ISCI, Volume 21

Supplemental Information

Gold(I)-Catalyzed Aromatization: Expeditious

Synthesis of Polyfunctionalized Naphthalenes

Cheng Zhang, Kemiao Hong, Shanliang Dong, Chao Pei, Xiaolu Zhang, Ciwang He, Wenhao Hu, and Xinfang Xu

Supplemental Figures

Figure S1. ¹H NMR spectra (400 MHz) of 2a in CDCl₃, related to Table 1 and Scheme 1.

Figure S2. ¹³C NMR spectra (400 MHz) of 2a in CDCl₃, related to Table 1 and Scheme 1.

Figure S4. ¹³C NMR spectra (400 MHz) of 3a in CDCl₃, related to Table 1.

Figure S5. ¹H NMR spectra (400 MHz) of 2b in CDCl₃, related to Scheme 1.

Figure S6. ¹³C NMR spectra (400 MHz) of 2b in CDCl₃, related to Scheme 1.

Figure S7. ¹H NMR spectra (400 MHz) of 2c in CDCl₃, related to Scheme 1.

Figure S8. ¹³C NMR spectra (400 MHz) of 2c in CDCl₃, related to Scheme 1.

Figure S10. ¹³C NMR spectra (400 MHz) of 2d in CDCl₃, related to Scheme 1.

Figure S11. ¹H NMR spectra (400 MHz) of 2e in CDCl₃, related to Scheme 1.

Figure S12. ¹³C NMR spectra (400 MHz) of 2e in CDCl₃, related to Scheme 1.

Figure S13. ¹H NMR spectra (400 MHz) of 2f in CDCl₃, related to Scheme 1.

Figure S14. ¹³C NMR spectra (400 MHz) of 2f in CDCl₃, related to Scheme 1.

Figure S15. ¹H NMR spectra (400 MHz) of 2g in CDCl₃, related to Scheme 1.

Figure S16. ¹³C NMR spectra (400 MHz) of 2g in CDCl₃, related to Scheme 1.

Figure S17. ¹H NMR spectra (400 MHz) of 2h in CDCl₃, related to Scheme 1.

Figure S18. ¹³C NMR spectra (400 MHz) of 2h in CDCl₃, related to Scheme 1.

Figure S21. ¹H NMR spectra (400 MHz) of 2j in CDCl₃, related to Scheme 1.

Figure S22. ¹³C NMR spectra (400 MHz) of 2j in CDCl₃, related to Scheme 1.

Figure S23. ¹⁹F NMR spectra (400 MHz) of 2j in CDCl₃, related to Scheme 1.

Figure S24. ¹H NMR spectra (400 MHz) of 2k in CDCl₃, related to Scheme 1.

Figure S25. ¹³C NMR spectra (400 MHz) of 2k in CDCl₃, related to Scheme 1.

Figure S26. ¹H NMR spectra (400 MHz) of 2l in CDCl₃, related to Scheme 1.

6.5 6.0 5.5 5.0 4.5 4.0 3.5 fl(ppm)

F60.

8.5

0.0

9.5 9.0

1.06 2.10 2.22 2.10

7.0

8.0 7.5

3.00 H

3.0 2.5 2.0 1.5 1.0 0.5 0.0

-0.5 -1.0

Figure S32. ¹³C NMR spectra (400 MHz) of 2n in CDCl₃, related to Scheme 1.

Figure S33. ¹H NMR spectra (400 MHz) of 20 in CDCl₃, related to Scheme 1.

Figure S34. ¹³C NMR spectra (400 MHz) of 20 in CDCl₃, related to Scheme 1.

Figure S35. ¹H NMR spectra (400 MHz) of **2p** in CDCl₃, related to Scheme 1.

Figure S36. ¹³C NMR spectra (400 MHz) of 2p in CDCl₃, related to Scheme 1.

Figure S37. ¹H NMR spectra (400 MHz) of 2q in CDCl₃, related to Scheme 1.

Figure S38. ¹³C NMR spectra (400 MHz) of 2q in CDCl₃, related to Scheme 1.

Figure S39. ¹H NMR spectra (400 MHz) of 2r in CDCl₃, related to Scheme 1.

Figure S40. ¹³C NMR spectra (400 MHz) of **2r** in CDCl₃, related to Scheme 1.

Figure S41. ¹H NMR spectra (400 MHz) of 2s in CDCl₃, related to Scheme 1.

Figure S42. ¹³C NMR spectra (400 MHz) of 2s in CDCl₃, related to Scheme 1.

Figure S43. ¹H NMR spectra (400 MHz) of 5a in CDCl₃, related to Scheme 1.

Figure S44. ¹³C NMR spectra (400 MHz) of 5a in CDCl₃, related to Scheme 1.

Figure S45. ¹H NMR spectra (400 MHz) of 5d in CDCl₃, related to Scheme 1.

Figure S46. ¹³C NMR spectra (400 MHz) of 5d in CDCl₃, related to Scheme 1.

Figure S47. ¹H NMR spectra (400 MHz) of 5e in CDCl₃, related to Scheme 1.

Figure S48. ¹³C NMR spectra (400 MHz) of 5e in CDCl₃, related to Scheme 1.

Figure S50. ¹³C NMR spectra (400 MHz) of 5f in CDCl₃, related to Scheme 1.

Figure S51. ¹H NMR spectra (400 MHz) of 15a in CDCl₃, related to Scheme 1.

Figure S52. ¹³C NMR spectra (400 MHz) of 15a in CDCl₃, related to Scheme 1.

Figure S53. ¹H NMR spectra (400 MHz) of 15b in CDCl₃, related to Scheme 1.

Figure S54. ¹³C NMR spectra (400 MHz) of 15b in CDCl₃, related to Scheme 1.

Figure S55. ¹H NMR spectra (400 MHz) of 15c in CDCl₃, related to Scheme 1.

Figure S56. ¹³C NMR spectra (400 MHz) of 15c in CDCl₃, related to Scheme 1.

Figure S57. ¹H NMR spectra (400 MHz) of 15d in CDCl₃, related to Scheme 1.

Figure S58. ¹³C NMR spectra (400 MHz) of 15d in CDCl₃, related to Scheme 1.

Figure S59. ¹H NMR spectra (400 MHz) of 15e in CDCl₃, related to Scheme 1.

Figure S60. ¹³C NMR spectra (400 MHz) of 15e in CDCl₃, related to Scheme 1.

Figure S61. ¹⁹F NMR spectra (400 MHz) of 15e in CDCl₃, related to Scheme 1.

Figure S62. ¹H NMR spectra (400 MHz) of 15f in CDCl₃, related to Scheme 1.

Figure S63. ¹³C NMR spectra (400 MHz) of 15f in CDCl₃, related to Scheme 1.

Figure S64. ¹H NMR spectra (400 MHz) of 15g in CDCl₃, related to Scheme 1.

Figure S65. ¹³C NMR spectra (400 MHz) of 15g in CDCl₃, related to Scheme 1.

Figure S66. ¹H NMR spectra (400 MHz) of 15h in CDCl₃, related to Scheme 1.

Figure S67. ¹³C NMR spectra (400 MHz) of 15h in CDCl₃, related to Scheme 1.

Figure S68. ¹H NMR spectra (400 MHz) of 15i in DMSO-*d*₆, related to Scheme 1.

Figure S69. ¹³C NMR spectra (400 MHz) of 15i in DMSO-*d*₆, related to Scheme 1.

Figure S70. ¹H NMR spectra (400 MHz) of 15j in DMSO-*d*₆, related to Scheme 1.

Figure S71. ¹³C NMR spectra (400 MHz) of 15j in DMSO-*d*₆, related to Scheme 1.

Figure S72. ¹H NMR spectra (400 MHz) of 15k in CDCl₃, related to Scheme 1.

-1000

-0

Figure S75. ¹H NMR spectra (400 MHz) of 15l in CDCl₃, related to Scheme 1.

Figure S76. ¹³C NMR spectra (400 MHz) of 15l in CDCl₃, related to Scheme 1.

Figure S77. ¹H NMR spectra (400 MHz) of 15m in CDCl₃, related to Scheme 1.

Figure S78. ¹³C NMR spectra (400 MHz) of 15m in CDCl₃, related to Scheme 1.

Figure S79. ¹H NMR spectra (400 MHz) of 15n in CDCl₃, related to Scheme 1.

Figure S80. ¹³C NMR spectra (400 MHz) of 15n in CDCl₃, related to Scheme 1.

Figure S81. ¹H NMR spectra (400 MHz) of 150 in CDCl₃, related to Scheme 1.

Figure S82. ¹³C NMR spectra (400 MHz) of 150 in CDCl₃, related to Scheme 1.

Figure S83. ¹H NMR spectra (400 MHz) of 15p in CDCl₃, related to Scheme 1.

Figure S84. ¹³C NMR spectra (400 MHz) of 15p in CDCl₃, related to Scheme 1.

Figure S85. ¹H NMR spectra (400 MHz) of 15q in CDCl₃, related to Scheme 1.

Figure S86. ¹³C NMR spectra (400 MHz) of 15q in CDCl₃, related to Scheme 1.

Figure S87. ¹H NMR spectra (400 MHz) of 15r in CDCl₃, related to Scheme 1.

Figure S88. ¹³C NMR spectra (400 MHz) of 15r in CDCl₃, related to Scheme 1.

Figure S89. ¹H NMR spectra (400 MHz) of 6 in DMSO-*d*₆, related to Figure 2A.

Figure S90. ¹³C NMR spectra (400 MHz) of 6 in DMSO-*d*₆, related to Figure 2A.

Figure S91. ¹H NMR spectra (400 MHz) of 7a in CDCl₃, related to Figure 2B.

Figure S92. ¹³C NMR spectra (400 MHz) of 7a in CDCl₃, related to Figure 2B.

Figure S93. ¹H NMR spectra (400 MHz) of 70 in CDCl₃, related to Figure 2C.

Figure S94. ¹³C NMR spectra (400 MHz) of 70 in CDCl₃, related to Figure 2C.

Figure S96. ¹³C NMR spectra (400 MHz) of (S)-2u in CDCl₃, related to Figure 2D.

100 90 f1 (ppm)

Figure S98. ¹³C NMR spectra (400 MHz) of (*R*)-2u in CDCl₃, related to Figure 2D.

Figure S100. ¹³C NMR spectra (400 MHz) of (*R*)-8u in CDCl₃, related to Figure 2D.

Figure S102. ¹³C NMR spectra (400 MHz) of (S)-9u in DMSO-d₆, related to Figure 2D.

Figure S104. ¹³C NMR spectra (400 MHz) of (*R*)-10u in CDCl₃, related to Figure 2D.

Figure S105. ¹H NMR spectra (400 MHz) of (S)-11u in CDCl₃, related to Figure 2D.

Figure S106. ¹³C NMR spectra (400 MHz) of (S)-11u in CDCl₃, related to Figure 2D.

Figure S108. ¹³C NMR spectra (400 MHz) of 12 in CDCl₃, related to Figure 3A.

Figure S109. Proton NMR of 2a-d with 58% D, related to Figure 3B

Figure S110. Proton NMR of 2a with 80% D, related to Figure 3C.

Figure S111. Intermolecular Kinetic Isotope Effect (KIE) Experiment, related to Figure 3D.

Figure S112. ¹H NMR spectra (400 MHz) of 3l in CDCl₃, related to Figure 3E.

Figure S114. ¹H NMR spectra (400 MHz) of 13l in CDCl₃, related to Figure 3E.

Figure S115. ¹³C NMR spectra (400 MHz) of 13l in CDCl₃, related to Figure 3E.

Supplemental Tables

 Table S1. Preparation of Au(I)-Catalysts, related to Table 1.

 Table S2. Ligand Effects on Product Distribution, related to Table 1.

Table S3. X-ray crystal structures of (S)-2u, related to Figure 2D.

Datablock: cu_zc20180305_0m

Bond precision:	C-C = 0.0020 A	Wavelength=1.54178				
Cell:	a=8.6525(3) alpha=90	b=11.6262(3) beta=90	c=25.3640(7) gamma=90			
Temperature:	120 K		2			
	Calculated	Reported	1			
Volume	2551.51(13)	2551.51(13)				
Space group	P 21 21 21	P 21 21 21				
Hall group	P 2ac 2ab	P 2ac 2ab				
Moiety formula	C32 H34 O3	C32 H34 O3				
Sum formula	C32 H34 O3	C32 H34 O3				
Mr	466.59	466.59				
Dx,g cm-3	1.215	1.215				
Z	4	4				
Mu (mm-1)	0.597	0.597				
F000	1000.0	1000.0				
F000'	1002.79					
h,k,lmax	10,14,32	10,14,32	2			
Nref	5446[3096]	5403				
Tmin, Tmax	0.867,0.887	0.698,0.	754			
Tmin'	0.788					
Correction method= # Reported T Limits: Tmin=0.698 Tmax=0.754 AbsCorr = MULTI-SCAN						
Data completeness= 1.75/0.99 Theta(max) = 77.963						
R(reflections) = 0.0281(5338) wR2(reflections) = 0.0772(5403)						
= 1.055 Npar= 320						

Table S4. HPLC spectra of compound (*R*)-10u, related to Figure 2D.

Condition: hexane : 2-propanol = 90:10.

Flow rate = 1.0 mL/min, λ = 272 nm, Chiral IA-3.

Entry	RT	Area	Height	% Area	% Height
	min	mAU*min	mAU	%	%
1	30.340	108.702	104.607	100.00	100.00

Transparent Methods

General Information

All of the reactions were carried out under argon atmosphere using oven-dried glassware. Super dry dichloroethane (DCE), ethyl diazoacetate, indoles, phosphine ligand, and metal catalysts were purchased from chemical companies and were used without further treatment. Flash column chromatography was performed using a silica gel (300-400 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). All of the new compounds were fully characterized. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ using a 400/600 MHz spectrometer, and chemical shifts are reported in ppm with the solvent signals as the reference, and coupling constants (*J*) are given in Hz. The peak information is described as: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet, and comp = composite. High-resolution mass spectra (HRMS) were recorded using a commercial apparatus (ESI Source).

Experimental Procedures General Procedure for the Preparation of Diazo Compounds 1a - 1u, related to Scheme 1.

<u>Synthesis of 1-(bromomethyl)-2-(phenylethynyl)benzene</u>: To a solution of (2-iodophenyl)methanol (9.36 g, 40.0 mmol), Pd(PPh₃)₂Cl₂ (280.8 mg, 1.0 mol %), CuI (76.2 mg, 1.0 mol%) in Et₃N (40.0 mL), was added a solution of phenylacetylene (4.91 g, 48.0 mmol) in Et₃N (20.0 mL) slowly at 0 °C under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the obtained (2-(phenylethynyl)phenyl)methanol was directly used for the next step without further purification.

To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, triphenylphosphine (12.60 g, 48.0 mmol) in CH₂Cl₂ (40.0 mL), was added bromine (7.67 g, 48.0 mmol) dropwise, and the mixture was stirred vigorously at ambient temperature for 30 min. Then a solution of the above obtained product in CH₂Cl₂ (16.0 mL) was added to the reaction mixture dropwise and the reaction mixture was stirred for additional 1 hour. *n*-Hexane (40.0 mL) was then added to quench the reaction, and the solvent was evaporated under vacuum after filtering through Celite. The residue was purified by flash chromatography on Al₂O₃ (ethyl acetate/petroleum ether = 1/20) to afford the product 1-(bromomethyl)-2-(phenylethynyl)benzene (9.65 g, 89 % based on (2-iodophenyl)methanol).

Synthesis of 1a: To a 100 mL oven-dried round-bottom flask containing a magnetic stirring bar, sodium hydride (60 % dispersion in mineral oil, 0.60 g, 15.0 mmol) in dry THF (30 mL), was added methyl acetoacetate (1.74 g, 15.0 mmol) dropwise at 0 °C under nitrogen atmosphere. After the mixture turned clear, a solution of 1-(bromomethyl)- 2-(phenylethynyl)benzene (2.71 g, 10.0 mmol) in THF (10.0 mL) was added dropwise at ambient temperature, and the reaction was refluxed for 4 hours. Saturated NH₄Cl (20.0 mL) was added to quench the reaction, the organic phase was separated, and the aqueous layer was extracted with Et₂O (3×20.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum after filtration, and the residue was directly used for the next step without further purification.

To a 50-mL oven-dried flask containing a magnetic stirring bar, the above obtained crude product, 4-acetamidobenzenesulfonyl azide (*p*-ABSA, 2.89 g, 12.0 mmol) in DCM (20.0 mL), was added a solution of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU, 2.29 mg, 15.0 mmol) in DCM (5.0 mL) slowly at 0 °C. The reaction mixture was

stirred at 0 °C for 12 hours. Upon completion (monitored by TLC), the solvent was evaporated under vacuum after filtering through Celite, and the resulting residues was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to give the pure diazoacetate **1a** (2.06 g, 71% yields based on 1-(bromomethyl)-2-(phenylethynyl)benzene).

The synthesis of other substrates (1b-1u) is similar to that of 1a.

Methyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

2.06 g, 71% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.50 – 7.43 (comp, 3H), 7.31 – 7.24 (comp, 4H), 7.23 – 7.16 (comp, 2H), 3.81 (s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.8, 139.4, 132.7, 131.7, 129.3, 128.8, 128.6, 128.5, 127.3, 123.1, 123.0, 94.2, 87.4, 52.1, 28.3. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄N₂NaO₂⁺ [M+Na]⁺: 313.0953, found 313.0939.

Isopropyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

1.97 g, 62% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.58 – 7.51 (comp, 3H), 7.39 – 7.34 (comp, 4H), 7.33 – 7.24 (comp, 2H), 5.18 – 4.98 (m, 1H), 3.88 (s, 2H), 1.23 (d, J = 6.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.9, 139.6, 132.7, 131.7, 129.4, 128.7, 128.6, 128.5, 127.2, 123.2, 123.1, 94.1, 87.5, 68.5, 28.3, 22.2. HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₉N₂O₂⁺ [M+H]⁺: 319.1441, found 319.1438.

tert-Butyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

2.30 g, 69% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.58 – 7.53 (comp, 3H), 7.40 – 7.33 (comp, 5H), 7.33 – 7.23 (m, 2H), 3.85 (s, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.9, 139.6, 132.7, 131.7, 129.4, 128.7, 128.6, 128.5, 127.2, 123.2, 123.1, 94.1, 87.5, 68.5, 28.3, 22.2. HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₁N₂O_{2⁺} [M+H]⁺: 333.1598, found 333.1596.

Benzyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

2.20 g, 60% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.64 – 7.55 (comp, 4H), 7.42 – 7.39 (comp, 4H), 7.38 – 7.36 (comp, 4H), 7.34 – 7.29 (comp, 2H), 5.26 (s, 2H), 3.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.1, 139.3, 136.1, 132.7, 131.6, 129.3, 128.7, 128.6, 128.4, 128.2, 128.1, 127.3, 122.61, 122.56, 94.2, 87.4, 66.5, 28.3. HRMS (TOF MS ESI⁺) calculated for C₂₄H₁₉N₂O₂⁺ [M+H]⁺: 367.1441, found 367.1435.

Cinnamyl 2-diazo-3-(2-(phenylethynyl)phenyl)propanoate.

2.28 g, 58% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.61 – 7.53 (comp, 4H), 7.40 – 7.35 (comp, 8H), 7.30 – 7.27 (comp, 2H), 6.67 – 6.59 (m, 1H), 6.32 – 6.23 (m, 1H), 4.86 – 4.81 (m, 2H), 3.93 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.1, 139.3, 136.3, 134.1, 132.7, 131.7, 129.4, 128.8, 128.7, 128.6, 128.5, 128.1, 127.3, 126.7, 123.5, 123.11, 123.06, 94.2, 87.4, 65.4, 28.4. HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₁N₂O₂⁺ [M+H]⁺: 393.1598, found 393.1599.

Methyl 2-diazo-3-(2-(p-tolylethynyl)phenyl)propanoate.

2.19 g, 72% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.55 (d, J = 7.5 Hz, 1H), 7.42 (d, J = 7.9 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.31 – 7.24 (comp, 2H), 7.17 (d, J = 7.9 Hz, 2H), 3.88 (s, 2H), 3.75 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.7, 139.3, 138.8, 132.6, 131.6, 129.31, 129.26, 128.6, 127.3, 123.2, 120.1, 94.4, 86.8, 52.0, 28.3, 21.6. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆N₂NaO₂⁺ [M+Na]⁺: 327.1104, found 327.1098.

2.22 g, 73% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.58 – 7.54 (m, 1H), 7.49 (d, J = 7.5 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.33 – 7.27 (comp, 2H), 7.26 – 7.23 (comp, 2H), 7.21 – 7.16 (m, 1H), 3.90 (s, 2H), 3.75 (s, 3H), 2.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 167.8, 145.9, 140.2, 139.0, 132.8, 132.1, 129.7, 128.8, 128.7, 127.3, 125.8, 123.4, 123.0, 93.2, 91.3, 52.1, 28.3, 21.0. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆N₂NaO₂⁺ [M+Na]⁺: 327.1104, found 327.1102.

Methyl 2-diazo-3-(2-(o-tolylethynyl)phenyl)propanoate.

1.98 g, 65% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.51 – 7.47 (m, 1H), 7.30 – 7.28 (comp, 2H), 7.27 – 7.24 (m, 1H), 7.23 – 7.21 (m, 1H), 7.21 – 7.17 (comp, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 3.83 (s, 2H), 3.70 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 171.3, 139.4, 138.2, 132.7, 132.3, 129.5, 129.3, 128.8, 128.7, 128.4, 127.3, 123.2, 123.0, 94.4, 87.1, 52.1, 28.3, 21.4. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆N₂NaO₂⁺ [M+Na]⁺: 327.1104, found 327.1107.

Methyl 2-diazo-3-(2-((4-methoxyphenyl)ethynyl)phenyl)propanoate.

1.67 g, 52% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.54 (d, J = 7.3 Hz, 1H), 7.48 – 7.45 (m, 2H), 7.34 (d, J = 7.3 Hz, 1H), 7.30 – 7.23 (m, 2H), 6.90 (d, J = 8.7 Hz, 2H), 3.87 (s, 2H), 3.83 (s, 3H), 3.75 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 167.7, 159.9, 139.1, 133.2, 132.5, 129.3, 128.4, 127.3, 123.4, 115.2, 114.1, 94.3, 86.2, 55.4, 52.0, 28.3. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₇N₂O₃⁺ [M+H]⁺: 321.1234, found 321.1227.

Methyl 2-diazo-3-(2-((4-fluorophenyl)ethynyl)phenyl)propanoate.

2.16 g, 70% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.45 – 7.38 (comp, 3H), 7.25 – 7.21 (m, 1H), 7.21 – 7.17 (m, 1H), 7.17 – 7.12 (m, 1H), 6.98 – 6.91 (comp, 2H), 3.76 (s, 2H), 3.63 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.6, 162.7 (d, *J* = 249.9 Hz), 139.3, 133.6 (d, *J* = 8.4 Hz), 132.7, 129.3, 128.8, 127.3, 122.8, 119.2 (d, *J* = 3.5 Hz), 115.8 (d, *J* = 22.1 Hz), 93.1, 87.1, 52.0, 28.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.46. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄FN₂O₂⁺ [M+H]⁺: 309.1034, found 309.1029.

Methyl 3-(2-((4-Chlorophenyl)ethynyl)phenyl)-2-diazopropanoate.

2.14 g, 66% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.54 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.28 – 7.24 (m, 1H), 3.86 (s, 2H), 3.74 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 167.5, 139.4, 134.6, 132.9, 132.7, 129.3, 129.0, 128.8, 127.3, 122.7, 121.6, 93.0, 88.4, 52.0, 28.3. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₃ClN₂NaO₂⁺ [M+Na]⁺: 347.0558, found 347.0550.

Methyl 3-(2-((4-bromophenyl)ethynyl)phenyl)-2-diazopropanoate.

1.96 g, 53% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.49 (d, J = 7.4 Hz, 1H), 7.46 – 7.42 (comp, 2H), 7.35 – 7.31 (comp, 2H), 7.30 – 7.24 (comp, 2H), 7.23 – 7.19 (m, 1H), 3.81 (s, 2H), 3.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 167.7, 139.4, 133.1, 132.8, 131.8, 129.4, 129.0, 127.4, 122.9, 122.7, 122.1, 93.1, 88.6, 52.1, 28.4. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₃BrN₂NaO₂⁺ [M+Na]⁺: 391.0053, found 391.0145.

Methyl 2-diazo-3-(2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)propanoate.

1.97 g, 55% yield. ¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.70 – 7.47 (comp, 5H), 7.39 – 7.26 (comp, 2H), 7.26 – 7.18 (m, 1H), 3.87 (s, 2H), 3.72 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 167.3, 139.5, 132.8, 131.8, 130.0 (q, *J* = 32.7 Hz), 129.3, 129.2, 127.2, 126.8, 125.2 (q, *J* = 3.8 Hz), 122.2, 92.6, 89.7, 51.8, 28.2. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₃F₃N₂NaO₂⁺ [M+Na]⁺: 381.0821, found 381.0828.

Methyl 2-diazo-3-(2-(naphthalen-1-ylethynyl)phenyl)propanoate.

1.67 g, 49% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.45 (d, J = 8.3 Hz, 1H), 7.92 – 7.86 (comp, 2H), 7.83 – 7.79 (m, 1H), 7.74 – 7.70 (m, 1H), 7.68 – 7.61 (m, 1H), 7.60 – 7.54 (m, 1H), 7.53 – 7.47 (m, 1H), 7.45 – 7.40 (m, 1H), 7.39 – 7.32 (comp, 2H), 4.02 (s, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.7, 139.2, 133.3, 133.2, 132.8, 130.7, 129.3, 129.1, 128.9, 128.4, 127.4, 127.0, 126.5, 126.1, 125.4, 123.1, 120.7, 92.3, 92.2, 52.0, 28.4. HRMS (TOF MS ESI⁺) calculated for C₂₂H₁₇N₂O₂⁺ [M+H]⁺: 341.1285, found 341.1297.

Methyl 2-diazo-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

2.11 g, 57% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.30 (d, J = 8.3 Hz, 1H), 7.85 – 7.74 (comp, 2H), 7.70 – 7.65 (m, 1H), 7.59 – 7.52 (m, 1H), 7.45 – 7.33 (comp, 2H), 7.33 – 7.26 (comp, 2H), 7.27 – 7.22 (m, 1H), 4.04 (s, 2H), 4.01 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.2, 159.2, 139.4, 134.3, 132.4, 130.5, 129.3, 128.7, 128.6, 128.2, 127.5, 127.2, 125.3, 124.3, 123.7, 112.6, 106.2, 97.0, 88.9, 56.5, 52.0, 28.0. HRMS (TOF MS ESI⁺) calculated for C₂₃H₁₉N₂O₃⁺ [M+H]⁺: 371.1390, found 371.1400.

Methyl 2-diazo-3-(2-(thiophen-2-ylethynyl)phenyl)propanoate.

1.24 g, 42% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.52 – 7.48 (m, 1H), 7.34 – 7.26 (comp, 4H), 7.24 – 7.19 (m, 1H), 7.00 – 6.96 (m, 1H), 3.81 (s, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.3, 139.4, 132.5, 132.2, 129.3, 128.9, 127.7, 127.3, 127.2, 123.0, 122.6, 91.1, 87.4, 52.0, 28.4. HRMS (TOF MS ESI⁺) calculated for C₁₆H₁₃N₂O₂S ⁺ [M+H]⁺: 297.0698, found 297.0694.

Methyl 3-(2-(cyclopropylethynyl)phenyl)-2-diazopropanoate.

1.35 g, 53% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.43 – 7.38 (m, 1H), 7.32 – 7.26 (m, 1H), 7.26 – 7.16 (comp, 2H), 3.79 (s, 3H), 3.77 (s, 2H), 1.52 – 1.44 (m, 1H), 0.94 – 0.80 (comp, 4H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.7, 139.3, 132.6, 129.1, 127.8, 127.0, 123.7, 98.5, 73.9, 51.9, 28.2, 8.7, 0.4. HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₄N₂NaO₂⁺ [M+Na]⁺: 277.0947, found 277.0961.

3-Diazo-4-(2-(phenylethynyl)phenyl)butan-2-one.

1.67 g, 61% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.60 – 7.53 (comp, 3H), 7.41 – 7.27 (comp, 6H), 3.94 (s, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 190.5, 139.0, 132.6, 131.6, 129.6, 128.8, 128.6, 128.5, 127.3, 123.0, 94.0, 87.4, 68.2, 27.5. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄N₂NaO⁺ [M+Na]⁺: 297.0998, found 297.0994.

2-Diazo-1-phenyl-3-(2-(phenylethynyl)phenyl)propan-1-one.

2.42 g, 72% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.61 – 7.55 (comp, 3H), 7.55 – 7.50 (comp, 2H), 7.49 – 7.39 (comp, 3H), 7.39 – 7.32 (comp, 5H), 7.31 – 7.27 (m, 1H), 4.12 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 189.2, 138.9, 137.7, 132.8, 131.7, 131.5, 129.7, 128.9, 128.6, 128.5, 127.5, 127.3, 123.2, 123.0, 94.3, 87.4, 28.8. HRMS (TOF MS ESI⁺) calculated for C₂₃H₁₇N₂O⁺ [M+H]⁺: 337.1335, found 337.1330.

Methyl 3-(2-((2-aminophenyl)ethynyl)phenyl)-2-diazopropanoate.

1.22 g, 40% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.58 – 7.53 (m, 1H), 7.38 – 7.24 (comp, 4H), 7.18 – 7.12 (m, 1H), 6.76 – 6.70 (comp, 2H), 4.35 (s, 2H), 3.89 (s, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.7, 148.0, 138.8, 132.6, 132.3, 130.0, 129.1, 128.7, 127.2, 123.1, 117.9, 114.5, 107.6, 92.4, 90.9, 52.0, 28.2. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₅N₃NaO₂⁺ [M+Na]⁺: 328.1056, found 328.1064.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-diazo-3-(2-((2-methoxynaphthalen-1-yl)ethynyl)phenyl)propanoate.

2.92 g, 59% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.32 (d, J = 8.4 Hz, 1H), 7.88 – 7.78 (comp, 2H), 7.72 – 7.66 (m, 1H), 7.60 – 7.54 (m, 1H), 7.46 – 7.37 (comp, 2H), 7.36 – 7.27 (comp, 3H), 4.76 (td, J = 10.9, 4.4 Hz, 1H), 4.06 (s, 2H), 4.05 (s, 3H), 2.04 – 1.95 (m, 1H), 1.70 – 1.60 (comp, 2H), 1.54 – 1.40 (m, 1H), 1.40 – 1.27 (comp, 2H), 1.14 – 1.06 (m, 1H), 1.05 – 0.99 (m, 1H), 0.98 – 0.95 (m, 1H), 0.90 – 0.81 (comp, 6H), 0.75 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.2, 159.2, 144.7, 139.8, 134.4, 132.4, 130.5, 128.64, 128.61, 128.3, 127.6, 127.1, 125.3, 124.3, 123.7, 112.6, 106.4, 97.1, 88.8, 74.9, 56.6, 53.6, 47.2, 41.4, 34.7, 34.3, 31.5, 26.0, 22.1, 20.8, 16.2. HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₅N₂O₃⁺ [M+H]⁺: 495.2642, found 495.2650.
The preparation of diazo compounds 4a – 4e, related to Scheme 1.

Synthesis of 4a: To a solution of ethyl diazoacetate (EDA, 1.37 g, 12.0 mmol) in CH₃CN (10.0 mL), a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU 1.53 g, 10.0 mmol) and 2-(phenylethynyl)benzaldehyde (2.07 g, 10.0 mmol) in CH₃CN (10.0 mL) were added in sequence at 0 °C under nitrogen atmosphere. After the mixture was stirred at 0 °C for 15 hours, the reaction was quenched with saturated aqueous NaHCO₃ and then extracted with CH₂Cl₂ (3×20.0 mL). The combined organic phase was dried over Na₂SO₄ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/3) to afford the pure diazoacetate **4a** (2.85 g, 89% yield based on 2-(phenylethynyl)benzaldehyde).

The synthesis of other substrate 4g is similar to that of 4a.

Synthesis of 4b: To a solution of diazoacetate **4a** (0.32 g, 1.0 mmol) and 4-toluenesulfonyl chloride (TsCl, 0.19 g, 1.0 mmol) in dry CH₂Cl₂ (5.0 mL), and triethylamine (0.12 g, 1.2 mmol) in dry CH₂Cl₂ (1.0 mL) were added in sequence at 0 °C under argon atmosphere. After the mixture was stirred at 0 °C for 15 hours, the reaction was quenched with saturated aqueous NH₄Cl and extracted with CH₂Cl₂ (2 × 5.0 mL). Then the combined organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo after filtration, and the resulting residues was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to afford the pure diazoacetates **4b** (370 mg, 78% yield based on **4a**). The synthesis of other substrates (**4c-4e**) is similar to that of **4b**.

Ethyl 2-diazo-3-hydroxy-3-(2-(phenylethynyl)phenyl)propanoate.

2.85 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.74 (d, J = 7.8 Hz, 1H), 7.62 – 7.50 (comp, 3H), 7.45 – 7.38 (m, 1H), 7.37 – 7.28 (comp, 4H), 6.37 (s, 1H), 4.26 – 4.17 (m, 2H), 3.96 (s, 1H), 1.23 – 1.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.4, 140.9, 132.3, 131.7, 128.7, 128.5, 128.3, 127.9, 125.6, 122.9, 120.7,

95.6, 86.0, 67.5, 61.1, 14.4. HRMS (TOF MS ESI⁺) calculated for $C_{19}H_{16}N_2NaO_3^+$ [M+Na]⁺: 343.1053, found 343.1051.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-(tosyloxy)propanoate.

370.0 mg, 78% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.80 – 7.67 (m, 1H), 7.65 – 7.55 (m, 1H), 7.54 – 7.48 (m, 1H), 7.47 – 7.33 (comp, 4H), 7.33 – 7.15 (comp, 6H), 6.22 (s, 1H), 4.11 – 4.01 (m, 2H), 2.39 (s, 3H), 1.38 – 1.19 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 139.2, 132.5, 131.8, 129.7, 128.6, 128.5, 128.30, 128.25, 128.2, 127.2, 126.4, 125.8, 123.0, 121.6, 95.5, 86.0, 73.1, 61.1, 22.3, 14.4. HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₂N₂NaO₅S⁺ [M+Na]⁺: 497.1147, found 497.1141.

Ethyl 2-diazo-3-(2-(phenylethynyl)phenyl)-3-((trimethylsilyl)oxy)propanoate.

326.0 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.68 – 7.62 (m, 1H), 7.62 – 7.53 (comp, 3H), 7.42 – 7.32 (comp, 4H), 7.33 – 7.27 (m, 1H), 6.35 (d, *J* = 1.6 Hz, 1H), 4.46 – 3.99 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 3H), 0.19 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 165.6, 142.4, 132.4, 131.8, 128.6, 128.5, 128.4, 127.8, 125.9, 123.1, 120.5, 95.7, 86.2, 68.2, 60.9, 14.5, 0.01. HRMS (TOF MS ESI⁺) calculated for C₂₂H₂₄N₂NaO₃Si⁺ [M+Na]⁺: 415.1448, found 415.1454.

631.0 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.63 – 7.51 (comp, 3H), 7.49 – 7.44 (m, 1H), 7.41 – 7.29 (comp, 5H), 7.21 (s, 1H), 4.26 – 4.08 (m, 2H), 2.17 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 169.6, 164.7, 138.1, 132.7, 131.8, 128.7, 128.5, 128.4, 128.3, 125.4, 122.8, 121.2, 96.2, 85.8, 70.0, 61.2, 21.0, 14.3. HRMS (TOF MS ESI⁺) calculated for C₂₁H₁₈N₂NaO₄⁺ [M+Na]⁺: 385.1159, found 385.1169.

2-Diazo-3-ethoxy-3-oxo-1-(2-(phenylethynyl)phenyl)propyl 4-methoxybenzoate.

818.0 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.18 – 8.07 (comp, 2H), 7.67 – 7.52 (comp, 4H), 7.43 (s, 1H), 7.40 – 7.29 (comp, 5H), 7.02 – 6.90 (comp, 2H), 4.25 – 4.09 (m, 2H), 3.85 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 171.2, 165.0, 163.8, 138.5, 132.8, 132.0, 131.9, 128.7, 128.5, 128.4, 128.3, 125.6, 122.9, 122.2, 121.2, 113.8, 96.2, 86.0, 70.4, 61.2, 55.5, 14.2. HRMS (TOF MS ESI⁺) calculated for C₂₇H₂₂N₂NaO₅⁺ [M+Na]⁺: 477.1426, found 477.1432.

The preparation of diazo compound 4f, related to Scheme 1.

Synthesis of 4f: To a solution of 2-alkynylbenzaldehyde **S-6** (412.5 mg, 2.0 mmol), arylsulfonamide (342.5mg, 2.0 mmol) and triethylamine (506.0 mg, 5.0 mmol) in dry CH₂Cl₂ (10.0 mL), was added titanium tetrachloride (455.2 mg, 2.4 mmol) at 0 °C under argon atmosphere. The reaction mixture was stirred under these conditions for 12 h, and then quenched with brine. The aqueous phase was extracted with CH₂Cl₂ (10.0 mL X 2), and the combined organic layers were dried over anhydrous Na₂SO₄ and concentrated in vacuo after filtration, and the resulting residues was purified by recrystallization (solvents: CH₂Cl₂/petroleum ether = 5 : 1) to afford 432.0 mg of S-7 in 60% yield (based on S-6).

To a solution of ethyl diazoacetate (0.14 g, 1.2 mmol) in anhydrous CH₃CN (1.0 mL), was added a solution of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 0.15 g, 1.0 mmol) in anhydrous CH₃CN (1.0 mL) and S-7 (0.36 g, 1.0 mmol) in anhydrous CH₃CN (1.0 mL) in sequence at 0 °C under nitrogen atmosphere. After the mixture was stirred at room temperature for 15 h, the reaction was quenched with saturated aqueous NaHCO₃ and extracted with CH₂Cl₂ (2 X 5.0 mL). Then the combined organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo after filtration, and the precipitated solid was washed with petroleum ether (6.0 mL X 2). Then the solid was dried under vacuum to give the corresponding diazoacetate **4f**

(407.0 mg, 86% yield based on S-7) without further purification. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.82 – 7.79 (comp, 2H), 7.71 – 7.69 (m, 1H), 7.53 – 7.45 (comp, 3H), 7.37 – 7.35 (comp, 2H), 7.30 – 7.27 (comp, 2H), 7.25 – 7.22 (m, 1H), 7.19 – 7.14 (comp, 2H), 6.00 (d, J = 5.6 Hz, 1H), 5.84 (d, J = 7.6 Hz, 1H), 4.05 – 3.98 (m, 2H), 2.32 (s, 3H), 1.34 – 1.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 165.4, 143.6, 139.6, 137.0, 132.9, 131.8, 129.8, 129.7, 128.8, 128.5, 128.1, 127.3, 127.0, 126.5, 122.0, 95.9, 86.4, 61.2, 52.6, 21.6, 14.3. HRMS (TOF MS CI⁺) calculated for C₂₆H₂₃N₃NaO₄S⁺ [M+Na]⁺: 496.1301, found 496.1311.

The preparation of diazo compounds 14, related to Scheme 1.

To a 50-mL oven-dried flask containing a magnetic stirring bar, **4g** (2.38 g, 6.8 mmol, prepared according to the above method for **4a**) in CH₂Cl₂ (20 mL) was added MnO₂ (8.88 g, 102.0 mmol) at 25 °C, and the reaction mixture was stirred under this condition for 12 hours. After the reaction was finished, the mixture was filtered through a short pad of silica, then the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on silica gel (ethyl acetate/petroleum ether = 1/10) to give pure diazoacetate **14** (2.0 g, 85% yield based on **4g**). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.53-7.51 (m, 1H), 8.45-8.35 (comp, 5H), 6.89-6.85 (m, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 187.4, 161.1, 160.0, 140.4, 133.1, 131.9, 130.5, 127.9, 127.2, 121.5, 114.8, 114.1, 94.3, 85.5, 61.7, 55.3, 14.0. HRMS (TOF MS ESI⁺) calculated for C₂₀H₁₇N₂O₄⁺ [M+H]⁺: 349.1183, found 349.1192.

General Procedure for the Preparation of Au(I)-Catalysts, related to Table S1.

(Me₂S)AuCl (294.5 mg, 1.0 equiv) was added to a solution of the corresponding phosphine (1.0 equiv) in CH₂Cl₂ (2.0 mL) under argon at 25 °C and the solution was left stirring for 6 hours. After TLC indicated complete consumption of the starting material, the reaction solution was concentrated under reduced pressure to yield the desired Au(I) complexes (Mauleón et al., 2009; Gorin et al., 2005; Hashmi et al., 2014).

Chloro(triphenyl phosphite)gold(I) (L1AuCl)

(PhO)₃PAuCl

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.45 – 7.37 (comp, 6H), 7.33 – 7.27 (m, 3H), 7.25 – 7.15 (comp, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 149.49 (d, J = 4.5 Hz), 130.58 (d, J = 1.2 Hz), 126.78 (d, J = 1.8 Hz), 121.24 (d, J = 5.7 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 110.49.

Chloro[tris(2,4-di-tert-butylphenyl) phosphite]gold(I) (L2AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.59 – 7.34 (comp, 6H), 7.19 – 7.03 (m, 3H), 1.45 (s, 27H), 1.30 (s, 27H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 148.27 (s), 147.39 (d, J = 5.9 Hz), 139.26 (d, J = 6.9 Hz), 124.89 (d, J = 121.3 Hz), 119.34 (d, J = 8.9 Hz), 35.00 (d, J = 43.1 Hz), 31.10 (d, J = 83.2 Hz). ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 101.26.

Chloro(triphenylphosphine)gold(I) (L3AuCl)

Ph₃PAuCl

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.63 – 7.39 (comp, 15H); ¹³C NMR (150 MHz, CDCl₃) (δ, ppm) 134.25 (d, J = 13.7 Hz), 132.12 (d, J = 1.7 Hz), 129.36 (d, J = 11.9 Hz), 128.81 (d, J = 62.4 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 33.77.

Chloro(tri-o-tolylphosphine)gold(I) (L4AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.54 – 7.40 (m, 3H), 7.42 – 7.29 (m, 3H), 7.20 (t, J = 7.6 Hz, 3H), 7.05 – 6.77 (m, 3H), 2.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ

143.09 (d, J = 11.8 Hz), 133.65 (d, J = 9.7 Hz), 132.57 (d, J = 9.1 Hz), 132.12 (d, J = 2.4 Hz), 126.85 (d, J = 10.4 Hz), 125.17 (d, J = 61.1 Hz), 23.43 (d, J = 11.2 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 8.85.

Chloro[tris(4-(trifluoromethyl)phenyl)phosphine]gold(I) (L5AuCl)

¹H NMR (600 MHz, CDCl₃) (δ, ppm) 7.85 – 7.77 (m, 6H), 7.74 – 7.59 (m, 6H); ¹³C NMR (150MHz; CDCl₃) (δ, ppm)134.8 (qd, J = 33, 2.7 Hz, Ar-C(CF3)), 134.7 (d, J = 14.6 Hz, ArCH), 131.8 (d, J = 60.6 Hz, Ar-CP), 126.7 (dq, J = 12.2, 3.5 Hz, Ar-CH), 123.2 (d, J = 271.1 Hz, CF3); ¹⁹F NMR (564 MHz; CDCl₃) (δ, ppm): -63.4 (m); ³¹PNMR (162 MHz; CDCl₃) (δ, ppm) 33.6.

Chloro[tris(4-methoxyphenyl)phosphine]gold(I) (L6AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.52 – 7.31 (m, 6H), 7.01 – 6.85 (m, 6H), 3.82 (s, 9H); ¹³C NMR (150 MHz, cdcl₃) (δ, ppm) 162.42 (s), 135.61 (d, J = 15.3 Hz), 120.41 (d, J = 68.4 Hz), 114.83 (d, J = 13.0 Hz), 55.55 (s); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 29.77.

$Chloro[(1,1'-biphenyl)-2-yldiphenylphosphine]gold(I)~(L7 {\rm AuCl})$

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.65 – 7.30 (comp, 14H), 7.28 – 7.24 (m, 2H), 7.10 – 6.90 (comp, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 148.22 (d, *J* = 15.0 Hz), 140.06 (d, *J* = 6.7 Hz), 134.58 (d, *J* = 14.0 Hz), 133.79 (d, *J* = 6.7 Hz), 132.12 (d, *J* = 8.2 Hz), 131.88 (d, *J* = 2.3 Hz), 131.53 (d, *J* = 2.2 Hz), 129.94 (d, *J* = 62.1 Hz), 129.82, 129.26 (d, *J* = 12.0 Hz), 128.58, 128.54, 127.66 (d, *J* = 8.9 Hz) , 127.658 (d, *J* = 61.5 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 60.51.

dppm(AuCl)₂ (L8(AuCl)₂)

¹H NMR (600 MHz, DMSO-*d*₆) (δ, ppm) 7.80 – 7.73 (m, 8H), 7.51 (t, *J* = 7.4 Hz, 4H), 7.47 – 7.40 (m, 8H), 4.67 (t, *J* = 12.8 Hz, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆) (δ, ppm) 133.36 (t, *J* = 7.0 Hz), 132.16 (s), 129.16 (t, *J* = 5.9 Hz), 128.76 (d, *J* = 33.3 Hz), 24.55 (t, *J* = 33.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 24.61.

Chloro(methyldiphenylphosphine)gold(I) (L9AuCl)

¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.66 – 7.58 (m, 4H), 7.55 – 7.48 (m, 2H), 7.48 – 7.44 (m, 4H), 2.13 (d, J = 10.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 132.80 (d, J = 13.4 Hz), 132.09 (d, J = 2.6 Hz), 130.50 (d, J = 62.3 Hz), 129.41 (d, J = 11.7 Hz), 14.90 (d, J = 39.9 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 17.44.

1,1'-Bis(di-tert-butylphosphino)ferrocene-(AuCl)2 (L10(AuCl)2)

¹H NMR (600 MHz, CDCl₃) (δ, ppm) 4.84 (s, 4H), 4.53 (d, J = 1.6 Hz, 4H), 1.39 (d, J = 15.5 Hz, 36H); ¹³C NMR (150 MHz, CDCl₃) (δ, ppm) 75.37 (d, J = 7.0 Hz), 74.69 (d, J = 9.5 Hz), 72.51 (d, J = 49.4 Hz), 37.20 (d, J = 28.4 Hz), 30.62 (d, J = 5.1 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 68.92.

Chloro[(1,1'-biphenyl)-2-yldicyclohexylphosphine]gold(I) (L11AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.81 – 7.65 (m, 1H), 7.64 – 7.37 (m, 5H), 7.35 – 7.27 (m, 1H), 7.23 – 7.07 (m, 2H), 2.17 – 1.90 (m, 4H), 1.87 – 1.71 (m, 4H), 1.68 – 1.55 (m, 4H), 1.51 – 1.39 (m, 2H), 1.35 – 1.11 (m, 8H); ¹³C NMR (150 MHz, CDCl₃) (δ, ppm) 148.97 (d, J = 10.5 Hz), 141.45 (d, J = 5.2 Hz), 134.32 (d, J = 7.3 Hz), 132.55 (d, J = 7.4 Hz), 130.82 (s), 129.02 (d, J = 94.3 Hz), 128.41 (s), 127.57 (d, J = 8.9 Hz), 124.91 (d, J = 51.6 Hz), 36.66 (d, J = 33.6 Hz), 31.26 (d, J = 3.7 Hz), 29.51 (s), 26.563 (s), 26.556 (d, J = 26.0 Hz), 25.69 (s); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 44.51.

Chloro[(1,1'-biphenyl)-2-yldi-tert-butylphosphine]gold(I) (L12AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.89 – 7.82 (m, 1H), 7.59 – 7.54 (m, 1H), 7.54 – 7.46 (m, 2H), 7.45 – 7.39 (m, 2H), 7.33 – 7.28 (m, 1H), 7.16 – 7.10 (m, 2H), 1.41 (d, J = 15.6 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 150.30 (d, J = 13.5 Hz), 142.25 (d, J = 6.5 Hz), 133.62 (d, J = 2.7 Hz), 133.37 (d, J = 7.4 Hz), 130.68 (d, J = 2.3 Hz), 129.07 (d, J = 52.4 Hz), 128.35 (s), 126.84 (d, J = 6.7 Hz), 126.21 (d, J = 45.5 Hz), 37.91 (d, J = 25.9 Hz), 31.00 (d, J = 6.7 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 26.74.

¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.77 – 7.76 (m, 2H), 6.70 (d, J = 8.0 Hz, 2H), 3.02 (s, 6H), 1.37 (d, J = 15.4 Hz, 18H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 152.26 (s), 138.29 (s), 111.83 (s), 111.44 (d, J = 11.5 Hz), 40.06 (s), 36.64 (d, J = 28.0 Hz), 30.37 (d, J = 5.9 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 76.69.

Chloro[di-tert-butyl(phenyl)phosphane]gold(I) (L14AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.12 – 7.82 (m, 2H), 7.62 – 7.51 (m, 1H), 7.50 – 7.37 (m, 2H), 1.40 (d, J = 15.6 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 136.37 (s), 131.94 (d, J = 2.3 Hz), 128.59 (d, J = 10.7 Hz), 127.67 (d, J = 47.6 Hz), 36.43 (d, J = 26.2 Hz), 30.22 (d, J = 5.9 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 79.65.

Chloro[1-(di-tert-butylphosphaneyl)-2-phenyl-1H-pyrrole]gold(I) (L15AuCl)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.62 (t, J = 7.5 Hz, 1H), 7.56 – 7.41 (m, 2H), 7.24 – 7.10 (m, 2H), 7.08 – 6.97 (m, 1H), 6.87 (d, J = 3.9 Hz, 1H), 6.49 – 6.31 (m, 1H), 1.35 (d, J = 16.1 Hz, 18H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 140.22 (s), 130.66 (d, J = 3.8 Hz), 129.87 (s), 129.20 (d, J = 173.4 Hz), 120.38 (d, J = 5.5 Hz), 118.79 (d, J = 64.9 Hz), 109.25 (d, J = 7.4 Hz), 37.91 (d, J = 31.0 Hz), 30.22 (d, J = 6.5 Hz); ³¹P NMR (162 MHz) (δ , ppm) 46.64.

Chloro[di-tert-butyl(1,1-diphenylprop-1-en-2-yl)phosphine]gold(I) (L16AuCl)

¹H NMR (600 MHz, CDCl₃) (δ, ppm) 7.46 – 7.39 (m, 1H), 7.39 – 7.26 (comp, 4H), 7.24 – 7.20 (m, 1H), 7.17 – 7.00 (comp, 4H), 2.07 (d, J = 7.5 Hz, 3H), 1.51 (d, J = 15.3 Hz, 18H); ¹³C NMR (150 MHz, CDCl₃) (δ, ppm) 162.32 (d, J = 13.9 Hz), 143.59 (d, J = 11.9 Hz), 142.49 (d, J = 9.9 Hz), 129.22 (d, J = 46.0 Hz), 127.73 (d, J = 100.5 Hz) 127.42 (d, J = 177.3 Hz), 123.27 (d, J = 38.8 Hz), 37.66 (d, J = 25.7 Hz), 31.46 (d, J = 6.6 Hz), 22.01 (d, J = 2.9 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 66.93.

Chloro{di-tert-butyl(2'-methyl-[1,1'-biphenyl]-2-yl)phosphine}gold(I) (L17AuCl)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.01 – 7.79 (m, 1H), 7.62 – 7.40 (m, 3H), 7.37 – 7.28 (m, 1H), 7.27 – 7.17 (m, 2H), 7.07 – 6.76 (m, 1H), 2.03 (s, 3H), 1.43 (dd, J = 15.5, 9.7 Hz, 18H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 149.68 (d, J = 13.8 Hz), 141.28 (d, J = 6.3 Hz), 135.50 (s), 133.95 (d, J = 2.2 Hz), 133.41 (d, J = 7.6 Hz), 131.31 (s), 130.99 (s), 130.24 (s), 128.70 (s), 127.03 (s), 126.74 (d, J = 6.6 Hz), 125.43 (s), 38.01 (dd, J = 26.0, 14.0 Hz), 31.18 (dd, J = 122.0, 6.5 Hz), 20.81 (s); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 60.40.

Chloro[2'-(di-*tert*-butylphosphaneyl)-*N*,*N*-dimethyl-[1,1'-biphenyl]-2-amine]gold(I) (L18AuCl)

¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.89 – 7.82 (m, 1H), 7.59 – 7.49 (comp, 2H), 7.48 – 7.42 (m, 1H), 7.37 – 7.31 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 1H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 7.3 Hz, 1H), 2.46 (s, 6H), 1.53 (d, *J* = 15.6 Hz, 9H), 1.25 (d, *J* = 15.3 Hz, 9H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 151.23 (s), 149.24 (d, *J* = 13.3 Hz), 136.37 (d, *J* = 5.5 Hz), 134.52 (d, *J* = 7.8 Hz), 133.94 (s), 131.13 (d, *J* = 76.3 Hz), 129.43 (s), 127.10 (d, *J* = 46.2 Hz), 126.37 (d, *J* = 5.9 Hz), 122.44 (s), 121.18 (s), 44.05 (s), 38.14 (d, *J* = 26.1 Hz), 37.65 (d, *J* = 25.8 Hz), 31.70 (d, *J* = 6.8 Hz), 30.34 (d, *J* = 6.3 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 62.01.

Chloro[(1,1'-binaphthalen)-2-yldi-tert-butylphosphine]gold(I) (L19AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.23 (d, J = 8.3 Hz, 1H), 8.11 – 7.97 (comp, 3H), 7.93 (d, J = 8.1 Hz, 1H), 7.62 – 7.51 (comp, 2H), 7.50 – 7.42 (m, 1H), 7.36 – 7.30 (m, 1H), 7.26 – 7.18 (comp, 2H), 7.03 – 6.86 (comp, 2H), 1.44 (dd, J = 15.5, 11.5 Hz, 18H); ¹³C NMR (101 MHz, CDCl₃) (δ, ppm) 147.90 (d, J = 13.2 Hz), 136.26 (d, J = 7.9 Hz), 134.69 (d, J = 9.0 Hz), 134.13 (d, J = 1.9 Hz), 133.56 (s), 129.44 (d, J = 13.0 Hz), 128.87 (d, J = 3.3 Hz), 128.65 (d, J = 1.0 Hz), 127.44 (d, J = 7.1 Hz), 124.98 (s), 38.16 (dd, J = 25.3, 22.9 Hz), 31.38 (dd, J = 89.8, 6.8 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 62.51.

Chloro{di-*tert*-butyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine}gold(I) (L20AuCl)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.93 – 7.82 (m, 1H), 7.57 – 7.43 (comp, 2H), 7.36 – 7.28 (m, 1H), 7.06 (s, 2H), 2.98 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.33 (dt, *J* = 13.4, 6.7 Hz, 2H), 1.41 (d, *J* = 15.4 Hz, 18H), 1.37 (d, *J* = 6.9 Hz, 6H), 1.28 (d, *J* = 6.8 Hz, 6H), 0.91 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) (δ , ppm) 150.21 (s), 148.65 (d, *J* = 14.3 Hz), 145.77 (s), 135.61 (d, *J* = 5.6 Hz), 135.03 (d, *J* = 8.0 Hz), 134.53 (d, *J* = 3.1 Hz), 130.29 (d, *J* = 2.3 Hz), 128.43 (d, *J* = 43.1 Hz), 126.48 (d, *J* = 7.0 Hz), 121.94 (s), 38.43 (d, *J* = 26.4 Hz), 34.31 (s), 31.39 (d, *J* = 6.5 Hz), 30.94 (s), 26.29 (s), 24.46 (s), 23.11 (s); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 59.17.

Chloro{di-*tert*-butyl(2',4',6'-triisopropyl-3,4,5,6-tetramethyl-[1,1'-biphenyl]-2-yl) phosphine}gold(I) (L21AuCl)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.04 (s, 2H), 3.03 – 2.94 (m, 1H), 2.61 (s, 3H), 2.41 – 2.34 (m, 2H), 2.30 (s, 3H), 2.23 (s, 3H), 1.57 – 1.45 (comp, 21H), 1.38 (d, *J* = 6.9 Hz, 6H), 1.29 (d, *J* = 6.8 Hz, 6H), 0.85 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 150.38 (s), 146.31 (d, *J* = 20.4 Hz), 145.88 (s), 140.34 (d, *J* = 2.5 Hz), 138.17 (d, *J* = 3.4 Hz), 137.78 (d, *J* = 1.4 Hz), 137.69 (d, *J* = 2.7 Hz), 135.66 (d, *J* = 7.1 Hz), 128.32 (d, *J* = 35.6 Hz), 122.68 (s), 41.98 (d, *J* = 20.5 Hz), 34.36 (s), 33.58 (d, *J* = 8.3 Hz), 30.80 (s), 28.12 (d, *J* = 1.6 Hz), 25.31 (s), 25.17 (s), 24.76 (s), 22.33 (d, *J* = 2.7 Hz), 17.65 (d, *J* = 47.4 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 77.67.

Chloro[3-(di-tert-butylphosphaneyl)-1--phenyl-1H-indole]gold(I) (L22AuCl)

¹H NMR (600 MHz, CDCl₃) (δ , ppm) 7.77 – 7.69 (comp, 2H), 7.63 – 7.57 (comp, 2H), 7.26 – 7.25 (m, 1H), 7.25 – 7.19 (comp, 4H), 6.90 – 6.85 (m, 1H), 1.44 (d, *J* = 16.3 Hz, 18H); ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 141.65 (d, *J* = 4.7 Hz), 137.83 (s), 130.42 (s), 130.24 (s), 130.04 (s), 126.52 (d, *J* = 7.6 Hz), 126.15 (d, *J* = 58.0 Hz), 124.65 (s), 121.34 (d, *J* = 34.8 Hz), 113.56 (d, *J* = 4.6 Hz), 111.98 (s), 38.08 (d, *J* = 29.4 Hz), 30.37 (d, *J* = 6.5 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 48.86.

Chloro[3-(di-tert-butylphosphaneyl)-1--phenyl-1H-indole]gold(I) (L23AuCl)

¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.93 – 7.78 (m, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.62 – 7.49 (m, 2H), 7.47 – 7.33 (comp, 2H), 7.34 – 7.26 (m, 1H), 7.24 – 7.13 (m, 1H), 6.68 – 6.20 (m, 1H), 3.50 (s, 3H), 2.50 – 2.19 (m, 1H), 2.02 – 1.88 (m, 2H), 1.88 –

1.49 (m, 10H), 1.41 – 1.09 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 139.33 (d, J = 9.9 Hz), 137.49 (s), 137.41 (d, J = 5.6 Hz), 135.14 (d, J = 9.1 Hz), 134.05 (d, J = 7.0 Hz), 130.88 (d, J = 2.2 Hz), 128.90 (d, J = 9.0 Hz), 127.54 (s), 122.46 (s), 120.72 (s), 120.37 (s), 110.24 (s), 104.97 (s), 37.02 (d, J = 32.9 Hz), 35.82 (d, J = 33.9 Hz), 31.82 (d, J = 5.6 Hz), 30.96 (s), 30.25 (d, J = 2.0 Hz), 29.75 (d, J = 2.9 Hz), 26.73 (dd, J = 12.4, 7.5 Hz), 26.45 (dd, J = 20.7, 12.9 Hz), 25.68 (s). ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) 46.55.

Chloro[S-dimethylene-[7,7'-(1,1'-spiroindan)]-phenylphospholine]gold(I) (L24AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.53 – 7.45 (m, 1H), 7.38 – 7.27 (comp, 4H), 7.26 – 7.22 (m, 1H), 7.21 – 7.11 (comp, 3H), 6.85 (t, J = 7.5 Hz, 1H), 5.94 (d, J = 7.6 Hz, 1H), 3.76 (dd, J = 16.0, 12.9 Hz, 1H), 3.50 (dd, J = 14.5, 8.6 Hz, 1H), 3.12 – 2.98 (comp, 3H), 2.98 – 2.84 (comp, 3H), 2.32 (dd, J = 12.4, 6.4 Hz, 1H), 2.24 (dd, J = 12.4, 6.5 Hz, 1H), 2.06 – 1.94 (m, 1H), 1.94 – 1.83 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) (δ, ppm) 147.94 (d, J = 4.6 Hz), 147.71 (d, J = 5.3 Hz), 143.98 (d, J = 3.6 Hz), 143.80 (d, J = 3.1 Hz), 133.73 (d, J = 12.6 Hz), 132.38 (d, J = 2.5 Hz), 130.69 (d, J = 6.2 Hz), 129.89 (d, J = 4.6 Hz), 128.84 (d, J = 3.8 Hz), 128.56 (d, J = 11.1 Hz), 127.21 (d, J = 4.3 Hz), 127.07 (d, J = 2.9 Hz), 126.73 (s), 125.64 (d, J = 11.4 Hz), 124.96 (d, J = 4.1 Hz), 124.69 (d, J = 3.5 Hz), 61.78 (d, J = 2.1 Hz), 38.21 (d, J = 42.4 Hz), 31.75 (d, J = 28.4 Hz), 30.48 (d, J = 23.2 Hz), 26.21 (d, J = 34.8 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 27.00.

Chloro[di-*tert*-butyl(1-methyl-2,2-diphenylcyclopropyl)phosphine]gold(I) (L25AuCl)

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.56 – 7.45 (m, 2H), 7.45 – 7.37 (m, 2H), 7.32 – 7.24 (m, 5H), 7.21 – 7.14 (m, 1H), 2.45 (dd, J = 15.3, 5.3 Hz, 1H), 1.67 – 1.49 (m, 19H), 1.42 (d, J = 7.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 143.21 (s), 141.37 (d, J = 5.9 Hz), 130.47 (s), 129.65 (d, J = 1.6 Hz), 129.34 (s), 128.84 (s), 127.72 (s), 126.87 (s), 42.40 (s), 39.51 (dd, J = 309.9, 25.3 Hz), 32.22 (dd, J = 97.0, 5.1 Hz), 27.40 (s), 25.37 (d, J = 35.8 Hz), 24.26 (s); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 77.64.

Chloro[tri-tert-butylphosphine]gold(I) (L26AuCl)

(^tBu)₃PAuCl

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 1.52 (d, J = 13.9 Hz, 27H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 39.61 (d, J = 20.9 Hz), 32.38 (d, J = 4.0 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 91.18.

Chloro[di-tert-butyl(methyl)phosphine]gold(I) (L27AuCl)

^tBu ^tBu—P-AuCl Me

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 1.49 (d, J = 9.3 Hz, 3H), 1.33 (d, J = 15.2 Hz, 18H); ¹³C NMR (101 MHz, CDCl₃) (δ, ppm) 34.48 (d, J = 29.6 Hz), 29.16 (d, J = 5.2 Hz), 5.77 (d, J = 31.6 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 58.18.

Chloro(tricyclohexylphosphine)gold(I) (L28AuCl)

Cy₃PAuCl

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 2.04 – 1.90 (m, 9H), 1.90 – 1.78 (m, 6H), 1.75 – 1.67 (m, 3H), 1.52 – 1.38 (m, 6H), 1.36 – 1.18 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) (δ, ppm) 33.44 (d, J = 31.0 Hz), 30.89 (s), 27.10 (d, J = 12.2 Hz), 25.94 (d, J = 1.2 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) 54.65.

Chloro(trimethylphosphine)gold(I) (L29AuCl)

(CH₃)₃PAuCl

¹H NMR (400 MHz, CDCl₃) (δ, ppm) 1.62 (d, J = 11.3 Hz, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 16.25 (d, J = 40.3 Hz); ³¹P NMR (162 MHz, CDCl₃) (δ, ppm) -9.80.

General Procedure for the Optimization of Ligands, related to Table S2.

The **Ln**AuCl complex (0.01 mmol) and AgSbF₆ (3.34mg, 0.01 mmol) were suspended in DCE (0.5 mL). The reaction was stirred at room temperature for 2.0 hours. The solvent was evaporated and the mixture dissolved in 0.5 mL of DCE. Then the mixture was filtered through a pad of Celite, which was added into a solution of **1a** (58mg, 0.2mmol) in DCE (0.5 mL) at 25 °C for 12.0 hours. Afterwards, 1,3,5-trimethoxybenzene (16.8 mg, 0.1mmol) was added into the reaction mixture, and yield determined by proton *NMR* using 1,3,5-trimethoxybenzene as the internal standard. E.g., "L1, 0%; 89%" is equal to "L1AuCl, 0% **2a**; 89% **3a**".

General Procedure for the Gold-Catalyzed Aromatization, related to Scheme1 Method A

A solution of diazoacetate **1** or **4** (0.2 mmol) in 1,2-dichloroethane (2.0 mL) was added over 5 min to a 10-mL oven-dried flask containing a magnetic stirring bar, and JohnphosAu(CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL) using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at 25 °C for 12 hours. Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether = 1/10) to afford the pure naphthalene derivatives **2** or **5** in 62%-94% yields.

(The experimental procedure for the synthesis of **6** is same to that mentioned above in Method A, related to **Figure 2A**.)

Method B

A solution of diazoacetate **14** (69.6 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) was added over 5 min to a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %), and nucleophiles (0.3 mmol, 1.5 equiv) in dry 1,2-dichloroethane (2.0 mL) using a syringe at room temperature under argon atmosphere. After the addition, the reaction mixture was stirred at 60 °C for 3 hours (performed for 12 h in the case of **15i**). Then, the solvent was removed under reduced pressure and the crude product was purified by column chromatography on a silica gel (solvents: ethyl acetate/petroleum ether = 1/10 to 1/5) to afford the pure products **15** in 53%-94% yields.

Methyl 3-phenyl-2-naphthoate.

47.7 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.41 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.63 – 7.52 (comp, 2H), 7.48 – 7.35 (comp, 5H), 3.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 169.1, 141.6, 138.9, 134.5, 131.7, 131.1, 129.9, 129.2, 128.7, 128.6, 128.4, 128.2, 127.9, 127.2, 126.9, 52.2. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄NaO₂⁺ [M+Na]⁺: 285.0886, found 285.0881.

Isopropyl 3-phenyl-2-naphthoate.

52.8 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.38 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.61 – 7.52 (comp, 2H), 7.44 – 7.34 (comp, 5H), 5.05 (dt, J = 12.5, 6.3 Hz, 1H), 1.07 (d, J = 6.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 168.5, 141.7, 138.8, 134.3, 131.7, 130.7, 130.3, 129.7, 128.8, 128.6, 128.2, 128.1, 127.9, 127.1, 126.8, 68.8, 21.5. HRMS (TOF MS CI⁺) calculated for C₂₀H₁₈NaO₂⁺ [M+Na]⁺: 313.1199, found 313.1215.

tert-Butyl 3-phenyl-2-naphthoate.

54.8 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.35 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.79 (s, 1H), 7.61 – 7.51 (m, 2H), 7.46 – 7.35 (m, 5H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.2, 142.2, 138.8, 134.2, 131.8, 131.5, 130.6, 129.6, 128.9, 128.6, 128.1, 128.0, 127.9, 127.0, 126.7, 81.5, 27.7. HRMS (TOF MS ESI⁺) calculated for C₂₁H₂₀NaO₂⁺ [M+Na]⁺: 327.1356, found 327.1351.

Benzyl 3-phenyl-2-naphthoate.

60.2 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.44 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.84 (s, 1H), 7.62 – 7.58 (m, 1H), 7.57 – 7.53 (m, 1H), 7.44 – 7.36 (comp, 5H), 7.33 – 7.28 (comp, 3H), 7.20 – 6.97 (comp, 2H), 5.17 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.7, 141.6, 138.8, 135.5, 134.5, 131.70, 131.65, 131.2, 129.9, 129.3, 128.71, 128.70, 128.5, 128.4, 128.3, 128.2, 127.9, 127.2, 126.8 67.2. HRMS (TOF MS ESI⁺) calculated for C₂₄H₁₈NaO₂⁺ [M+Na]⁺: 361.1199, found 361.1194.

Cinnamyl 3-phenyl-2-naphthoate.

67.1 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.45 (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.84 (s, 1H), 7.63 – 7.58 (m, 1H), 7.58 – 7.53 (m, 1H), 7.47 – 7.38 (comp, 4H), 7.37 – 7.32 (comp, 5H), 7.30 – 7.26 (m, 1H), 6.52 – 6.42 (m, 1H), 6.07 – 5.95 (m, 1H), 4.77 (dd, J = 6.4, 1.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 168.6, 141.7, 138.9, 136.4, 134.5, 134.2, 131.7, 131.2, 129.9, 129.4, 128.8, 128.74, 128.67, 128.4, 128.2, 128.1, 127.9, 127.2, 126.9, 126.7, 122.9 65.7 HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₀NaO₂⁺ [M+Na]⁺: 387.1356, found 387.1370.

Methyl 3-(p-tolyl)-2-naphthoate.

49.8 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.37 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.80 (s, 1H), 7.59 – 7.49 (comp, 2H), 7.32 – 7.28 (comp, 2H), 7.26 – 7.21 (comp, 2H), 3.72 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 169.2, 138.9, 138.6, 136.9, 134.5, 131.6, 131.0, 129.8, 129.2, 128.9, 128.6, 128.5, 128.3, 127.9, 126.7, 52.2, 21.3. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆NaO₂⁺ [M+Na]⁺: 299.1043, found 299.1044.

Methyl 3-(*m*-tolyl)-2-naphthoate.

49.2 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.38 (s, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.62 – 7.50 (comp, 2H), 7.37 – 7.29 (m, 1H), 7.28 – 7.23 (m, 1H), 7.23 – 7.15 (comp, 2H), 3.72 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 169.3, 141.5, 139.0, 137.8, 134.5, 131.7, 131.0, 129.8, 129.34, 129.28, 128.7, 128.3, 128.03, 128.01, 127.9, 126.8, 125.8, 52.2, 21.6. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆NaO₂⁺ [M+Na]⁺: 299.1043, found 299.1049.

Methyl 3-(o-tolyl)-2-naphthoate.

44.8 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.56 (s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.71 (s, 1H), 7.66 – 7.50 (comp, 2H), 7.35 – 7.23 (comp, 3H), 7.19 (d, J = 7.2 Hz, 1H), 3.69 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.9, 141.7, 139.1, 135.8, 134.7, 131.7, 131.4, 130.0, 129.5, 129.0, 128.9, 128.7, 128.5, 127.8, 127.4, 126.8, 125.4, 52.1, 20.2. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆NaO₂⁺ [M+Na]⁺: 299.1043, found 299.1042.

Methyl 3-(4-methoxyphenyl)-2-naphthoate (2i).

52.0 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 8.38 (s, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.81 (s, 1H), 7.64 – 7.50 (comp, 2H), 7.43 – 7.32 (comp, 2H), 7.04 – 6.95 (comp, 2H), 3.87 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 169.3, 159.0, 138.4, 134.5, 133.9, 131.5, 131.0, 129.71, 129.66, 129.3, 128.6, 128.3, 127.8, 126.7, 113.7, 55.4, 52.2. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆NaO₃⁺ [M+Na]⁺: 315.0992, found 315.0986.

Methyl 3-(4-fluorophenyl)-2-naphthoate.

51.6 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.42 (s, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.79 (s, 1H), 7.62 – 7.53 (comp, 2H), 7.39 – 7.33 (comp, 2H), 7.20 – 7.08 (comp, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.8, 162.4 (d, J = 246.0 Hz), 137.9, 137.6 (d, J = 3.4 Hz), 134.5, 131.7, 131.4, 130.2 (d, J = 8.0 Hz), 130.0, 128.9, 128.8, 128.5, 127.9, 127.0, 115.1 (d, J = 21.5 Hz), 52.3; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -115.69. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₃FNaO₂⁺ [M+Na]⁺: 303.0792, found 303.0785.

Methyl 3-(4-chlorophenyl)-2-naphthoate.

52.2 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.44 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.78 (s, 1H), 7.64 – 7.53 (comp, 2H), 7.44 – 7.37 (comp, 2H), 7.35 – 7.29 (comp, 2H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.7, 140.1, 137.8, 134.5, 133.3, 131.8, 131.5, 129.99, 129.97, 128.8, 128.7, 128.6, 128.3, 127.9, 127.1, 52.3. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₃ClNaO₂⁺ [M+Na]⁺: 319.0496, found 319.0500.

Methyl 3-(4-bromophenyl)-2-naphthoate.

56.0 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.44 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.77 (s, 1H), 7.64 – 7.52 (comp, 4H), 7.31 – 7.23 (comp, 2H), 3.74 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.6, 140.6, 137.8, 134.5, 131.8, 131.6, 131.3, 130.3, 129.9, 128.8, 128.62, 128.55, 127.9, 127.1, 121.5, 52.3. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₃BrNaO₂⁺ [M+Na]⁺: 362.9991, found 362.9992.

Methyl 3-(4-(trifluoromethyl)phenyl)-2-naphthoate.

44.3 mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.49 (s, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.79 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.66 – 7.55 (comp, 2H), 7.54 – 7.47 (comp, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.4, 145.5, 137.7, 134.5, 132.0, 131.8, 130.2, 129.1, 128.9, 128.8, 128.3, 128.0, 127.4, 125.1 (q, J = 3.7 Hz), 52.3; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -62.32. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₃F₃NaO₂⁺ [M+Na]⁺: 353.0760, found 353.0755.

Methyl [1,2'-binaphthalene]-3'-carboxylate.

51.9 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.65 (s, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.96 – 7.87 (comp, 4H), 7.67 – 7.55 (comp, 4H), 7.52 – 7.46 (comp, 2H), 7.42 – 7.36 (m, 1H), 3.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.9, 139.9, 137.6, 134.7, 133.3, 132.5, 132.0, 131.4, 131.0, 129.7, 128.9, 128.6, 128.3, 127.9, 127.7, 127.0, 126.4, 126.1, 125.7, 125.3, 52.0. HRMS (TOF MS ESI⁺) calculated for C₂₂H₁₆NaO₂⁺ [M+Na]⁺: 335.1048, found 335.1041.

Methyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

62.3 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.70 (s, 1H), 8.10 – 8.01 (m, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.91 – 7.81 (comp, 3H), 7.65 – 7.56 (comp, 2H), 7.49 – 7.43 (m, 1H), 7.42 – 7.38 (m, 1H), 7.37 – 7.30 (comp, 2H), 3.83 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.7, 153.6, 134.9, 133.7, 133.5, 132.0, 131.7, 131.5, 130.1, 129.2, 129.1, 129.0, 128.2, 128.1, 127.9, 126.8, 126.4,

125.0, 124.8, 123.5, 113.3, 56.6, 51.9. HRMS (TOF MS ESI⁺) calculated for $C_{23}H_{18}NaO_3^+$ [M+Na]⁺: 365.1154, found 365.1151.

Methyl 3-(thiophen-2-yl)-2-naphthoate.

43.5 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.31 (s, 1H), 7.95 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.61 – 7.52 (comp, 2H), 7.40 – 7.35 (m, 1H), 7.14 – 7.06 (comp, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 169.0, 142.5, 134.2, 131.9, 130.8, 130.6, 130.5, 129.7, 128.6, 128.4, 127.9, 127.3, 127.2, 126.4, 125.8, 52.4. HRMS (TOF MS ESI⁺) calculated for C₁₆H₁₂NaO₂S⁺ [M+Na]⁺: 291.0456, found 291.0457.

Methyl 3-cyclopropyl-2-naphthoate.

34.4 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.37 (s, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.65 – 7.49 (comp, 2H), 7.48 – 7.42 (m, 1H), 3.98 (s, 3H), 2.77 – 2.63 (m, 1H), 1.09 – 0.95 (comp, 2H), 0.84 – 0.69 (comp, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.9, 140.4, 135.0, 131.2, 130.9, 130.0, 128.7, 128.1, 127.3, 126.0, 125.3, 52.2, 14.4, 8.2. HRMS (TOF MS ESI⁺) calculated for C₁₅H₁₄NaO₂⁺ [M+Na]⁺: 249.0892, found 249.0876.

1-(3-Phenylnaphthalen-2-yl)ethan-1-one.

39.9 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.10 (s, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.63 – 7.51 (comp, 2H), 7.51 – 7.39 (comp, 5H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 204.4, 141.1, 139.4, 137.6, 134.2, 131.9, 129.6, 129.1, 128.9, 128.8, 128.6, 128.1, 127.9, 127.8, 126.9, 30.6. HRMS (TOF MS ESI⁺) calculated for C₁₈H₁₄NaO⁺ [M+Na]⁺: 269.0937, found 269.0941.

Phenyl (3-phenylnaphthalen-2-yl)methanone.

38.2 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.04 (s, 1H), 8.00 – 7.87 (comp, 3H), 7.78 – 7.68 (comp, 2H), 7.63 – 7.54 (comp, 2H), 7.47 – 7.42 (m, 1H), 7.38 – 7.34 (comp, 2H), 7.33 – 7.28 (comp, 2H), 7.27 – 7.22 (comp, 2H), 7.22 – 7.17 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 198.4, 140.5, 138.6, 137.8, 137.5, 134.2, 133.0, 131.7, 130.2, 129.5, 129.3, 129.2, 128.6, 128.4, 128.3, 128.1, 128.0, 127.3, 127.0. HRMS (TOF MS ESI⁺) calculated for C₂₃H₁₆NaO⁺ [M+Na]⁺: 331.1093, found 331.1089.

(*R*)-(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene]-3'-carboxylate.

42.0 mg, 45% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.72 (s, 1H), 8.12 – 8.03 (m, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.90 – 7.83 (comp, 2H), 7.81 (s, 1H), 7.65 – 7.55 (comp, 2H), 7.45 – 7.28 (comp, 4H), 4.67 – 4.54 (m, 1H), 3.80 (s, 3H), 1.86 – 1.75 (m, 1H), 1.61 – 1.52 (m, 1H), 1.49 – 1.41 (m, 1H), 1.39 – 1.18 (comp, 3H), 0.97 – 0.89 (m, 1H), 0.87 – 0.83 (m, 3H), 0.70 – 0.60 (m, 1H), 0.50 (d, J = 6.9 Hz, 3H), 0.63 (d, J = 6.9 Hz, 3H), 0.43 – 0.30 (m, 1H);¹³C NMR (100 MHz, CDCl₃) 167.2, 153.5, 134.8, 134.0, 133.5, 132.0, 131.6, 131.4, 130.9, 129.03, 128.98, 128.9, 128.0, 127.9, 127.8, 126.7, 126.3, 125.4, 123.4, 113.0, 74.5, 56.4, 46.5, 40.3, 34.2, 31.2, 25.6, 23.0, 22.1, 20.7, 15.9. (δ , ppm) HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₅O₃⁺ [M+H]⁺: 467.2581, found 467.2593.

(*S*)-(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 2-methoxy-[1,2'-binaphthalene] -3'-carboxylate.

42.0 mg, 45% yield. ¹H NMR (400 MHz, CDCl₃) 8.77 (s, 1H), 8.19 – 8.11 (m, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.99 – 7.87 (comp, 3H), 7.75 – 7.64 (comp, 2H), 7.49 (d, J = 9.0 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 – 7.33 (comp, 2H), 4.63 (td, J = 10.8, 4.4 Hz, 1H), 3.93 (s, 3H), 1.65 – 1.51 (comp, 4H), 1.43 – 1.26 (comp, 2H), 0.98 – 0.90 (m, 1H), 0.82 (d, J = 7.0 Hz, 3H), 0.79 (d, J = 6.5 Hz, 3H), 0.73 – 0.66 (m, 1H), 0.64 (d, J = 7.0 Hz, 3H), 0.07 – -0.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.1, 153.6, 134.9, 134.2, 133.3, 132.0, 131.6, 131.5, 130.9, 129.0, 128.9, 128.8, 128.0, 127.79, 127.75, 126.6, 126.4, 125.3, 125.0, 123.4, 113.3, 74.3, 56.4, 46.6, 39.7, 34.1, 31.1, 25.6, 22.9, 22.0, 21.0, 15.8. HRMS (TOF MS ESI⁺) calculated for C₃₂H₃₅O₃⁺ [M+H]⁺: 467.2581, found 467.2593.

Ethyl 1-hydroxy-3-phenyl-2-naphthoate.

76% yield with **4b** and 91% yield with **4c**. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 12.32 (s, 1H), 8.46 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.57 – 7.51 (m, 1H), 7.41 – 7.31 (comp, 5H), 7.21 (s, 1H), 4.05 (q, J = 7.1 Hz, 2H), 0.79 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 171.9, 161.5, 143.8, 139.6, 135.7, 129.9, 128.6, 127.6, 127.5, 126.6, 125.9, 124.2, 124.1, 121.3, 106.1, 61.1, 13.1. HRMS (TOF MS ESI⁺) calculated for C₁₉H₁₆NaO₃⁺ [M+Na]⁺: 315.0992, found 315.0986.

Ethyl 1-acetoxy-3-phenyl-2-naphthoate.

62.2 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.97 – 7.83 (comp, 2H),

7.78 (s, 1H), 7.63 – 7.54 (comp, 2H), 7.50 – 7.35 (comp, 5H), 4.08 (q, J = 7.1 Hz, 2H), 2.48 (s, 3H), 0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 169.3, 166.8, 145.7, 140.6, 138.1, 134.6, 128.6, 128.4, 128.2, 127.6, 127.3, 127.0, 126.0, 123.6, 122.2, 61.5, 20.8, 13.7. HRMS (TOF MS ESI⁺) calculated for C₂₁H₁₈NaO₄⁺ [M+Na]⁺: 357.1097, found 357.1105.

Ethyl 1-((4-methoxybenzoyl)oxy)-3-phenyl-2-naphthoate

74.1 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.28 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.6 Hz, 2H), 7.81 (s, 1H), 7.61 – 7.56 (m, 1H), 7.55 – 7.49 (comp, 3H), 7.45 – 7.37 (comp, 3H), 7.07 – 7.01 (comp, 2H), 4.00 (q, J = 7.1 Hz, 2H), 3.92 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 166.8, 164.7, 164.3, 145.8, 140.5, 138.1, 134.7, 132.8, 128.7, 128.5, 128.2, 128.2, 127.6, 127.3, 127.0, 126.4, 124.2, 122.5, 121.3, 114.2, 61.5, 55.7, 13.7. HRMS (TOF MS ESI⁺) calculated for C₂₇H₂₂NaO₅⁺[M+Na]⁺: 449.1359, found 449.1359.

72.2 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.72 – 8.63 (m, 1H), 8.24 (s, 1H), 7.86 – 7.79 (m, 1H), 7.76 (s, 1H), 7.68 – 7.57 (comp, 2H), 7.51 – 7.42 (comp, 2H), 7.39 – 7.29 (comp, 3H), 7.25 – 7.21 (comp, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 3.38 (q, *J* = 7.2 Hz, 2H), 2.33 (s, 3H), 0.47 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.6, 143.7, 141.7, 137.9, 136.0, 134.9, 133.3, 130.4, 129.6, 129.3, 128.9, 128.3, 128.2, 128.0, 127.6, 127.4, 127.2, 126.9, 126.2, 61.6, 21.6, 12.7. HRMS (TOF MS ESI⁺) calculated for C₂₆H₂₃NNaO₄S⁺ [M+Na]⁺: 468.1240, found 468.1257.

Benzo[j]phenanthridin-6(5H)-one (Gao, et al., 2019).

45.6 mg, 93% yield. ¹H NMR (400 MHz, DMSO-*d*₆) (δ, ppm) 11.55 (s, 1H), 9.08 (s, 1H), 8.98 (s, 1H), 8.56 – 8.50 (m, 1H), 8.24 – 8.15 (comp, 2H), 7.75 – 7.69 (m, 1H), 7.66 – 7.61 (m, 1H), 7.51 – 7.46 (m, 1H), 7.38 – 7.34 (m, 1H), 7.32 – 7.28 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) (δ, ppm) 161.1, 136.4, 134.9, 131.6, 130.4, 129.5, 129.1, 128.6, 128.5, 128.1, 126.8, 124.1, 123.5, 122.4, 121.5, 118.0, 116.3. HRMS (TOF MS ESI⁺) calculated for C₁₇H₁₁NNaO⁺ [M+Na]⁺: 268.0733, found 268.0720.

Ethyl 1-hydroxy-4-(1*H*-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate (15a).

72.6 mg, 83% yield. White solid, mp: 175-176 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.30 (s, 1H), 8.55 – 8.53 (m, 1H), 7.98 (s, 1H), 7.53 – 7.50 (m, 2H), 7.44 – 7.40 (m, 1H), 7.33 – 7.30 (m, 1H), 7.19 – 7.16 (m, 2H), 7.05 – 7.01 (m, 2H), 6.74 – 6.71 (m, 2H), 6.62 (d, J = 2.4 Hz, 1H), 6.43 (dd, J = 8.5, 2.5 Hz, 1H), 4.01 – 3.95 (m, 2H), 3.69 (s, 3H), 0.74 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.4, 160.5, 157.8, 139.2, 136.6, 135.6, 135.4, 130.6, 129.6, 129.5, 127.3, 125.6, 125.0, 124.3, 123.92, 123.90, 121.8, 120.2, 119.7, 114.0, 112.2, 111.0, 107.5, 61.1, 55.3, 13.3. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₃NO₄Na⁺ [M+Na]⁺: 460.1519, found 460.1508.

Ethyl 4-(4-chloro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

79.1 mg, 84% yield. White solid, mp: 204-205 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.49 (s, 1H), 8.53 (d, J = 8.1 Hz, 1H), 8.05 (s, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.38 (m, 2H), 7.14 – 7.12 (m, 1H), 7.05 – 6.96 (comp, 4H), 6.70 (dd, J = 8.3, 2.6 Hz, 1H), 6.66 (d, J = 2.3 Hz, 1H), 6.48 (dd, J = 8.4, 2.6 Hz, 1H), 4.02 – 3.95 (m, 2H), 3.66 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.5, 160.9, 157.6, 139.0, 137.9, 136.8, 135.8, 130.6, 129.8, 129.6, 127.1, 126.4, 126.1, 125.8, 125.5, 124.5, 123.9, 123.7, 122.5, 120.5, 113.7, 112.29, 112.25, 109.9, 107.1, 61.0, 55.2, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂ClNO₄Na⁺ [M+Na]⁺: 494.1130, found 494.1096.

Ethyl 4-(4-bromo-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

89.8 mg, 87% yield. White solid, mp: 215-216 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.51 (s, 1H), 8.57 – 8.49 (m, 1H), 8.06 (s, 1H), 7.52 – 7.48 (m, 1H), 7.45 – 7.41 (m, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.03 – 6.93 (comp, 3H), 6.71 – 6.68 (m, 2H), 6.50 – 6.44 (m, 1H), 4.03 – 3.94 (m, 2H), 3.65 (s, 3H), 0.75 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.5, 161.0, 157.5, 139.1, 138.2, 136.5, 135.8, 130.6, 129.7, 129.6, 127.3, 127.2, 126.1, 125.5, 124.2, 124.0, 123.8, 123.7, 122.8, 114.5, 114.4, 112.3, 110.6, 107.1, 61.1, 55.2, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂BrNO₄Na⁺ [M+Na]⁺: 538.0624, found 538.0589.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(5-methyl-1H-indol-3-yl)-2-naphthoate.

64.4 mg, 71% yield. White solid, mp: 184-185 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.31 (s, 1H), 8.57 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.56 – 7.51 (m, 2H), 7.46 – 7.40 (m, 1H), 7.18 (d, J = 8.8 Hz, 1H), 7.05 – 6.99 (comp, 3H), 6.79 – 6.72 (m, 2H), 6.55 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.4, 2.4 Hz, 1H), 4.04 – 3.97 (m, 2H), 3.69 (s, 3H), 2.36 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.4, 160.4, 157.7, 139.1, 136.6, 135.6, 133.8, 130.6, 129.8, 129.6, 128.9, 127.4, 125.6, 125.1, 124.3, 124.1, 123.9, 123.4, 119.7, 113.4, 112.3, 112.2, 110.7, 107.5, 61.1, 55.2, 21.6, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₅NO₄Na⁺ [M+Na]⁺: 474.1676, found 474.1695.

Ethyl 4-(5-fluoro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

77.4 mg, 85% yield. White solid, mp: 172-173 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.37 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.54 – 7.42 (comp, 3H), 7.20 – 7.16 (m, 1H), 7.02 (dd, J = 8.4, 1.9 Hz, 1H), 6.92 – 6.87 (m, 1H), 6.82 (dd, J = 9.6, 2.3 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.68 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 8.4, 2.5 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.3, 159.2 (d, J = 284.0 Hz), 158.1(d, J = 234.6 Hz), 139.4, 136.4, 135.4, 131.9, 130.5, 129.8, 129.7, 129.6, 126.9, 126.7, 125.7, 124.3, 123.9, 123.3, 114.2 (d, J = 4.6 Hz), 112.3, 111.7 (d, J = 9.6 Hz), 110.3 (d, J = 26.5 Hz), 107.4, 104.8 (d, J = 23.5 Hz), 61.1, 55.3, 13.2; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -124.4. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂FNO₄Na⁺ [M+Na]⁺: 478.1425, found 478.1464.

Ethyl 4-(5-chloro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate (15f)

76.3 mg, 81% yield. White solid, mp: 195-196 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.37 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 8.03 (s, 1H), 7.55 – 7.51 (m, 1H), 7.45 – 7.44 (m, 2H), 7.19 – 7.08 (comp, 3H), 7.00 (dd, J = 8.4, 2.0 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.65 (d, J = 2.4 Hz, 1H), 6.46 (dd, J = 8.4, 2.6 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.2, 160.7, 157.8, 139.4, 136.5, 135.4, 133.8, 130.5, 130.4, 129.8, 129.6, 126.9, 126.3, 125.8, 125.5, 124.3, 124.0, 123.1, 122.2, 119.4, 113.8, 112.3, 112.2, 112.1, 10[°]7.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂ClNO₄Na⁺ [M+Na]⁺: 494.1130, found 494.1160.

Ethyl 4-(5-bromo-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

88.5 mg, 86% yield. White solid, mp: 210-211 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.37 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 8.03 (s, 1H), 7.55 – 7.51 (m, 1H), 7.45 (d, J = 3.4 Hz, 2H), 7.30 (d, J = 1.7 Hz, 1H), 7.23 (dd, J = 8.6, 1.8 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 7.00 (dd, J = 8.4, 2.1 Hz, 1H), 6.76 – 6.70 (m, 2H), 6.63 (d, J = 2.4 Hz, 1H), 6.47 (dd, J = 8.5, 2.6 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.2, 160.7, 157.8, 139.5, 136.4, 135.4, 134.0, 131.1, 130.5, 129.9, 129.6, 126.9, 126.2, 125.8, 124.8, 124.3, 124.0, 123.0, 122.4, 113.8, 113.1, 112.6, 112.4, 112.3, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂BrNO₄Na⁺ [M+Na]⁺:538.0624, found 538.0642.

Ethyl 1-hydroxy-4-(5-methoxy-1H-indol-3-yl)-3-(4-methoxyphenyl)-2-naphthoate

70.0 mg, 75% yield. White solid, mp: 177-178 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.28 (s, 1H), 8.54 (d, *J* = 8.3 Hz, 1H), 7.91 (s, 1H), 7.55 – 7.50 (m, 2H), 7.46 – 7.41 (m, 1H), 7.18 (d, *J* = 8.8 Hz, 1H), 7.02 – 7.00 (m, 1H), 6.82 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.78 – 6.75 (m, 1H), 6.72 – 6.69 (m, 1H), 6.60 – 6.59 (m, 2H), 6.46 – 6.44 (m, 1H), 4.02 – 3.96 (m, 2H), 3.68 (s, 3H), 3.67 (s, 3H), 0.75 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.3, 160.4, 157.8, 154.2, 139.2, 136.6, 135.5, 130.6, 129.9, 129.64, 129.60, 127.3, 125.7, 125.6, 124.3, 124.0, 123.9, 113.8, 112.3, 112.2, 111.8, 107.6, 101.5, 61.1, 55.8, 55.2, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₅NO₅Na⁺ [M+Na]⁺: 490.1625, found 490.1601.

Ethyl 4-(5-cyano-1H-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

84.1 mg, 91% yield. White solid, mp: 289-290 °C. ¹H NMR (400 MHz, DMSO) (δ , ppm) 11.63 (s, 1H), 10,68 (s, 1H), 8.38 (d, J = 8.3 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.46 (t, J = 7.3 Hz, 1H), 7.39 – 7.37 (m, 2H), 7.33 (d, J = 8.4, 1H), 7.26 (d, J = 2.2, 1H), 7.12 (s, 1H), 6.80 (s, 1H), 6.71 (s, 1H), 6.56 (s, 1H), 3.94 (q, J = 7.1 Hz, 2H), 3.62 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) (δ , ppm) 168.6, 157.7, 151.9, 138.2, 137.3, 134.7, 132.5, 130.9, 129.7, 128.8, 128.18, 128.17, 126.3, 125.5, 124.3, 124.2, 123.7, 122.8, 122.0, 120.6, 115.9, 112.9, 112.3, 100.9, 60.5, 54.9, 13.4. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₂N₂O₄Na⁺ [M+Na]⁺: 485.1472, found 485.1484.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl) -1*H*-indole-5-carboxylate

88.7 mg, 90% yield. White solid, mp: 320-321 °C. ¹H NMR (400 MHz, DMSO) (δ , ppm) 11.44 (s, 1H), 10.62 (s, 1H), 8.39 (d, J = 8.3 Hz, 1H), 7.70 (dd, J = 8.6, 1.5 Hz, 1H), 7.63 (s, 1H), 7.60 – 7.54 (m, 1H), 7.46 – 7.43 (m, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 2.2 Hz, 2H), 6.72 – 6.53 (comp, 3H), 3.95 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.62 (s, 3H), 0.85 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) (δ , ppm) 168.4, 167.1, 157.7, 151.5, 138.10, 138.09, 134.7, 132.5, 128.3, 128.1, 127.9, 126.5, 125.5, 124.1, 122.7, 122.5, 122.0, 121.2, 120.4, 116.2, 113.2, 112.3, 111.6, 60.5, 54.9, 51.6, 13.4. HRMS (TOF MS ESI⁺) calculated for C₃₀H₂₅NO₆Na⁺ [M+Na]⁺: 518.1574, found 518.1528.

Ethyl 4-(6-fluoro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

79.2 mg, 87% yield. White solid, mp: 178-179 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.36 (s, 1H), 8.55 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.57 – 7.39 (comp, 3H), 7.08 – 7.01 (m, 2H), 6.94 (dd, J = 9.6, 2.2 Hz, 1H), 6.80 – 6.71 (comp, 3H), 6.62 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 8.4, 2.6 Hz, 1H), 3.99 (m, 2H), 3.69 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.3, 160.8 (d, J = 51.4 Hz), 158.3 (d, J = 93.7 Hz), 139.3, 136.6, 135.4, 135.27 (d, J = 12.6 Hz), 130.6, 129.7, 129.5, 127.0, 126.0, 125.7, 125.2 (d, J = 3.5 Hz), 124.3, 123.9, 123.5, 120.7 (d, J = 10.1 Hz), 114.1, 112.3 (d, J = 8.1 Hz), 108.5 (d, J = 24.4 Hz), 107.4, 97.34 (d, J = 26.1 Hz), 61.1, 55.2, 13.2; ¹⁹F NMR (376 MHz, CDCl₃) (δ , ppm) -121.6. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂FNO₄Na⁺ [M+Na]⁺:478.1431, found 478.1452.

Ethyl 4-(6-chloro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate.

87.6 mg, 93% yield. White solid, mp: 198-199 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 12.36 (s, 1H), 8.54 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H), 7.54 – 7.50 (m, 1H), 7.46 – 7.41 (m, 2H), 7.26 (s, 1H), 7.07 (d, J = 8.4 Hz, 1H), 7.03 – 6.97 (m, 2H), 6.72 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.5, 2.6 Hz, 1H), 4.02 – 3.96 (m, 2H), 3.70 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.3, 160.7, 157.8, 139.4, 136.5, 135.7, 135.4, 130.6, 129.7, 129.5, 128.0, 127.8, 126.9, 125.7, 125.6, 124.3, 124.0, 123.2, 120.9, 120.5, 114.2, 112.4, 112.3, 111.0, 107.4, 61.2, 55.3, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂ClNO4Na⁺ [M+Na]⁺: 494.1130, found 494.1088.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(6-methyl-1H-indol-3-yl)-2-naphthoate.

66.7 mg, 74% yield. White solid, mp: 216-217 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 12.31 (s, 1H), 8.56 (d, J = 8.3 Hz, 1H), 7.82 (s, 1H), 7.55 – 7.50 (m, 2H), 7.44 – 7.40 (m, 1H), 7.10 – 7.03 (comp, 3H), 6.88 (d, J = 8.6 Hz, 1H), 6.77 – 6.73 (m, 2H), 6.53 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.4, 2.5 Hz, 1H), 4.03 – 3.97 (m, 2H), 3.69 (s, 3H), 2.46 (s, 3H), 0.76 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.3, 160.4, 157.7, 139.0, 136.6, 135.9, 135.6, 131.5, 130.6, 129.60, 129.57, 127.4, 127.3, 125.6, 124.4, 124.3, 124.1, 123.9, 121.5, 119.8, 113.7, 112.3, 112.2, 111.0, 107.5, 61.1, 55.2, 21.8, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₅NO₄Na⁺ [M+Na]⁺: 474.1676, found 474.1658.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(7-methyl-1*H*-indol-3-yl)-2-naphthoate

54.1 mg, 60% yield. White solid, mp: 161-162 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.34 (s, 1H), 8.56 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H), 7.51 (d, J = 7.9 Hz, 2H), 7.44 – 7.37 (m, 1H), 7.06 (d, J = 6.7 Hz, 2H), 7.00 – 6.95(m, 2H), 6.80 – 6.72 (m, 2H), 6.61 (d, J = 2.3 Hz, 1H), 6.45 (dd, J = 8.4, 2.3 Hz, 1H), 4.00 (m, 2H), 3.69 (s, 3H), 2.43 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.4, 160.4, 157.7, 139.1, 136.6, 135.6, 135.0, 130.6, 129.7, 129.6, 129.0, 127.3, 125.6, 124.7, 124.3, 124.1, 123.8, 122.4, 120.1, 119.9, 117.9, 114.4, 112.4, 112.2, 107.5, 61.1, 55.2, 16.6, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₉H₂₅NO₄Na⁺ [M+Na]⁺: 474.1676, found 474.1627.

Ethyl 4-(7-chloro-1*H*-indol-3-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

80.1 mg, 85% yield. White solid, mp: 144-145 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.36 (s, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.25 (s, 1H), 7.54 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 7.18 – 7.16 (m, 1H), 7.07 (d, J = 7.9 Hz, 1H), 7.02 (dd, J = 8.4, 2.1 Hz, 1H), 6.94 (t, J = 7.7 Hz, 1H), 6.74 – 6.71 (comp, 3H), 6.46 (dd, J = 8.5, 2.6 Hz, 1H), 4.01 – 3.96 (m, 2H), 3.71 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.3, 160.7, 157.9, 139.4, 136.5, 135.3, 132.8, 130.8, 130.6, 129.7, 129.5, 127.0, 125.7, 125.6, 124.3, 124.0, 123.2, 121.3, 120.6, 118.8, 116.5, 115.2, 112.4, 107.5, 61.2, 55.3, 13.3. HRMS (TOF MS ESI⁺) calculated for C₂₈H₂₂ClNO₄Na⁺ [M+Na]⁺: 494.1130, found 494.1093.

Methyl 3-(3-(ethoxycarbonyl)-4-hydroxy-2-(4-methoxyphenyl)naphthalen-1-yl) -1*H*-indole-7-carboxylate

80.2 mg, 81% yield. White solid, mp: 189-190 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 12.36 (s, 1H), 9.71 (s, 1H), 8.55 (d, J = 8.2 Hz, 1H), 7.90 – 7.82 (m, 1H), 7.53 – 7.49 (m, 1H), 7.47 – 7.41 (m, 2H), 7.40 – 7.36 (m, 1H), 7.04 (t, J = 7.7 Hz, 2H), 6.82 (d, J = 2.2 Hz, 1H), 6.75 – 6.68 (m, 2H), 6.43 (dd, J = 8.5, 2.5 Hz, 1H), 3.99 (comp, 5H), 3.69 (s, 3H), 0.75 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.3, 168.0, 160.6, 157.8, 139.5, 136.6, 135.34, 135.28, 130.6, 130.5, 129.7, 129.5, 127.0, 126.0, 125.8, 125.7, 124.3, 124.3, 124.0, 123.3, 119.0, 114.0, 112.5, 112.4, 112.3, 107.4, 61.1, 55.2, 52.0, 13.2. HRMS (TOF MS ESI⁺) calculated for C₃₀H₂₅NO₆Na⁺ [M+Na]⁺: 518.1574, found 518.1541.

Ethyl 1-hydroxy-3-(4-methoxyphenyl)-4-(1H-pyrrol-2-yl)-2-naphthoate

52.7 mg, 68% yield. White solid, mp: 146-147 °C. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) ¹H NMR (400 MHz, Chloroform-*d*) δ 12.29 (s, 1H), 8.50 – 8.45 (m, 1H), 7.78 – 7.74 (m, 1H), 7.64 (s, 1H), 7.56 – 7.49 (m, 2H), 6.97 – 6.93 (m, 2H), 6.76 – 6.72 (m, 2H), 6.60 – 6.59 (m, 1H), 6.17 – 6.15 (m, 1H), 6.06 – 6.04 (m, 1H), 3.97 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 0.76 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.1, 160.8, 158.1, 138.9, 136.4, 134.7, 130.04, 129.95, 127.1, 126.6, 125.8, 124.2, 123.8, 123.5, 117.2, 112.7, 111.4, 108.1, 107.1, 61.2, 55.3, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₁NO₄Na⁺ [M+Na]⁺: 410.1363, found 410.1375.

Ethyl 4-(furan-2-yl)-1-hydroxy-3-(4-methoxyphenyl)-2-naphthoate

69.3 mg, 89% yield. White solid, mp: 116-117 °C. ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 12.49 (s, 1H), 8.52 – 8.46 (m, 1H), 7.59 – 7.51 (m, 2H), 7.50 – 7.46 (m, 1H), 7.39 (dd, J = 1.8, 0.8 Hz, 1H), 7.00 – 6.96 (m, 2H), 6.76 – 6.72 (m, 2H), 6.29 (dd, J = 3.2, 1.9 Hz, 1H), 5.93 (dd, J = 3.2, 0.7 Hz, 1H), 3.99 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 0.77 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 172.1, 161.8, 158.3, 150.7, 141.6, 140.7, 136.4, 134.4, 130.2, 130.0, 126.1, 125.9, 124.2, 124.0, 121.4, 112.5, 111.3, 110.6, 107.0, 61.3, 55.4, 13.2. HRMS (TOF MS ESI⁺) calculated for C₂₄H₂₀O₅Na⁺ [M+Na]⁺: 411.1203, found 411.1189.

The Preparation of π -conjugated polycyclic hydrocarbons (CPHs), related to Figure 2B.

Synthesis of **7a**: To a 50-mL oven-dried round-bottom flask containing a magnetic stirring bar, **2a** (52.5 mg, 0.2 mmol) was added sulphuric acid (8.0 ml) in 5 min at 0 °C. The reaction mixture was stirred overnight and the reaction temperature was warmed to room temperature slowly. Then, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h. The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 20 : 1) to afford 38.7 mg **7a** in 84% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.17 (s, 1H), 7.94 – 7.78 (comp, 3H), 7.77 – 7.68 (comp, 2H), 7.59 – 7.51 (comp, 2H), 7.50 – 7.43 (m, 1H), 7.37 – 7.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 193.3, 145.0, 138.5, 137.1, 136.3, 135.2, 133.8, 132.9, 131.0, 129.3, 129.1, 128.9, 127.1, 125.8, 124.6, 121.1, 119.2. HRMS (TOF MS CI⁺) calculated for C₁₇H₁₀NaO⁺ [M+Na]⁺: 253.0624, found 253.0630.

Synthesis of **70**: To a 25-mL oven-dried round-bottom flask containing a magnetic stirring bar, **20** (68.5 mg, 0.2 mmol), and methanesulphonic acid (8.0 mL) were added in sequence under argon at room temperature. Then the reaction mixture was refluxed at 100 °C for 2 h. After cooling to room temperature, water (50 mL) was added to the reaction mixture and the reaction mixture was stirred for 1-2 h. The yellow solid precipitated out and was filtered under vacuum. The crude product was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/3) to give 59.0 mg **70** in 95% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 9.57 (s, 1H), 9.07 (s, 1H), 8.81 – 8.74 (m, 1H), 8.09 – 7.98 (comp, 2H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 9.1 Hz, 1H), 7.62 – 7.49 (comp, 3H), 7.38 (d, *J* = 9.1 Hz, 1H), 4.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 184.3, 158.6, 136.1, 135.1, 131.6, 131.5, 131.2, 130.5, 130.2, 129.6, 129.4, 129.3, 129.14, 129.10, 128.6, 128.3, 128.0, 126.7, 124.1,

114.7, 112.8, 56.3. HRMS (TOF MS CI^+) calculated for $C_{22}H_{14}NaO_2^+$ [M+Na]⁺: 333.0886, found 333.0891.

The Preparation of chiral 1,2'-dinaphthalene ligands, related to 2D.

<u>Synthesis of (*R*)-8u:</u> To a 10-mL oven-dried flask containing a magnetic stirring bar, compound (*R*)-2u (93.3 mg, 0.2 mmol) in dry THF (4.0 mL), was added LiAlH₄ (15.2 mg, 0.4 mmol) portion-wise at 0 °C under argon atmosphere. After completion of addition, the reaction mixture was allowed to warm up to room temperature and stirred for 2 h. After the consumption of starting material (monitored by TLC analysis), the reaction mixture was quenched by addition of Na₂SO₄·10H₂O followed by saturated NH₄Cl, and extracted with DCM (2 X 5 mL). The combined organic phase was dried over Na₂SO₄ and the solvent was evaporated under vacuum after filtration. The resulting residues was purified by column chromatography on silica gel

(eluent: petroleum ether /EtOAc = 1 : 1) to give 61.0 mg (*R*)-8u in 97% yield. $\left[\alpha\right]_{D}^{20}$ =

-54.2°, (c = 0.34, CHCl₃). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.14 (s, 1H), 8.03 – 7.94 (comp, 2H), 7.92 – 7.82 (comp, 2H), 7.74 (s, 1H), 7.61 – 7.50 (comp, 2H), 7.46 – 7.34 (comp, 2H), 7.34 – 7.27 (comp, 2H), 4.54 – 4.41 (comp, 2H), 3.84 (s, 3H), 2.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 154.0, 138.7, 134.1, 133.4, 133.3, 133.1, 130.3, 129.8, 129.3, 128.1, 128.0, 127.8, 127.2, 126.8, 126.2, 126.2, 125.1, 124.0, 123.2, 113.6, 64.1, 56.8. HRMS (TOF MS CI⁺) calculated for C₂₂H₁₈NaO₂⁺ [M+Na]⁺: 337.1199, found 337.1210.

Synthesis of (*R*)-10u: To a 10-mL oven-dried flask containing a magnetic stirring bar, (*R*)-8u (31.4 mg, 0.1 mmol), triethylamine (0.02 mL, 0.3 mmol), and DMAP (1.3 mg, 0.01 mmol) in THF (1.0 mL), was added diphenyl phosphorochloridate (26.9 mg, 0.1 mmol, 100 mol %) over 30 min at 0 °C under argon atmosphere. The reaction mixture was stirred overnight and the reaction temperature was warmmed to room temperature slowlly. After the consumption of starting material (monitored by TLC analysis), the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: petroleum ether /EtOAc = 1:1) to give 46.0 mg (*R*)-10u in 84%. > 99% ee, $[\alpha]_D^{20} = -312.5^\circ$, (*c* = 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.02 (s, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.89 – 7.81 (m, 3H), 7.73 (s, 1H), 7.57 – 7.50 (comp, 2H), 7.41 – 7.33 (comp, 2H), 7.31 – 7.26 (comp, 2H), 7.4

3H), 7.25 – 7.17 (comp, 3H), 7.17 – 7.09 (comp, 2H), 7.08 – 7.02 (comp, 2H), 7.02 – 6.90 (comp, 2H), 5.22 (dd, J = 12.7, 7.3 Hz, 1H), 5.05 (dd, J = 12.6, 7.0 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 154.1, 150.6 (d, J = 7.3 Hz), 150.50 (d, J = 7.3 Hz), 133.9, 133.4, 133.32, 133.28, 133.1, 132.9, 130.5, 130.1, 129.79, 129.749, 129.750, 129.2, 128.2, 128.1, 127.8, 127.1, 126.9, 126.6, 126.4, 125.4 (d, J = 1.0 Hz), 125.3 (d, J = 1.1 Hz), 125.0, 123.8, 121.8, 120.22 (d, J = 4.9 Hz), 120.15 (d, J = 4.9 Hz), 113.2, 68.89 (d, J = 5.6 Hz), 56.4; ³¹P NMR (162 MHz, CDCl₃) (δ , ppm) -12.04. HRMS (TOF MS CI⁺) calculated for C₃₄H₂₈O₅P⁺ [M+H]⁺: 547.1669, found 547.1681. HPLC conditions for determination of enantiomeric excess: Chiral IB-3, $\lambda = 272$ nm, hexane : 2-propanol = 95:5, flow rate = 1.0 mL/min, $t_{\rm S} = 27.7$ min, $t_{\rm R} = 35.2$ min.

<u>Synthesis of (S)-9u</u>: To a 10-mL oven-dried flask containing a magnetic stirring bar, and KOH (112.0 mg, 2.0 mmol) in THF (6.0 mL) and CH₃OH (2.0 mL), was added the white solid (S)-2u (93.3 mg, 0.2 mmol) at 0 °C. The reaction mixture was stirred at room temperature overnight. Then the solvent was removed under vaccum and the reaction mixture was acidified with 6 N HCl (10.0 mL). The precipitated solid was filtrated and washed with water (3 X 15 mL) to give 58.5 mg pure (S)-9u in 86% yield.

 $\left[\alpha\right]_{p}^{20} = +22.4^{\circ}, (c = 0.08, \text{CHCl}_3).$ ¹H NMR (400 MHz, DMSO-*d*₆) (δ , ppm) 12.38 (s,

1H), 8.62 (s, 1H), 8.19 – 8.11 (m, 1H), 8.01 – 7.94 (comp, 2H), 7.93 – 7.87 (m, 1H), 7.79 (s, 1H), 7.68 – 7.59 (comp, 2H), 7.51 (d, J = 9.1 Hz, 1H), 7.37 – 7.23 (comp, 3H), 3.75 (s, 3H).; ¹³C NMR (100 MHz, DMSO- d_6) (δ , ppm) 167.9, 153.3, 134.1, 133.1, 133.0, 131.4, 131.2, 131.1, 130.5, 128.72, 128.68, 128.6, 128.1, 127.9, 127.5, 126.8, 126.2, 124.5, 124.4, 123.1, 113.8, 56.2. HRMS (TOF MS CI⁺) calculated for C₂₂H₁₆NaO₃⁺ [M+Na]⁺: 351.0992, found 351.1000.

<u>Synthesis of 11u</u>: To a 10-mL oven-dried flask containing a magnetic stirring bar, (*S*)-**9u** (32.8 mg, 0.1 mmol), *N*,*N*'-dicyclohexylcarbodimide (DCC, 41.2 mg, 0.2 mmol), benzotriazol-1-ol (16.2 mg, 0.12 mmol), and (*R*)-2- amino-3-methylbutan-1-ol (12.4 mg, 0.12 mmol), and dry THF (1.0 mL) were added in sequence at -5 °C. The reaction mixture was stirred for 1 h under these conditions, and then stirred at room temperature overnight. The solvent was evaporated under vacuum after filtration, the obtained white solid was directly used for the next step without further purification. To a 10-mL oven-dried flask containing a magnetic stirring bar, the above obtained white solid, 4-(dimethylamino)pyridine (1.3 mg, 0.01 mmol), and CH₂Cl₂ (1.0 mL), was added triethylamine (22.2 mg, 0.22 mmol) under argon atmosphere at 0 °C. Then
a solution of *p*-toluenesulfonyl chloride (38.2 mg, 0.2 mmol) in CH_2Cl_2 (0.5 mL) was added to the above reaction mixture at 0 °C. The reaction mixture was stirred at room temperature for 12 h. Then the solvent was evaporated under reduced pressure, and the resulting residues was purified by silica gel column chromatography (petroleum

ester/ethyl acetate = 1:1) to give 33.2 mg **11u** in 84% yield. 98% ee, $[\alpha]_{D}^{20} = +30.5^{\circ}$,

(*c* = 0.18, CHCl₃). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.59 (s, 1H), 8.03 – 7.97 (m, 1H), 7.89 – 7.78 (comp, 4H), 7.60 – 7.53 (comp, 2H), 7.42 – 7.28 (comp, 4H), 4.06 – 3.98 (m, 1H), 3.85 – 3.77 (comp, 4H), 3.55 (t, *J* = 8.1 Hz, 1H), 1.47 (td, *J* = 13.3, 6.6 Hz, 1H), 0.65 (d, *J* = 6.7 Hz, 3H), 0.62 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.9, 153.9, 134.4, 133.9, 133.1, 132.2, 131.3, 130.6, 129.1, 129.0, 128.7, 127.9, 127.8, 127.7, 126.7, 126.5, 125.4, 124.8, 123. 5, 113.5, 72.1, 70.5, 56. 8, 32.6, 18.6, 18.0. HRMS (TOF MS CI⁺) calculated for C₂₇H₂₆NO₂⁺ [M+H]⁺: 396.1958, found 396.1969.

Experimental procedure for the interception reaction of vinyl gold carbenoid intermediate, related to Figure 3A.

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %), and Ph₂SO (81.0 mg, 0.4 mmol) in dry 1,2-dichloroethane (2.0 mL) was added a solution of diazoacetate **1c** (66.5 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at -20 °C under argon atmosphere. After addition, the reaction mixture was stirred at -20 °C for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to afford **2c** (30.5 mg, 50% yield) and **12** (26.3 mg, 41% yield). Compound **12**: ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.05 – 7.96 (comp, 2H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.58 – 7.42 (comp, 4H), 7.39 – 7.30 (m, 1H), 7.26 – 7.21 (m, 1H), 3.93 (s, 2H), 1.72 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 153.3, 149.2, 147.7, 144.8, 135. 9, 132.8, 129.1, 128.8, 128.1, 127.2, 125.6, 125.2, 120.5, 85.5, 33.1, 28.2. HRMS (TOF MS CI⁺) calculated for C₂₁H₂₁O₃⁺ [M+H]⁺: 321.1485, found 321.1490.

Experimental procedure for the deuterated reaction of 1a-d to 2a-d, related to Figure 3B.

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate **1a-d** (58.4 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to afford 47.0 mg **2a-d** (58% D, see Figure S2) in 89% yield.

Experimental procedure for the deuterated reaction of 1a to 2a, related to Figure 3C.

To a 10-mL oven-dried flask containing a magnetic stirring bar, JohnphosAu (CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %) and CD₃OD (36.1 mg, 1.0 mmol) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate **1a** (58.0 mg, 0.2 mmol) in dry 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to give 46.5 mg **2a** (80% D, see Figure S1) in 88% yield.

Intermolecular kinetic isotope effect (KIE) experiment, related to Figure 3C.

To a dried NMR tube, **1a** (14.5 mg, 0.05 mmol) and **1a**-*d* (14.6 mg, 0.05 mmol) in dry CDCl₃ (1.0 mL), was added JohnphosAu(CH₃CN)SbF₆ (3.8 mg, 0.005 mmol, 5.0 mol %). And the reaction mixture was analyzed by proton NMR after 5 minutes at room temperature (Figure S3). And these results intermolecular kinetic isotope effect (KIE) experiment turned out that $k_{\rm H}/k_{\rm D} = 1:1$.

Experimental procedure for the β -*H* shift reaction of 1a to 3a, related to Table 1.

To a 10-mL oven-dried flask containing a magnetic stirring bar, AgSbF₆ (3.4 mg, 0.01 mmol, 5.0 mol %) in dry 1,2-dichloroethane (2.0 mL), was added a solution of diazoacetate **1a** (58.0 mg, 0.2 mmol) in 1,2-dichloroethane (2.0 mL) by a syringe in 5 mins at room temperature under argon atmosphere. After addition, the reaction mixture was stirred at room temperature for 12 h. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (solvents: petroleum ether/ethyl acetate = 10 : 1) to give 47.5 mg **3a** in 90% yield. ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.15 – 8.05 (m, 1H), 7.87 – 7.74 (comp, 2H), 7.68 – 7.58 (comp, 2H), 7.42 – 7.39 (comp, 4H), 7.07 (d, *J* = 11.5 Hz, 1H), 6.16 (d, *J* = 15.3 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.5, 142.3, 137.0, 131.9, 131.3, 131.1, 129.4, 129.1, 128.8, 128.6, 126.8, 123.0, 122.7, 100.5, 86.0, 51.8. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₄NaO₂⁺ [M+Na]⁺: 285.0886, found 285.0890.

Experimental procedure for the β -*H* shift reaction of 11 to 31, related to Figure 3E.

To a 10-mL oven-dried flask containing a magnetic stirring bar, $Ph_3PAuNTf_2$ (7.4 mg, 0.01 mmol, 5.0 mol %) and MeOH (32.0 mg, 1.0 mmol, 5.0 equiv.) or anisole (108.1 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate **11** (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford

61.5 mg **3l** in 90% yield with MeOH (85% yield with anisole). ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.26 (d, J = 16.1 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.60 – 7.54 (m, 1H), 7.54 – 7.48 (comp, 2H), 7.48 – 7.41 (comp, 2H), 7.41 – 7.32 (comp, 2H), 6.57 (d, J = 16.1 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 167.5, 142.8, 135.8, 133.2, 133.0, 131.9, 130.0, 128.9, 126.5, 123.8, 123.1, 122.0, 119.6, 94. 6, 88.2, 77.5, 52.0. HRMS (TOF MS CI⁺) calculated for C₁₈H₁₄BrO₂⁺ [M+H]⁺: 341.0172, found 341.0164.

Experimental procedure for the carbocyclization of 11 to 21 with MeOH, related to Figure 3E.

oven-dried flask containing То 10-mL a magnetic stirring bar. a JohnphosAu(CH₃CN)SbF₆ (7.7 mg, 0.01 mmol, 5.0 mol %) and CH₃OH (32.0 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate 11 (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at room temperature under argon atmosphere. After addition, the reaction mixture was stirred overnight at room temperature. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford 56.6 mg 2l in 83% yield.

Experimental procedure for the Comparison with Rh₂(OAc)₄, related to Figure 3E.

To a 10-mL oven-dried flask containing a magnetic stirring bar, $Rh_2(OAc)_4$ (4.4 mg, 0.01 mmol, 5.0 mol %) and CH_3OH (32.0 mg, 1.0 mmol, 5.0 equiv.) in dry 1,2-dichloroethane (1.0 mL), was added a solution of diazoacetate **11** (73.8 mg, 0.2 mmol) in dry 1,2-dichloroethane (1.0 mL) by a syringe in 5 minutes at 25°C under

argon atmosphere. After addition, the reaction mixture was stirred at 25°C for 12 hours. Then the solvent was removed under reduced pressure and the crude product was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether = 1/10) to afford **13l** (69.4 mg, 93% yield) and **3l** (3.4 mg, 5% yield). Compound **13l**: ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.54 – 7.44 (comp, 3H), 7.43 – 7.36 (comp, 2H), 7.28 – 7.17 (comp, 3H), 4.14 (dd, *J* = 8.4, 5.1 Hz, 1H), 3.68 (s, 3H), 3.35 (dd, *J* = 13.6, 5.1 Hz, 1H), 3.29 (s, 3H), 3.10 (dd, *J* = 13.6, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 172.7, 139.0, 133.0, 132.2, 131.8, 130.7, 128.7, 127.0, 122.7, 122.7, 122.3, 92.8, 88.8, 80.7, 58.5, 52.1, 38.3. HRMS (TOF MS CI⁺) calculated for C₁₉H₁₈BrO₃⁺ [M+H]⁺: 373.0434, found 373.0450.

Supplemental References.

Gao, Y., Cai, Z., Li, S., and Li, G. (2019). Rhodium(I)-Catalyzed Aryl C–H Carboxylation of 2-Arylanilines with CO₂. Org. Lett. *21*, 3663–3669.

Gorin, D. J., Davis, N. R., and Toste, F. D. (2005). Gold(I)-catalyzed intramolecular acetylenic schmidt reaction. J. Am. Chem. Soc. *127*, 11260–11261.

Hashmi, A. S. K., Bechem, B., Loos, A., Hamzic, M., Rominger, F., and Rabaa, H. (2014). Gold catalysis: biarylphosphine ligands as key for the synthesis of dihydroisocoumarins. Aust. J. Chem. 67, 481–499.

Mauleón, P., M. Zeldin, R., González, A. Z., and Toste, F. D. (2009). Ligand-controlled access to [4 + 2] and [4 + 3] cycloadditions in gold-catalyzed reactions of allene-dienes. J. Am. Chem. Soc. *131*, 6348–6349.