, chromosomes, and ecDNA being represented by red, blue, and black, respectively. (c) Seg-
mentation map. COLO205 tumor cell remain tightly clumped even after the nucleic membrane has
disintegrated. The network mis-classifies these chromosomes as nuclei due to the tight clustering.

Related to main Fig. 2b.
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Supplemental Figure 2: Incorrect detection of large ecDNA in COLO205.
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(a) DAPI of

original image from cell-line COLO205. (b) ‘Ground truth’ annotation with intact nuclei, chromo-
somes, and ecDNA being represented by red, blue, and black, respectively. (c) ecSeg Segmentation

map.

(d,e,f) Crops of DAPI, ground truth annotation, and ecSeg segmentation. In COLO205,

replicating ecDNA structures (double minutes) often closely resemble chromosomes, making it dif-
ficult to identify. These structures are marked as chromosomes in both the ground truth and the

segmentation map. Related to main Fig. 2b.
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Supplemental Figure 3: Incorrect false negative calls in cell line CA718. (f) is burst nucleus,
but appears to show as ecDNA when zoomed in, and was marked as ecDNA during human anno-
tation. ecSeg correctly annotates it as a nucleus identifying a mistake in the human annotation.
Related to main Fig. 2b.
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Supplemental Figure 4: Incorrect annotation of ecDNA in cell line CA718. (a) DAPI of
original image from cell-line CA718. (b) ‘Ground truth’ annotation (c) ecSeg Segmentation map
(d,e,f) Crops of DAPI, ground truth annotation, and ecSeg segmentation. Blue circles denote false
positives, red circles are true positives, and green circles are false negatives. As can be verified by
looking at the DAPI image, many of the annotated false positives are actually true ecDNA with
low-intensity DAPI signals. These ecDNA were missed during the ground truth annotation. False
negatives are rare, and often indicate a problem with the ground truth annotation, as shown in
Supplementary Fig. 3. Related to main Fig. 2d.
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Supplemental Figure 5: Simulating the impact of drug on ecDNA counts and hetero-
geneity. Column I shows the modeled growth rates by — dj, as a function of ecDNA count (k) for
untreated (black line) and drug-treated (blue) lines, for a« = 0.04, and r € {5,20,50,100} (rows
A-D). Columns II and IIT show simulated changes in the mean copy number and Shannon entropy
as a function of time, when the drug is applied at day 400. Upon drug application, the ecDNA
counts and heterogeneity both decline in a manner dependent upon the the strength of selection
modeled using a, 7. Panel B.II (r = 20, « = 0.04; shaded region) best fit the experimental data of
GBM cells treated with Erltonib (related to main Figure 2h).
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