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Web Appendix A. Computational Algorithm and Further Extensions

A.1 ADMM for iRRR

For readers convenience, we first reproduce the proposed iRRR estimator defined in (3) of

the main paper. It is given by

B̂ ∈ arg min
B∈Rp×q

1

2n
‖Y−XB‖2F + λ

K∑
k=1

wk‖Bk‖?, (1)

where ‖Bk‖? =
∑pk∧q

j=1 σ(Bk, j) is the nuclear norm of Bk, wks are some prespecified weights,

and λ is a tuning parameter controlling the amount of regularization. To adjust for the

dimension and scale differences of Xks, we choose

wk = σ(Xk, 1){√q +
√
r(Xk)}/n, (2)

based on a concentration inequality of the largest singular value of a Gaussian matrix.

Without loss of generality, we omit the weights wk (k = 1, · · · , K) in the following

derivation of the computational algorithm (since we can reparameterize Xk by (1/wk)Xk and

wkBk by Bk to get an equivalent unweighted form of the objective function). The convex

optimization has no closed-form solution, for which we propose an ADMM algorithm (Boyd

et al., 2011). More specifically, let Ak (k = 1, · · · , K) be a set of surrogate variables for Bk

with the same dimensions and A = (AT
1 , · · · ,AT

K)T. The original optimization is equivalent

to

min
Ak,Bk

1

2n
‖Y−

K∑
k=1

XkBk‖2F + λ
K∑
k=1

‖Ak‖?

s.t. Ak = Bk, k = 1, · · · , K.

Let Λk (k = 1, · · · , K) be a set of Lagrange multipliers with the same dimensions as Ak and

Bk, and Λ = (ΛT
1 , · · · ,ΛT

K)T. The augmented Lagrangian objective function is

D(Y; A,B,Λ) =
1

2n
‖Y−

K∑
k=1

XkBk‖2F + λ

K∑
k=1

‖Ak‖?

+
K∑
k=1

〈Λk,Ak −Bk〉F +
ρ

2

K∑
k=1

‖Ak −Bk‖2F,

(3)

where 〈Q,R〉F represents the Frobenius inner product of Q and R, which equals to the
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trace of QTR. The last squared Frobenius term is the augmentation term, with ρ being a

prespecified step size (usually set to be a small positive value, e.g., 0.1).

The ADMM algorithm alternates between two steps, a primal step and a dual step, until

convergence. The primal step minimizesD(Y; A,B,Λ) with respect to A and B, respectively,

while fixing everything else; the dual step updates Λ.

Primal step: We minimize (3) with respect to A and B, separately. In particular, when one

is fixed, the optimization with respect to the other has an explicit solution. More specifically,

let Ã, B̃, and Λ̃ represent the estimates from the previous iteration. The optimization

minBD(Y; Ã,B, Λ̃) has a unique solution

B̂ =

(
1

n
XTX + ρI

)−1(
1

n
XTY + ρÃ + Λ̃

)
. (4)

Subsequently, we can obtain the estimate of Bk (i.e., B̂k) by partitioning B̂.

To estimate A, the objective function D(Y; A, B̂; Λ̃) is readily separable for different Aks.

In particular, each subproblem is rewritten as

min
Ak

ρ

2
‖Ak − B̂k +

Λ̃k

ρ
‖2F + λ‖Ak‖?, (5)

which can be solved via the singular value soft-thresholding technique (Cai et al., 2010). To

be specific, let UkDkV
T
k be the singular value decomposition (SVD) of B̂k − Λ̃k/ρ, where

Uk and Vk have orthonormal columns and Dk contains non-increasing singular values. The

solution to the optimization problem in (5) is

Âk = UkS(Dk,
λ

ρ
)VT

k , (6)

where S(Dk, λ/ρ) = (Dk − λ/ρ)+ applies soft-thresholding at the level λ/ρ to each entry of

Dk. As a result, Âk may be low-rank.

Dual step: Once A and B are estimated, the Lagrange multipliers Λk are updated by

Λ̂k = Λ̃k + ρ(Âk − B̂k). (7)

Stopping criterion: The ADMM algorithm alternates between the primal step and the
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dual step. After each iteration, we evaluate the primal and dual residuals as

rprimal = ‖Â− B̂‖F, rdual = ρ‖B̂− B̃‖F. (8)

Following Boyd et al. (2011), the stopping criterion is that both residuals fall below a small

prefixed threshold. It can be proved that under weak regularity conditions, the algorithm

always converges to a global optimum. In practice, one can let the step size ρ vary over

iterations, and generally the convergence is expedited with a slowly increasing sequence of

ρ (He et al., 2000). A summary of the above algorithm for solving iRRR with a fixed λ is

provided in Algorithm 1 below.

Algorithm 1 ADMM algorithm for fitting iRRR

Parameter: λ, ρ.

Initialize A, B and the Lagrange multiplier Λ;

while The stopping criterion is not satisfied do

• Primal step: update B by (4) and update A by (6);

• Dual step: update Λ by (7);

• Calculate the primal and dual residuals in (8);

• (Optional) Increase ρ by a small amount, e.g., ρ← 1.1ρ.

end while

The tuning parameter λ in (1) balances the loss function and the penalty term. In practice,

the model is fitted using the ADMM algorithm for a sequence of λ values to produce a

spectrum of view-specific low-rank models. A warm start strategy is adopted to speed up

computation, i.e., the current solution is used as the initial value for the next λ value. We

use K-fold cross validation (Stone, 1974) to choose the optimal λ and hence the optimal

solution, based on the predictive performance of the models.
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A.2 Handling Non-Gaussian and Incomplete Response

When the responses are non-Gaussian, we substitute the squared loss function in (1) with

the negative log likelihood denoted as − logL(Y,Θ). The augmented Lagrangian becomes

D(Y;µ,A,B,Λ) = − 1

n
logL(Y,Θ) + λ

K∑
k=1

‖Ak‖? + 〈Λ,A−B〉F +
ρ

2
‖A−B‖2F,

where Θ = 1µT + XB. The minimization of D(Y;µ,A,B,Λ) with respect to µ and

B while fixing everything else may no longer have closed-form solutions. To alleviate the

computational burden, one could apply a quadratic approximation or majorization to the

negative log likelihood function in the primal step, and then follow the ADMM algorithm for

parameter estimation. In the following, we demonstrate the estimation procedure for binary

responses.

The log-likelihood function for binary responses Y can be expressed as

logL(Y,Θ) =
n∑

i=1

q∑
j=1

log h ((2yij − 1)θij) , (9)

where θij is the (i, j)th entry of Θ and h(η) = exp(η)/{1 + exp(η)} denotes the inverse

function of the logit link function. Following Lee et al. (2010) and Lee and Huang (2013),

we have the following relation

− log h(η) 6 − log h(η0)− 2{1− h(η0)}2 +
1

8
[η − η0 − 4{1− h(η0)}]2 . (10)

Namely, − log h(η) is majorized by the quadratic function on the right-hand side, which is

tangent with − log h(η) at η0 and has a fixed second-order derivative.

Let θ̃ij be the estimate from the previous iteration. By applying (10) to (9), we have

− logL(Y,Θ) 6
1

8

n∑
i=1

q∑
j=1

[
(2yij − 1)(θij − θ̃ij)− 4

{
1− h

(
(2yij − 1)θ̃ij

)}]2
+ c,

where c is some constant. Let Y? be an n×q working response matrix with the (i, j)th entry

y?ij = θ̃ij + 4(2yij − 1)
{

1− h
(

(2yij − 1)θ̃ij

)}
.

Correspondingly, the negative log likelihood function − logL(Y,Θ) is majorized by the

squared function 1/8‖Y? −Θ‖2F, plus some constant. Consequently, in the primal step, one
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could minimize the majorized objective function to estimate µ and B explicitly. In particular,

the estimate of µ is (1/n)Y?T1. We remark that in practice, it generally suffices to run the

majorization-minimization procedure once in each ADMM iteration (He et al., 2002).

When there are missing values in the responses, we exploit a similar idea to majorize

the objective function in each ADMM iteration. More specifically, suppose O ⊆ {(i, j) :

i = 1, · · · , n; j = 1, · · · , q} is the index set for observed data points, and M ⊆ {(i, j) : i =

1, · · · , n; j = 1, · · · , q} is the index set for missing values. For Gaussian data, we majorize the

observed loss function
∑

(i,j)∈O(yij−θij)2 by
∑

(i,j)∈O(yij−θij)2+
∑

(i,j)∈M(θ̃ij−θij)2; for binary

responses, we first majorize the negative log likelihood function by 1/8
∑

(i,j)∈O(y?ij − θij)2

as before, and then further majorize it as 1/8
∑

(i,j)∈O(y?ij − θij)2 + 1/8
∑

(i,j)∈M(θ̃ij − θij)2.

By collecting yij or y?ij and θ̃ij in an n× p matrix, we obtain a matrix-form loss function as

before. As a result, we use the same ADMM steps to estimate the parameters.

A.3 On `2 Regularization and Adaptive Estimation

To better deal with high dimensional data, we can consider adding a ridge penalty λ2‖B‖2F

to the cNNP penalty in (1) (Mukherjee and Zhu, 2011; Chen et al., 2013). As a result, the

objective function becomes strictly convex whenever the tuning parameter λ2 > 0. This

shares the same idea as the elastic net (Zou and Hastie, 2005), and ensures that the problem

has a unique global optimizer.

With the combined penalty form λ
∑K

k=1 ‖Bk‖? +λ2‖B‖2F, the iRRR problem can be easily

transformed to the same form as before:

1

2n

∥∥∥∥∥∥∥
Y

0

−
 X

√
2nλ2I

B

∥∥∥∥∥∥∥
2

F

+ λ
K∑
k=1

‖Bk‖?,

where 0 is a zero matrix of size p × q and I is an identity matrix of size p × p. (More

generally the identity matrix can be replaced by a diagonal matrix to allow weighted `2

regularization). Upon defining Y† = (YT,0)T and X† = (XT,
√

2nλ2I)T as augmented
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responses and predictors, the model estimation could be conducted directly by applying

Algorithm 1 to the augmented data. Alternatively, a more computationally efficient way is

to directly modify the ADMM algorithm by replacing the nuclear norm penalty in (5) by

a combined nuclear and squared `2 norm penalty. The resulting problem can still be solved

explicitly, now via a singular value shrinkage and thresholding operation (Sun and Zhang,

2012).

When the ridge penalty is included, we have an additional tuning parameter λ2. A larger

value of λ2 makes the problem more convex, but meanwhile introduces more bias to the final

estimates. In practice, λ2 can be selected using CV as well. However, empirical experiments

suggest that it usually suffices to set λ2 at a very small value without tuning it. For simplicity,

we omit the ridge penalty term in our numerical studies.

Moreover, motivated by Zou (2006), we can consider an adaptively weighted version of

iRRR, where, for example, we first fit iRRR and then adjust the weights according to the

estimated coefficient sub-matrices (e.g., factoring in the inverse of the Frobenius norms of

the estimated coefficient matrices). This may potential improve view selection and predictive

accuracy, as shown in the numerical studies in Section 4 of the main paper.

Web Appendix B. On the Restricted Eigenvalue Condition

To specify the restricted set C, we need some additional constructions. For each B0k ∈ Rpk×q

(k = 1, . . . , K), let B0k = UkDkV
T
k be its full SVD, where Uk ∈ Rpk×pk , Vk ∈ Rq×q satisfy

UT
k Uk = Ipk and VT

k Vk = Iq. For each r ∈ {1, 2, · · · ,mk}, where mk = pk ∧ q, let Ur
k, Vr

k be

the submatrices of singular vectors associated with the top r singular values of B0k. Define

the following subspaces of Rpk×q:

A(Ur
k,V

r
k) = {∆k ∈ Rpk×q; row(∆k) ⊂ Vr

k, col(∆k) ⊂ Ur
k},

B(Ur
k,V

r
k) = {∆k ∈ Rpk×q; row(∆k) ⊥ Vr

k, col(∆k) ⊥ Ur
k},
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where row(∆k) and col(∆k) denote the row space and column space of ∆k, respectively. We

may adopt the shorthand notation Ar
k and Br

k when no confusion arises. Let PBrkk denote the

projection operator onto the subspace Brk
k , and define ∆′′k = PBrkk (∆k) and ∆′k = ∆k −∆′′k.

We now define the restricted set

C(r1, . . . , rK ; δ)

=

{
∆ ∈ Rp×q; ‖∆‖F > δ,

K∑
k=1

wk‖∆′′k‖? 6
K∑
k=1

{3wk‖∆′k‖? + 4wk

mk∑
j=rk+1

σ(B0k, j)}

}
. (11)

where δ is a tolerance parameter and wk = σ(Xk, 1){√q +
√
r(Xk)}/n, as defined in (4) of

the main paper. We refer to Negahban and Wainwright (2011) and Negahban et al. (2012)

for examples of the restricted set, including the cases of Lasso, group Lasso and nuclear norm

penalized regression.

Web Appendix C. Special Cases of Theorem 2

The results on iRRR in Theorem 2 of the main paper can specialize into oracle inequalities of

several existing regularized estimation methods, such as NNP, MTL and Lasso. We discuss

some examples below; to focus on the main message, we only focus on the settings of exact

low rank or exact sparsity. First consider the NNP method defined in (2) of the main paper,

which corresponds to the special case of K = 1 and wk = 1 in iRRR. The restricted set in

(11) becomes

C(r0) = {∆ ∈ Rp×q; ‖∆′′‖? 6 3‖∆′‖?},

where ∆′′ = PBr00 (∆) and ∆′ = ∆−∆′′. Theorem 2 then implies that under the RE condition

with κ(X) > 0 over C(r0), if we choose λ = 2τ(1 + θ)σ(X, 1){√q +
√
r(X)}, then with

probability at least 1− exp[−θ2{q + r(X)}/2], it holds that

‖B̂−B0‖2F �
τ 2

κ(X)2
{√q +

√
r(X)}2r0
n

.
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This bound recovers the results on NNP in the literature; see, e.g., Negahban and Wainwright

(2011). Next, consider the MTL setting, which corresponds to pk = 1 and p = K in iRRR.

Write B0 = (bT
01, . . . ,b

T
0p)

T ∈ Rp×q, and S = {j; ‖b0j‖2 6= 0}. The restricted set becomes

C(S) =

{
∆ = (∆T

1 , . . . ,∆
T
p )T ∈ Rp×q;

∑
k∈Sc

‖∆k‖2 6 3
∑
k∈S

‖∆k‖2

}
.

By choosing λ ∝ τ
√

log p/q, Theorem 2 yields the high probability bound

‖B̂−B0‖2F �
τ 2

κ(X)2
(log p+ q) · |S|

n
,

where |S| is the cardinality of S. The same bound can be obtained from results in Lounici

et al. (2011) on more general setting of MTL, or from results in Negahban et al. (2012) on

grLasso by vectorizing the MTL problem here into a univariate-response regression. Another

example is Lasso, which corresponds to q = 1 and K = p in iRRR. It is seen that the model

becomes y = Xb0 + e, and the cNNP degenerates to the `1-norm of a coefficient vector

b ∈ Rp. Let S = {j; b0j 6= 0}, then the restricted set becomes

C(S) =

{
∆ = (∆1, . . . ,∆p)

T ∈ Rp;
∑
k∈Sc

|∆k| 6 3
∑
k∈S

|∆k|

}
.

Theorem 2 implies that by choosing λ ∝ τ
√
c log p,

‖b̂− b0‖22 �
τ 2

κ(X)2
log p · |S|

n

holds with probability at least 1− p1−c, which is a well-known result in the literature.

Web Appendix D. Proofs

D.1 Proof of Theorem 1 and a Corollary on the Estimation Error

Proof. [Proof of Theorem 1] By definition,

‖Y−XB̂‖2F + 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖Bk‖?

6‖Y−XC‖2F + 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖Ck‖?,



Integrative Multi-View Regression 9

which leads to

‖XB̂−XB0‖2F 6‖XC−XB0‖2F + 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖Ck‖?

+ 2〈XTE, B̂−C〉F − 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖B̂k‖?.

Define an event Ak = {σ(XT
k E, 1) 6 λσ(Xk, 1)(

√
q +

√
r(Xk))}, for k = 1, . . . , K. First,

consider the inner product term. On the event ∩K
k=1Ak, we have

〈XTE, B̂−C〉F =tr{ETX(B̂−C)}

=
K∑
k=1

〈XT
k E, B̂k −Ck〉F

6
K∑
k=1

σ(XT
k E, 1)‖B̂k −Ck‖?

6λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖B̂k −Ck‖?.

It follows that on the event ∩Kk=1Ak,

‖XB̂−XB0‖2F 6‖XC−XB0‖2F + 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖Ck‖?

+ 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖B̂k −Ck‖?

− 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖B̂k‖?

6‖XC−XB0‖2F + 4λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))‖Ck‖?, (12)

where the last inequality is due to the triangle inequality.

Now we consider the probability of the event ∩Kk=1Ak. Let P be the projection matrix onto

the column space of X, and Pk be the projection matrix onto the column space of Xk, for
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k = 1, . . . , K. Because σ(XT
k E, 1) 6 σ(Xk, 1)σ(PkE, 1), we have

∩Kk=1Ak ={σ(XT
k E, 1) 6 λσ(Xk, 1)(

√
q +

√
r(Xk)); k = 1, . . . , K}

⊇{σ(PkE, 1) 6 λ(
√
q +

√
r(Xk)); k = 1, . . . , K}

≡ ∩K
k=1 Ãk.

By Lemma 3 in Bunea et al. (2011),

P{(σ(PkE, 1) > E[σ(PkE, 1) + τt]} 6 exp(−t2/2),

and E[σ(PkE, 1)] 6 τ(
√
q +

√
r(Xk)), for any k = 1, . . . , K. Therefore,

P{∪K
k=1Ãc

k} 6
K∑
k=1

exp{−1

2
θ2(q + r(Xk))}.

It then follows that

P{∩K
k=1Ak} > P{∩K

k=1Ãk} = 1− P{∪K
k=1Ãc

k} > 1−
K∑
k=1

exp{−1

2
θ2(q + r(Xk))}.

This, together with (12), completes the proof.

Corollary 1: Assume that E has i.i.d. N(0, τ 2) entries, and assume σ(X, p) > 0. Let

λ = (1 + θ)τ , with θ > 0 arbitrary. Then with probability at least 1 −
∑K

k=1 exp[−θ2{q +

r(Xk)}/2],

‖B̂−B0‖2F � τ 2(1 + θ)2
K∑
k=1

Λ(Zk, 1)

Λ(Z, p)2
{√q +

√
r(Xk)}2r0k
n

,

where “�” means the inequality holds up to some multiplicative constant.

Corollary 1 shows that the estimation error rate for iRRR is τ 2
∑K

k=1{q + r(Xk)}r0k/n.

This is potentially better than τ 2{q + r(X)}r0/n, the rate achieved by the NNP estimator

under the same conditions (Bunea et al., 2011); for example, when r(X) =
∑

k r(Xk) and

r(B0) =
∑

k r0k.
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Proof. [Proof of Corollary 1] From the proof of Theorem 1,

‖XB̂−XB0‖2F 6‖XC−XB0‖2F

+ 2λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk)){‖Ck‖? + ‖B̂k −Ck‖? − ‖B̂k‖?}.

With the results in the proof of their Theorem 12 in Bunea et al. (2011), we have

‖XB̂−XB0‖2F − ‖XC−XB0‖2F

64λ
K∑
k=1

σ(Xk, 1)(
√
q +

√
r(Xk))

√
3r(Ck)‖B̂k −Ck‖F

64λ

√√√√3
K∑
k=1

σ(Xk, 1)2(
√
q +

√
r(Xk))2r(Ck)

√√√√ K∑
k=1

‖B̂k −Ck‖2F

6
4
√

3λ

σ(X, p)

√√√√ K∑
k=1

σ(Xk, 1)2(
√
q +

√
r(Xk))2r(Ck)‖XB̂−XC‖F

6
1

2
‖XB̂−XC‖2F +

24λ2

σ(X, p)2
(

K∑
k=1

σ(Xk, 1)2(
√
q +

√
r(Xk))2r(Ck)).

It follows that

‖XB̂−XB0‖2F 63‖XC−XB0‖2F +
48λ2

σ(X, p)2
(

K∑
k=1

σ(Xk, 1)2(
√
q +

√
r(Xk))2r(Ck)).

Taking C = B0 leads to the bound for the prediction error

‖XB̂−XB0‖2F � τ 2
K∑
k=1

Λ(Zk, 1)

Λ(Z, p)
(
√
q +

√
r(Xk))2r0k.

Then by using the fact that σ(X, p) > 0 we get the claimed bound.

D.2 Proof of Theorem 2

Proof. [Proof of Theorem 2] By definition, we have

1

2n
‖Y−XB̂‖2F + λ

K∑
k=1

wk‖B̂k‖? 6
1

2n
‖Y−XB0‖2F + λ

K∑
k=1

wk‖B0k‖?,

which leads to

1

2n
‖X∆‖2F 6 λ

K∑
k=1

wk(‖B0k‖? − ‖B̂k‖?) +
1

n
〈E,X∆〉F, (13)
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where ∆ = B̂−B0.

Firstly, we verify that ∆ belongs to the restricted set defined in (11) so that the RE

condition can be applied. Consider the first term on the right hand side of (13). With the

projection operators defined in Web Appendix B, we have that

‖PArk
k

(B0k) + ∆′′k‖? = ‖PArk
k

(B0k)‖? + ‖∆′′k‖?,

and

‖B̂k‖? = ‖PArk
k

(B0k) + ∆′′k + PBrkk (B0k) + ∆′k‖

> ‖PArk
k

(B0k) + ∆′′k‖? − ‖PBrkk (B0k) + ∆′k‖?

= ‖PArk
k

(B0k)‖? + ‖∆′′k‖? − ‖PBrkk (B0k)‖? − ‖∆′k‖?.

Therefore,

‖B0k‖? − ‖B̂k‖? 6 ‖PArk
k

(B0k)‖? + ‖PBrkk (B0k)‖?

− (‖PArk
k

(B0k)‖? + ‖∆′′k‖? − ‖PBrkk (B0k)‖? − ‖∆′k‖?)

= 2‖PBrkk (B0k)‖? + ‖∆′k‖? − ‖∆′′k‖?. (14)

We then deal with the second term on the right hand side of (13). We have

〈E,X∆〉F = tr(ETX∆)

=
K∑
k=1

〈XT
k E,∆k〉F

6
K∑
k=1

σ(XT
k E, 1)‖∆k‖?. (15)

Combining results in (14) and (15), we get

1

2n
‖X∆‖2F 6 λ

K∑
k=1

wk(2‖PBrkk (B0k)‖? + ‖∆′k‖? − ‖∆′′k‖?) +
1

n

K∑
k=1

σ(XT
k E, 1)‖∆k‖?.

Define an event Ak = {σ(XT
k E, 1)/n 6 λwk/(1 + η)}, for k = 1, . . . , K, where η > 0 is an
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arbitrary positive number. It follows that on the event ∩K
k=1Ak,

0 6
1

2n
‖X∆‖2F 6 λ

K∑
k=1

wk(2‖PBrkk (B0k)‖? + ‖∆′k‖? − ‖∆′′k‖?)

+
λ

1 + η

K∑
k=1

wk‖∆k‖?

6 λ

K∑
k=1

wk(2‖PBrkk (B0k)‖? +
2 + η

1 + η
‖∆′k‖? −

η

1 + η
‖∆′′k‖?)

Therefore, it holds that

K∑
k=1

wk‖∆′′k‖? 6
2 + 2η

η

K∑
k=1

wk

mk∑
j=rk+1

σ(B0k, j) +
2 + η

η

K∑
k=1

wk‖∆′k‖?. (16)

Taking η = 1 and assuming ‖∆‖F > δ, we see that ∆ ∈ C(r1, · · · , rk, δ). Therefore, based on

the RE condition,

κ(X)‖∆‖2F 6
1

2n
‖X∆‖2F. (17)

From (15) and on the event ∩Kk=1Ak, we have

1

2n
‖X∆‖2F 6 λ

K∑
k=1

wk(‖B0k‖? − ‖B̂k‖?) +
1

n
〈E,X∆〉F

6 λ
K∑
k=1

wk‖∆k‖? +
λ

1 + η

K∑
k=1

wk‖∆k‖?

6
2 + η

1 + η
λ

K∑
k=1

wk‖∆k‖?. (18)

From (16), we have

K∑
k=1

wk‖∆k‖? 6
K∑
k=1

wk‖∆′k‖? +
K∑
k=1

wk‖∆′′k‖?

6
2 + 2η

η

(
K∑
k=1

wk

mk∑
j=rk+1

σ(B0k, j) +
K∑
k=1

wk‖∆′k‖?

)

6
2 + 2η

η

(
K∑
k=1

wk

mk∑
j=rk+1

σ(B0k, j) +
K∑
k=1

√
2rkwk‖∆′k‖F

)
. (19)

The last inequality is due to the fact that ‖∆‖F = ‖∆′‖F + ‖∆′′‖F.

Now, combining (17), (18) and (19), we know that on the event ∩Kk=1Ak, either ‖∆‖F 6 δ,
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or

κ(X)‖∆‖2F 6
2(2 + η)

η
λ

(
K∑
k=1

wk

mk∑
j=rk+1

σ(B0k, j) +
K∑
k=1

√
2rkwk‖∆k‖F

)

6
2(2 + η)

η
λ

 K∑
k=1

wk

mk∑
j=rk+1

σ(B0k, j) + ‖∆‖F

√√√√2
K∑
k=1

rkw2
k

 .

That is,

‖∆‖2F � max

{
δ2,

λ2
∑K

k=1 rkw
2
k

κ2(X)
,
λ
∑K

k=1wk

∑mk

j=rk+1 σ(B0k, j)

κ(X)

}
.

Lastly, from the proof of Theorem 1, choosing λ = 2(1 + θ)τ ensures that

P{∩K
k=1Ak} > 1−

K∑
k=1

exp{−1

2
θ2(q + r(Xk))}.

This completes the proof.

Web Appendix E. Additional Simulation with Correlated Errors

We conduct additional simulation studies where the errors in E are correlated. In particular,

we consider an AR(1) covariance structure with common variance 1 and autocorrelation 0.5

for the random errors in E in Settings 1–5 presented in the main paper. The same methods

are used and the results are shown in Web Table 1 and Web Figure 1. The results are very

similar to those with i.i.d. errors in the main paper. A closer look reveals that the proposed

iRRR method is very robust against the violation of the independent error assumption, while

other methods (especially MTL and grLasso) are more sensitive.

[Web Table. 1 about here.]

[Web Figure 1 about here.]
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Figure 1 Simulation results for Setting 5 (sparse-view) with correlated errors.
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Table 1 Simulation results for Settings 1–4 with correlated errors. The mean and standard deviation (in parenthesis)
of MSPE over 100 simulation runs are presented. In each setting, the best results are highlighted in boldface.

iRRR aNNP RRRR OLS

Setting 1 7.74 (0.22) 9.11 (0.32) 10.27 (0.43) 25.14 (0.58)

Setting 2 4.62 (0.10) 5.63 (0.18) 5.35 (0.14) 25.14 (0.58)

(r0 = 20) 10.73 (0.26) 9.10 (0.33) 10.06 (0.45) 25.17 (0.60)
Setting 3 (r0 = 40) 13.10 (0.24) 14.09 (0.33) 15.08 (0.17) 25.11 (0.60)

(r0 = 60) 14.40 (0.23) 16.43 (0.38) 15.70 (0.16) 25.16 (0.52)

(K = 3) 11.03 (0.26) 17.11 (0.48) 17.63 (0.24) 43.87 (0.84)
Setting 4 (K = 4) 14.12 (0.25) 25.33 (0.64) 20.97 (0.22) 68.06 (1.29)

(K = 5) 16.09 (0.29) 30.78 (0.40) 23.01 (0.22) 101.81 (1.45)
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