Supporting Information

Matching Glycosyl Donor Reactivity to Sulfonate Leaving Group Ability Permits S_N2 Glycosylations

Ming-Hua Zhuo,¹ David J. Wilbur,¹ Eugene E. Kwan,^{*,2} and Clay S. Bennett^{*,1}

¹ Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States

² Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States

Supporting Information

<u>Content</u>	<u>Page</u>
1. General Experiment Details	S1
2. Materials	S 1
3. Additional Optimization Data	S2
3.1 Optimization for glycosylation of donor 1 with primary acceptor 2	S2
3.2 Optimization for glycosylation of donor 1 with primary acceptor 39 for isotope effect study	⁻ kinetic S5
3.3 Optimization for glycosylation of donor 1 with secondary acceptor 12	S6
4. Experimental Data	S7
4.1 Procedures for glycosylation and experimental data	S 7
4.2 Experimental data for variable temperature NMR study	S34
4.3 Activated sulfonate donor for elimination reaction test	S38
5. KIE Measurements	S40
5.1 ¹³ C KIE measurements	S40
5.2 α -SDKIE measurements	S42
5.3 Detailed characterization of disaccharide 40	S46
6. DFT Calculation Procedures and Data	S48
6.1. General procedures	S48
6.2. Prediction of S _N 1 isotope effects	S48
6.3. Prediction of S _N 2 isotope effects	S50
6.4. Choice of computational method for modeling S_N 2-like glycosylations	S59
6.5. Lowest energy structure	S67
6.6. Conclusion	S69
7. References	S70
8. NMR Spectra	S72

1. General Experiment Details

Unless otherwise described, all reactions were performed in standard, flame-dried glassware equipped with PTFE-coated magnetic stir bars and fit with rubber septa under an inert atmosphere of argon. Flash column chromatography was performed on SiliCycle P-60 silica gel, 230-400 Mesh. Analytical and preparative thin layer chromatography (TLC) was carried out on EMD silica gel 60 F-254 plates. Products were visualized using UV or by staining with 5% aqueous sulfuric acid. NMR spectra were recorded on a Bruker Avance III NMR spectrometer at 500 MHz for ¹H NMR, 125 MHz for ¹³C NMR, and 500 MHz for Gradient HSQC and COSY. Chemical shifts are reported in ppm relative to tetramethylsilane (0.00 ppm for ¹H NMR in CDCl₃) or CDCl₃ (77.16 ppm for ¹³C NMR in CDCl₃). For ¹H NMR spectra, data are reported as follows: δ shift, multiplicity [s = singlet, d = doublet, dd = doublet of doublets, m = multiplet, t = triplet, td = triplet of doublets], coupling constants are reported in hertz (Hz). High-resolution mass spectra (HRMS) were obtained on Electro Spray Ionization (ESI) on a Waters Q-tof Premier instrument in the positive mode. Temperature was controlled by using Neslab CC100 immersion cooler. Optical rotations were measured on a Rudolph Research Analysis AUTOPUL IV polarimeter at 589 nm in a 5 cm at 23 °C.

2. Materials

Prior to running the glycosylation reactions, all donors and acceptors were dried three times by azeotropic removal of water using toluene and a rotary evaporator and set under vacuum for 16 hrs before use. *p*-Nitrobenzenesulfonyl chloride **4h** is purified before use. **4h** is dissolved in diethyl ether and washed with aqueous 10% NaOH x 3 and brine x 1, then dried (Na₂SO₄) and crystalized by cooling in dry-ice bath under argon. **4h** is further dried over P_2O_5 in vacuum desiccator overnight. Solvents for reactions were dried on an Innovative Technologies PureSolv 400 solvent purifier. NMR solvents were purchased from Cambridge Isotope Laboratories. Glycosyl donors **1**^[11], **10**^[11], **29**^[11], **36**^[11], **6**^[2], **7**^[2], **8**^[2], and **30**^[3] and acceptors **2**^[4], **11**^[5], **12**^[6], **13**^[6], **14**^[6b, 7], **15**^[6], **16**^[8] and **39**^[9]were synthesized following literature procedures or variations thereof. All other chemicals were purchased at the highest possible purity from Carbosynth and Sigma-Aldrich and used as received. The 5 mm Low Pressure/Vacuum Valve NMR tube used for low-temperature NMR experiments was purchased from Wilmad LabGlass. Molecular sieves were activated by flame drying under vacuum three times, cooled to room temperature, and directly used for glycosylations.

3. Additional Optimization Data

3.1 Optimization for glycosylation of donor 1 with primary acceptor 2

Table S1. Temperature and activation time optimization

Entry ^[a]	Sulfonylating agent	Temp [°C]	Activation time [h]	Yield [%] (β only)
1	Ts ₂ O	-78	0.5	5
2	TsCl	-78	0.5	6
3	TsCl	-35	0.5	8
4	TsCl	-15	0.5	25
5	TsCl	0	0.5	25
6	TsCl	25	0.5	7
7	TsCl	-15	1	25
8	TsCl	-15	1.5	25
9	TsCl	-15	2	27

^[a] 0.20 mmol of glucosyl donor 1, 0.133 mmol of acceptor 2, 0.2 mmol of sulfonylating agent, THF as solvent. Activation [1] = 0.080 M, glycosylation [1] = 0.050 M. Isolated yield. All selectivities based on ¹H NMR analysis of purified material.

Table S2. Base and additives optimization

Entry ^[a]	Base	Additive [mmol]	Yield [%] (β only)
1	KN(SiMe ₃) ₂	None	24
2	KN(SiMe ₃) ₂	TTBP (0.2)	46
3	KN(SiMe ₃) ₂	DTBP (0.2)	53
4	KN(SiMe ₃) ₂	DTBMP (0.2)	51
5	KN(SiMe ₃) ₂	β-Pinene (0.2)	51
6	LiN(SiMe ₃) ₂	DTBP (0.2)	NR
7	NaN(SiMe ₃) ₂	DTBP (0.2)	74
8	NaN(SiMe ₃) ₂	TTBP (0.2)	69
9	NaN(SiMe ₃) ₂	DTBMP (0.2)	69
10	NaN(SiMe ₃) ₂	2,6-Lutidine (0.2)	66
11	NaN(SiMe ₃) ₂	Pyridine (0.2)	NR
12	NaN(SiMe ₃) ₂	2,4,6-Tri-tert-butylpyridine (0.2)	76
13	NaN(SiMe ₃) ₂	2,4,6-Tri- <i>tert</i> -butylpyridine (0.1)	80
14	NaN(SiMe ₃) ₂	2,4,6-Tri-tert-butylpyridine (0.4)	75
15	NaN(SiMe ₃) ₂	2,4,6-Tri- <i>tert</i> -butylpyridine (0.8)	69
16	NaN(SiMe3)2	None	81

^[a] 0.20 mmol of glucosyl donor **1**, 0.133 mmol of acceptor **2**, 0.2 mmol of sulfonylating agent **4i**, THF as solvent, activation time 2 hrs, Activation [**1**] = 0.080 M, glycosylation [**1**] = 0.050 M. Isolated yield. NR = No Reaction. All selectivities based on ¹H NMR analysis of purified material.

Table S3. Solvent and additives optimization

BnO BnO BnO BnO BnO BnO BnO BnO BnO BnO	i. additive, NaN(SiMe ₃) ₂ , THF, -15 °C ii. 4i, THF iii. NaN(SiMe ₃) ₂ , THF OH BnO BnO BnO BnO BnO BnO Me	BnO BnO BnO BnO BnO BnO BnO BnO BnO OMe	F ₃ C 0 S ₁ -C F ₃ C 4i
--	---	--	--

Entry ^[a]	Solvent	Additive	Yield [%] (β only)
1	THF	2,4,6-Tri-tert-butylpyridine (0.1 mmol)	80
2	glyme	2,4,6-Tri-tert-butylpyridine (0.1 mmol)	40
3	diglyme	2,4,6-Tri-tert-butylpyridine (0.1 mmol)	20
4	Et ₂ O	2,4,6-Tri-tert-butylpyridine (0.1 mmol)	52
5	CH ₂ Cl ₂	2,4,6-Tri-tert-butylpyridine (0.1 mmol)	60
6	THF	None	81
7	toluene	None	60
8	MeCN	None	NR
9	THF/toluene = $4/1$	None	63
10	$THF/CH_2Cl_2 = 4/1$	None	51
11	THF/1,4-dioxane = $3/1$	None	52
12	THF	15-Crown-5 (0.2 mmol)	41
13	THF	activated 4 Å MS (200 mg)	68
14	THF	activated 5 Å MS (200 mg)	68

^[a] 0.20 mmol of glucosyl donor 1, 0.133 mmol of acceptor 2, 0.2 mmol of sulfonylating agent 4i, activation time 2 hrs, activation [1] = 0.080 M, glycosylation [1] = 0.050 M. Isolated yield. NR = No Reaction, MS = Molecular Sieves. All selectivities based on ¹H NMR analysis of purified material.

3.2 Optimization for glycosylation of donor 1 with primary acceptor 39 for kinetic isotope effect study

В	nO BnO BnO 1)2, temp, THF a)2 OH O MeO MeO MeO 39	BnO BnO MeO MeO MeO MeO MeO MeO MeO MeO MeO Me	$N \xrightarrow{CF_3} \overset{Q}{\underset{O}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset{S}{\overset$
Entry ^[a]	Sulfonylating agent	Temp [°C]	Reaction time	Yield [%] (β only)
1 ^[b]	4h	-30	3 h	90
2 ^[b]	4i	-30	3 h	91
3	4i	-30	5 min	80
4	4i	-30	10 min	80
5	4i	-30	6 h	82
6	4i	-30	12 h	82
7	4h	-30	12 h	70
8	4i	-60	10 min	36
9	4i	-60	20 min	56
10	4i	-60	6 h	91

Table S4. Stoichiometry, temperature and reaction time optimization

^[a] 0.20 mmol of glucosyl donor **1**, 0.2 mmol of sulfonylating agent, 0.40 mmol of acceptor **39**, activation time 2 hrs, activation [**1**] = 0.091 M, glycosylation [**1**] = 0.036 M. Isolated yield. ^[b] All selectivities based on ¹H NMR analysis of purified material. ^[b] 0.20 mmol of glucosyl donor **1**, 0.20 mmol of sulfonylating agent, 0.1 mmol of acceptor **39**. Activation [**1**] = 0.080 M, glycosylation [**1**] = 0.057 M.

3.3 Optimization for glycosylation of donor 1 with secondary acceptor 12

Table S5. Sulfonylating agent, stoichiometry, temperature and concentration

 optimization

	DBn i. NaN(SiMe ₃); ii. Sulfonylating iii. KN(SiMe ₃); iii. KN(SiMe ₃); Ph0-	2, THF, temp g agent, THF , THF	+ BnO	Sulfonylating	agents 4h, R = 4 -NO ₂ 4i, R = $3,5$ -CF ₃ 4n, R = 2 -NO ₂ 40, R = $2,3,4,5,6$ -F 4n, R = $3,5$ -Me
	-HO	BnO OMe		4	
Entry ^[a]	Sulfonylating	Temp [°C]	Glycosylation [1]	Equiv.	Yield [%] (β:α)
	agent			(1:12)	
1	4h	-20	0.057 M	2:1	55% (5:1)
2	4i	-20	0.057 M	2:1	73% (4:1)
3	40	-20	0.057 M	2:1	11% (2:1)
4	4 p	-20	0.057 M	2:1	Trace
5	4n	-30	0.080 M	2:1	47% (8:1)
6	4h	-30	0.050 M	2:1	49% (10:1)
7	4h	-30	0.060 M	2:1	49% (8:1)
8	4h	-30	0.070 M	2:1	53% (6:1)
9	4h	-30	0.057 M	3:1	59% (14:1)
10 ^[b]	4h	-30	0.057 M	3:1	60% (14:1)
11	4i	-40	0.057 M	3:1	56% (14:1)
12 ^[b]	4i	-40	0.057 M	3:1	58% (14:1)

^[a] 0.20 mmol of glucosyl donor 1, 0.20 mmol of sulfonylating agent, activation time 2 hrs, Activation [1] = 0.080 M. Isolated yield. All selectivities based on ¹H NMR analysis of purified material. ^[b] 0.60 mmol of glucosyl donor 1, 0.60 mmol of sulfonylating agent, 0.20 mmol of acceptor 12.

4. Experimental Data

4.1 Procedures for glycosylation and experimental data

General glycosylation procedure: A solution of donor in THF was cooled to identical temperature and treated with sodium hexamethyldisilazane (1.0 M in THF). After 10 mindutes, this solution was transferred by syringe to a flask containing the solution of promoter sulfonyl chloride in THF that had been pre-cooled to the same temperature. The flask that contained the donor was then rinsed with an additional THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor in THF at the same temperature with sodium hexamethyldisilazane or potassium hexamethyldisilazane and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with THF, and this rinse was then added to the glycosylation reaction.

Work-up procedure: The reaction was quenched with saturated aqueous ammonium chloride (NH_4Cl), diluted with water, and extracted with diethyl ether four times. The combined organic phase was washed with brine and then dried (Na_2SO_4), filtered, and concentrated under reduced pressure.

Yield and selectivity determination: The crude reaction mixture was purified by silica gel flash column chromatography to afford β and α products. The selectivity was determined by ¹H NMR integration of the anomeric signals. If the β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

Methyl 2,3,4-*O*-tribenzyl-6-*O*-(2,3,4,6-*O*-tetrabenzyl-β-D-glucopyranosyl)-α-D-glucopyranoside 3

A solution of donor 1 (0.1080 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to - 30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the

donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **2** (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 3 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide **3** as a single β -isomer (0.0836 g, 0.085 mmol, 85% yield) when **4h** was used as the promoter or (0.0947 g, 0.096 mmol, 96% yield) when **4i** was used as the promoter.

¹**H NMR** (500 MHz, CDCl₃) δ 7.35 – 7.11 (m, 35H), 4.98 (d, *J* = 4.0 Hz, 1H), 4.95 (d, *J* = 3.9 Hz, 1H), 4.90 (d, *J* = 10.9 Hz, 1H), 4.83 – 4.69 (m, 6H), 4.65 (d, *J* = 12.1 Hz, 1H), 4.60 (d, *J* = 3.1 Hz, 1H), 4.58 – 4.49 (m, 4H), 4.34 (d, *J* = 7.8 Hz, 1H), 4.18 (dd, *J* = 10.8, 1.8 Hz, 1H), 3.99 (t, *J* = 9.3 Hz, 1H), 3.84 – 3.81 (m, 1H), 3.70 – 3.63 (m, 3H), 3.61 (d, *J* = 9.0 Hz, 1H), 3.56 (t, *J* = 9.3 Hz, 1H), 3.53 – 3.45 (m, 3H), 3.45 – 3.40 (m, 1H), 3.32 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.7, 138.5, 138.5, 138.4, 138.3, 138.3, 128.6, 128.5, 128.5, 128.5, 128.3, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7, 127.7, 127.7, 127.6, 104.0, 98.2, 84.9, 82.2, 82.1, 79.9, 78.2, 78.1, 75.8, 75.8, 75.2, 75.1, 75.0, 73.6, 73.5, 70.0, 69.2, 68.7, 55.3. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[10]

6-*O*-(2,3,4,6-*O*-tetrabenzyl-β-D-galactopyranosyl)-1,2;3,4-*O*-diisopropylidene-α-D-galactopyranoside 17

A solution of donor 1 (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to - 30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.1246 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the

donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 11 (0.0347 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -30 °C with sodium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 4 hours, the reaction was quenched with 0.1 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide 17 (0.0739 g, 0.094 mmol, 71% yield, β : α 17:1) when 4h was used as the promoter or (0.0957 g, 0.122 mmol, 92% yield, β : α 10:1) when 4i was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified 17. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 – 7.07 (m, 20H), 5.57 (d, J = 5.0 Hz, 1H), 5.06 (d, J = 11.1 Hz, 1H), 4.96 (d, J = 10.9 Hz, 1H), 4.82 – 4.76 (m, 2H), 4.72 (d, J = 11.1 Hz, 1H), 4.64 – 4.56 (m, 2H), 4.55 – 4.47 (m, 2H), 4.46 (d, J = 7.8 Hz, 1H), 4.31 (dd, J = 5.0, 2.4 Hz, 1H), 4.24 (dd, J = 7.9, 1.7 Hz, 1H), 4.16 (dd, J = 10.7, 3.6 Hz, 1H), 4.11 – 4.06 (m, 1H), 3.75 – 3.67 (m, 3H), 3.66 – 3.58 (m, 2H), 3.50 – 3.39 (m, 2H), 1.50 (s, 3H), 1.45 (s, 3H), 1.31 (d, J = 2.7 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.2, 128.7, 128.4, 128.4, 128.3, 128.0, 127.9, 127.9, 127.7, 127.6, 127.6, 127.5, 109.4, 108.6, 104.4, 96.4, 84.6, 81.7, 77.8, 75.7, 75.0, 74.8, 74.4, 73.5, 71.5, 70.8, 70.5, 69.8, 68.8, 67.4, 26.1, 26.0, 25.1, 24.5. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[11]

α -isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.41 – 7.05 (m, 20H), 5.52 (d, *J* = 5.0 Hz, 1H), 5.00 – 4.97 (m, 2H), 4.81 (t, *J* = 10.6 Hz, 2H), 4.75 (d, *J* = 11.9 Hz, 1H), 4.69 (d, *J* = 11.9 Hz, 1H), 4.64 – 4.57 (m, 2H), 4.48 (d, *J* = 4.3 Hz, 1H), 4.46 (d, *J* = 5.7 Hz, 1H), 4.35 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.31 (dd, *J* = 5.0, 2.3 Hz, 1H), 4.04 (t, *J* = 6.9 Hz, 1H), 3.98 (t, *J* = 9.3 Hz, 1H), 3.85 – 3.71 (m, 4H), 3.71 – 3.62 (m, 2H), 3.58 (dd, *J* = 9.6, 3.6 Hz, 1H), 1.53 (s, 3H), 1.45 (s, 3H), 1.32 (d, *J* = 6.8 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 138.5, 138.5, 138.2, 128.5, 128.1, 128.0, 128.0, 127.8, 127.8, 127.7, 109.4, 108.7, 97.2, 96.5, 82.1, 80.0, 77.8, 77.4, 77.2, 76.9, 75.8,

75.1, 73.6, 72.5, 71.0, 70.9, 70.8, 70.4, 68.6, 66.4, 65.9, 26.3, 26.2, 25.1, 24.8. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[12]

Methyl 6-*O*-(4-*O*-(2-naphthylmethyl)-2,3,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 18

A solution of donor 5 (0.1180 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mLof THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 3 hours, the reaction was guenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (17% ethyl acetate in hexane) to afford disaccharide 18 as a single β -isomer (0.0556 g, 0.054 mmol, 54% yield) when 4h was used as the promoter or (0.0713 g, 0.069 mmol, 69% yield) when 4i was used as the promoter.

 $[\alpha]_{D}^{22} = +21.8^{\circ} (c \ 1.2, CH_2Cl_2);$

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 – 7.68 (m, 3H), 7.59 (s, 1H), 7.47 – 7.45 (m, 2H), 7.39 – 7.12 (m, 31H), 4.99 – 4.91 (m, 4H), 4.85 – 4.56 (m, 9H), 4.56 – 4.43 (m, 2H), 4.36 (d, *J* = 7.8 Hz, 1H), 4.18 (d, *J* = 9.7 Hz, 1H), 3.99 (t, *J* = 9.2 Hz, 1H), 3.88 – 3.79 (m, 1H), 3.79 – 3.56 (m, 5H), 3.56 – 3.40 (m, 4H), 3.32 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 138.9, 138.6, 138.4, 138.4, 138.3, 138.2, 135.6, 133.3, 133.0, 128.5, 128.4, 128.4, 128.3, 128.1, 128.1, 128.0, 127.9, 127.9, 127.9, 127.7, 127.6,

127.6, 127.6, 127.5, 127.5, 126.6, 126.1, 126.0, 125.9, 103.9, 98.1, 84.9, 82.1, 82.0, 79.8, 78.1, 78.0, 75.7, 75.7, 75.1, 75.0, 74.9, 73.5, 73.4, 69.9, 69.1, 68.6, 55.2.

LRMS (ESI) m/z: calculated for $C_{66}H_{68}NaO_{11}$ (M+Na) = 1059.46; found 1059.62; **HRMS (ESI)** m/z: calculated for $C_{66}H_{68}NaO_{11}$ (M+Na) = 1059.4659; found 1059.4613.

Methyl 6-*O*-(4-*O*-Benzoyl-2,3,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 19

A solution of donor 6 (0.1108 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mLof THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 5 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide 19 as a single β -isomer (0.0821 g, 0.082 mmol, 82% yield) when 4h was used as the promoter or (0.0889 g, 0.089 mmol, 90% yield) when 4i was used as the promoter.

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 – 7.85 (m, 2H), 7.56 (dd, J = 10.6, 4.3 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.37 – 7.22 (m, 16H), 7.22 – 7.09 (m, 11H), 7.12 – 6.97 (m, 5H), 5.21 (t, J = 9.6 Hz, 1H), 4.97 (d, J = 10.9 Hz, 2H), 4.81 – 4.69 (m, 5H), 4.68 – 4.57 (m, 3H), 4.52 (d, J = 11.2 Hz, 1H), 4.45 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 7.8, 4.9 Hz, 3H), 4.20 (dd, J = 10.9 Hz, 2H), 4.97 (dd, J = 10.98 Hz, 2H), 4.97 (dd, J = 10.98 Hz, 2H), 4.97 (dd

1.9, 1.8 Hz, 1H), 4.00 (t, *J* = 9.3 Hz, 1H), 3.87 – 3.81 (m, 1H), 3.75–3.71 (m, 2H), 3.70 – 3.62 (m, 1H), 3.62 – 3.58 (m, 3H), 3.57 – 3.49 (m, 2H), 3.34 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 165.4, 138.9, 138.4, 138.3, 138.2, 137.9, 133.2, 129.8, 129.7, 128.5, 128,4, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.9, 127.6, 127.6, 127.6, 127.6, 127.5, 127.5, 103.7, 98.1, 82.0, 81.9, 81.7, 79.9, 78.0, 75.7, 75.1, 75.0, 74.9, 73.8, 73.6, 73.4, 71.6, 69.9, 69.8, 68.6, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[2, 13]

Methyl 6-*O*-(3-*O*-benzoyl-2,3,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 20

A solution of donor 7 (0.1108 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 5 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (18% ethyl acetate in hexane) to afford disaccharide 20 as a single β -isomer (0.0329 g, 0.033 mmol, 33% yield) when 4h was used as the promoter or (0.0652 g, 0.065 mmol, 65% yield) when 4i was used as the promoter.

¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.44 – 6.90 (m, 32H), 5.48 (t, *J* = 9.4 Hz, 1H), 4.98 (d, *J* = 10.9 Hz, 1H), 4.85 – 4.72 (m, 4H), 4.69 – 4.56 (m, 5H), 4.54 – 4.52 (m, 2H), 4.49 – 4.38 (m, 3H), 4.18 (dd, *J* = 10.8,

1.5 Hz, 1H), 4.01 (t, *J* = 9.3 Hz, 1H), 3.84 (dd, *J* = 10.0, 3.2 Hz, 1H), 3.77 – 3.63 (m, 4H), 3.60 – 3.46 (m, 4H), 3.36 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 165.6, 138.8, 138.3, 138.2, 137.8, 137.5, 133.0, 130.1, 129.8, 128.5, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.2, 128.1, 128.1, 128.0, 128.0, 127.8, 127.8, 127.7, 127.7, 127.7, 127.6, 127.5, 103.8, 98.1, 82.0, 79.9, 78.9, 78.1, 76.5, 76.1, 75.8, 75.0, 74.9, 74.5, 74.3, 73.6, 73.4, 70.1, 68.7, 68.6, 55.3. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[2]

Methyl 6-*O*-(4-*O*-acetyl-2,3,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 21

A solution of donor 8 (0.0984 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 5 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (20% ethyl acetate in hexane) to afford disaccharide **21** as a single β -isomer (0.0675 g, 0.072 mmol, 72% yield) when **4h** was used as the promoter or (0.0781 g, 0.083 mmol, 83% yield) when 4i was used as the promoter.

¹**H** NMR (500 MHz, CDCl₃) δ 7.50 – 7.01 (m, 30H), 4.99 – 4.89 (m, 3H), 4.84 – 4.75 (m, 3H), 4.73 – 4.71 (m, 2H), 4.69 – 4.55 (m, 3H), 4.52 – 7.01 (m, 3H), 4.37 (d, *J* = 7.6 Hz, 1H), 4.17 (dd, *J* = 10.7, 1.7 Hz, 1H), 3.99 (t, *J* = 9.3 Hz, 1H), 3.82 (dd, *J* = 10.0,

2.7 Hz, 1H), 3.69 (dd, *J* = 10.8, 4.6 Hz, 1H), 3.62 – 3.45 (m, 7H), 3.33 (s, 3H), 1.82 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 169.8, 138.9, 138.4, 138.4, 138.2, 138.2, 138.0, 128.5, 128.4, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 127.6, 103.7, 98.1, 82.0, 81.9, 81.8, 79.9, 78.0, 75.7, 75.1, 75.0, 74.9, 73.6, 73.5, 73.4, 71.2, 70.0, 69.8, 68.7, 55.3, 20.8. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[2]

Methyl 6-O-(4-*O*-triisopropylsilyl-2,3,6-tri-*O*-benzyl-β-D-glucopyranosyl)-2,3,4tri-*O*-benzyl-α-D-glucopyranoside 22

A solution of donor 9 (0.1212 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 18 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (12% ethyl acetate in hexane) to afford disaccharide 22 as a single β -isomer (0.0550 g, 0.052 mmol, 52% yield) when 4h was used as the promoter or (0.0602 g, 0.057 mmol, 57% yield) when 4i was used as the promoter.

 $[\alpha]_{D^{22}} = +37.9^{\circ} (c \ 2.0, \ CH_2Cl_2);$

¹**H** NMR (500 MHz, CDCl₃) δ 7.38 – 7.09 (m, 30H), 5.07 (d, J = 11.5 Hz, 1H), 4.98 – 4.94 (m, 2H), 4.81 – 4.73 (m, 2H), 4.70 (d, J = 11.1 Hz, 1H), 4.64 – 4.61 (m, 2H), 4.60 – 4.52 (m, 3H), 4.52 – 4.46 (m, 2H), 4.43 (d, J = 7.5 Hz, 1H), 4.20 (dd, J = 10.8, 1.8 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 3.82 (dd, J = 10.0, 2.8 Hz, 1H), 3.79 – 3.75 (m, 1H), 3.75 – 3.65 (m, 2H), 3.60 (dd, J = 10.5, 6.5 Hz, 1H), 3.53 – 3.39 (m, 5H), 3.30 (s, 3H), 0.96 – 0.90 (m, 21H).

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 138.9, 138.4, 138.3, 138.2, 128.5, 128.4, 128.3, 128.3, 128.3, 128.1, 128.0, 128.0, 127.9, 127.7, 127.7, 127.7, 127.6, 127.5, 127.4, 127.0, 126.8, 103.4, 98.1, 84.8, 82.8, 82.0, 79.9, 78.1, 76.9, 75.7, 74.9, 74.2, 74.2, 73.5, 73.4, 71.5, 70.1, 69.9, 68.3, 55.2, 18.3, 18.1, 13.3.

LRMS (ESI) m/z: calculated for $C_{64}H_{80}NaO_{11}Si$ (M+Na) = 1075.54; found 1075.63; **HRMS (ESI)** m/z: calculated for $C_{64}H_{80}NaO_{11}Si$ (M+Na) = 1075.5368; found 1075.5378.

Methyl 2-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene- α -D-glucopyranoside 23

A solution of donor 1 (0.3242 g, 0.6 mmol, 3 equiv.) in 3.0 mL of THF was cooled to -30 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.6 mL, 0.6 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride 4h (0.1326 g, 0.6 mmol, 3 equiv., -30 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1871 g, 0.6 mmol, 3 equiv., -40 °C) in 3.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 1.5 mL of THF, and this rinse was then added to the donor and sulforvl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 12 (0.0744 g, 0.2 mmol, 1 equiv.) in 2.0 mL of THF at -30 °C or -40 °C with potassium hexamethyldisilazane (0.2 mL, 0.2 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 1.0 mL of THF, and this rinse was then added to the glycosylation reaction. After 18 hours, the reaction was quenched with 0.15 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 20 mL). The combined organic phase was washed with brine (40 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column

chromatography (15% ethyl acetate in hexane) to afford disaccharide **23** (0.1073 g, 0.12 mmol, 60% yield, β : α 14:1) when **4h** was used as the promoter or (0.1038 g, 0.12 mmol, 58% yield, β : α 14:1) when **4i** was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **23**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.13 (m, 30H), 5.47 (s, 1H), 5.06 (d, J = 11.2 Hz, 1H), 4.90 (dd, J = 11.5, 9.5 Hz, 2H), 4.81 – 4.68 (m, 4H), 4.53 (d, J = 10.7 Hz, 1H), 4.47 – 4.45 (m, 4H), 4.36 (t, J = 9.1 Hz, 1H), 4.21 (dd, J = 4.7, 4.7 Hz, 1H), 3.82 (td, J = 9.9, 4.7 Hz, 1H), 3.71 – 3.55 (m, 7H), 3.50 (t, J = 8.2 Hz, 1H), 3.35 (s, 3H), 3.26 – 3.22 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.9, 138.6, 138.4, 138.2, 137.5, 129.0, 128.5, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 126.3, 102.6, 101.6, 98.8, 85.1, 83.1, 80.6, 80.5, 78.1, 76.0, 75.7, 75.1, 75.0, 74.9, 73.9, 73.7, 69.2, 68.8, 62.3, 55.54. The ¹H NMR and ¹³C NMR spectra coincide with the previous report ^[14].

α-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 – 7.10 (m, 28H), 6.96 (d, J = 7.3 Hz, 2H), 5.62 (d, J = 3.5 Hz, 1H), 5.50 (s, 1H), 5.03 (d, J = 10.8 Hz, 1H), 4.84 (d, J = 4.7 Hz, 1H), 4.82 (d, J = 5.0 Hz, 1H), 4.74 (d, J = 3.7 Hz, 1H), 4.69 (d, J = 11.2 Hz, 1H), 4.65 – 4.56 (m, 3H), 4.42 – 4.39 (m, 2H), 4.37 – 4.31 (m, 2H), 4.28 (dd, J = 10.2, 4.8 Hz, 1H), 4.23 (d, J = 10.1 Hz, 1H), 4.00 (t, J = 9.3 Hz, 1H), 3.91 (td, J = 9.9, 4.8 Hz, 1H), 1H), 3.82 (t, J = 9.4 Hz, 1H), 3.76 – 3.67 (m, 3H), 3.56 – 3.50 (m, 3H), 3.45 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.1, 139.0, 138.2, 138.0, 137.6, 137.3, 129.5, 128.8, 128.6, 128.6, 128.4, 128.4, 128.3, 128.3, 128.3, 128.1, 128.0, 127.7, 127.7, 127.5, 127.5, 127.4, 126.6, 102.3, 98.7, 96.3, 83.1, 81.8, 78.9, 78.2, 77.7, 75.7, 74.9, 73.6, 73.5, 72.9, 71.3, 70.0, 69.4, 68.3, 61.9, 55.5. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[14]

Methyl 2-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene- β -D-glucopyranoside 24

A solution of donor **1** (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to - 30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing

the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1246 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 13 (0.0496 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -30 °C with potassium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 19 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (12.5% ethyl acetate in hexane) to afford disaccharide 24 as an amorphous solid (0.0654 g, 0.073 mmol, 55% yield, β : α 11:1) when **4h** was used as the promoter or (0.0749 g, 0.084 mmol, 63% yield, β : α 10:1) when 4i was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified 24.

β-isomer

$[\alpha]_{D}^{22} = +2.2^{\circ} (c \ 1.0, CH_2Cl_2);$

¹**H NMR** (500 MHz, CDCl₃) δ 7.50 – 7.01 (m, 30H), 5.47 (s, 1H), 5.00 (d, *J* = 11.1 Hz, 1H), 4.90 (d, *J* = 11.0 Hz, 1H), 4.87 (d, *J* = 7.8 Hz, 1H), 4.81 – 4.73 (m, 3H), 4.71 (d, *J* = 11.1 Hz, 1H), 4.64 (d, *J* = 10.4 Hz, 1H), 4.51 (d, *J* = 10.8 Hz, 1H), 4.47 (s, 2H), 4.42 (d, *J* = 7.6 Hz, 1H), 4.32 (dd, *J* = 10.4, 4.8 Hz, 1H), 4.10 (t, *J* = 8.9 Hz, 1H), 3.78 – 3.69 (m, 2H), 3.61 – 3.53 (m, 8H), 3.51 – 3.46 (m, 1H), 3.40 (td, J = 9.8, 4.9 Hz, 1H), 3.27 – 3.20 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.7, 138.5, 138.4, 138.3, 137.5, 129.0, 128.5, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 128.0, 127.8, 127.7, 127.7, 127.6, 127.5, 126.3, 105.2, 102.6, 101.4, 85.0, 82.9, 79.7, 78.7, 78.1, 75.7, 75.1, 75.1, 75.0, 74.9, 73.7, 69.1, 68.90, 66.3, 57.5;

LRMS (ESI) m/z: calculated for $C_{55}H_{58}NaO_{11}$ (M+Na) = 917.39; found 917.45; HRMS (ESI) m/z: calculated for $C_{55}H_{58}NaO_{11}$ (M+Na) = 917.3877; found 917.3912.

a-isomer

 $[\alpha]_{D}^{22} = +30.7^{\circ} (c \ 0.6, CH_2Cl_2);$

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.00 (m, 28H), 6.92 (d, J = 7.3 Hz, 2H), 5.58 (d, J = 3.6 Hz, 1H), 5.46 (s, 1H), 5.01 (d, J = 10.8 Hz, 1H), 4.87 (d, J = 10.0 Hz, 1H), 4.83

-4.79 (m, 2H), 4.60 (d, J = 10.0 Hz, 1H), 4.56 (d, J = 12.3 Hz, 1H), 4.51 (d, J = 12.1 Hz, 1H), 4.46 (d, J = 7.7 Hz, 1H), 4.38 -4.30 (m, 3H), 4.21 (d, J = 12.1 Hz, 1H), 4.15 -4.06 (m, 2H), 3.97 (t, J = 9.4 Hz, 1H), 3.85 -3.76 (m, 2H), 3.62 (s, 3H), 3.53 -3.42 (m, 3H), 3.29 (dd, J = 10.8, 2.4 Hz, 1H), 3.24 (dd, J = 10.8, 1.8 Hz, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 139.2, 139.0, 138.1, 138.1, 137.9, 137.8, 137.1, 129.6, 129.1, 128.6, 128.4, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.7, 127.6, 127.6, 127.6, 127.6, 127.5, 126.5, 105.8, 102.2, 96.2, 82.4, 81.9, 80.3, 78.8, 77.6, 75.7, 75.5, 75.2, 75.1, 73.5, 71.3, 69.8, 69.1, 68.0, 65.9, 57.7;

LRMS (ESI) m/z: calculated for $C_{55}H_{58}NaO_{11}$ (M+Na) = 917.39; found 917.45; HRMS (ESI) m/z: calculated for $C_{55}H_{58}NaO_{11}$ (M+Na) = 917.3877; found 917.3895.

Methyl 2,4,6-tri-*O*-benzyl-3-O-(2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranosyl)-α -D-glucopyranoside 25

A solution of donor 1 (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to -15 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride 4h (0.0884 g, 0.4 mmol, 3 equiv., -15 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1246 g, 0.4 mmol, 3 equiv., -40 °C) in 2.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulforyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 14 (0.0617 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -15 °C or -40 °C with potassium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 24 hours, the reaction was quenched with 0.1 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide 25 (0.0630 g, 0.064 mmol, 48% yield, β : α 12:1) when **4h** was used as the promoter or (0.0708 g, 0.072 mmol, 54% yield, β : α 12:1) when **4i** was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **25**. The β

and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.45 – 6.99 (m, 35H), 5.10 – 5.03 (m, 3H), 5.00 (d, J = 10.8 Hz, 1H), 4.90 – 4.85 (m, 2H), 4.82 (d, J = 10.6 Hz, 1H), 4.65 (d, J = 11.6 Hz, 1H), 4.61 – 4.58 (m, 2H), 4.54 – 4.48 (m, 4H), 4.46 – 4.43 (m, 2H), 4.40 – 4.36 (m, 2H), 3.79 – 3.70 (m, 5H), 3.69 – 4.65 (m, 1H), 3.61 – 3.57 (m, 2H), 3.52 (dd, J = 9.5, 3.5 Hz, 1H), 3.47 (t, J = 8.5 Hz, 1H), 3.42 – 3.41 (m, 1H), 3.31 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.9, 138.8, 138.77, 138.4, 138.4, 138.2, 138.1, 128.5, 128.5, 128.3, 128.3, 128.2, 128.1, 128.0, 128.0, 127.8, 127.7, 127.7, 127.5, 127.4, 102.7, 97.9, 85.2, 83.4, 81.4, 78.4, 77.7, 76.2, 75.9, 75.2, 75.1, 74.9, 74.8, 73.7, 73.5, 69.7, 69.1, 68.8, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[15]

α -isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 6.91 (m, 35H), 5.59 (d, *J* = 3.5 Hz, 1H), 4.94 (d, *J* = 11.5 Hz, 1H), 4.90 (d, *J* = 10.9 Hz, 1H), 4.83 – 4.79 (m, 2H), 4.70 – 4.65 (m, 2H), 4.63 – 4.56 (m, 5H), 4.52 (d, *J* = 11.4 Hz, 1H), 4.46 (d, *J* = 3.2 Hz, 1H), 4.43 (d, *J* = 4.3 Hz, 1H), 4.40 – 4.29 (m, 3H), 4.25 (t, *J* = 9.0 Hz, 1H), 4.05 (t, *J* = 9.4 Hz, 1H), 3.80 – 3.74 (m, 2H), 3.73 – 3.64 (m, 3H), 3.63 – 3.48 (m, 6H), 3.31 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.9, 138.5, 138.2, 138.1, 138.1, 128.9, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.4, 127.1, 97.7, 97.5, 82.4, 79.9, 79.0, 78.8, 78.3, 75.6, 75.0, 73.7, 73.7, 73.6, 73.6, 73.4, 70.4, 69.7, 68.7, 68.6, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[15]

Methyl 3-*O*-benzyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl)-(1 \rightarrow 2)-4,6-*O*-benzylidene- α -D-glucopyranoside 26

A solution of donor 1 (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to -15 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.1246 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF that had been pre-cooled to -15 °C. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **15** (0.0496 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -15 °C with sodium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 24 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (13% ethyl acetate in hexane) to afford disaccharide **26** as a single β -isomer (0.0535 g, 0.060 mmol, 45% yield) when **4h** was used as the promoter or (0.0499 g, 0.056 mmol, 42% yield) when **4i** was used as the promoter.

¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.05 (m, 30H), 5.56 (s, 1H), 5.04 (d, *J* = 11.4 Hz, 1H), 4.96 (d, *J* = 3.6 Hz, 1H), 4.92 (d, *J* = 10.9 Hz, 1H), 4.83 – 4.74 (m, 5H), 4.65 (d, *J* = 10.8 Hz, 1H), 4.57 (d, *J* = 12.1 Hz, 1H), 4.53 – 4.49 (m, 2H), 4.32 (dd, *J* = 10.2, 4.8 Hz, 1H), 4.10 (t, *J* = 9.3 Hz, 1H), 3.90 (td, *J* = 10.1, 5.0 Hz, 1H), 3.85 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.76 (t, *J* = 10.3 Hz, 1H), 3.67 – 3.50 (m, 6H), 3.45 – 3.38 (m, 4H).
¹³C NMR (125 MHz, CDCl₃) δ 138.8, 138.6, 138.2, 138.2, 137.6, 129.1, 128.5, 128.5, 128.4, 128.3, 128.3, 128.3, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 126.2, 104.5, 101.5, 100.6, 84.9, 82.9, 82.1, 78.6, 78.3, 77.9, 75.8, 75.2, 75.2, 74.8, 74.7, 73.6, 69.4, 69.1, 62.4. The ¹H NMR spectra coincide with the previous report.^[16]

Methyl 2,3,6-*O*-tribenzyl-4-*O*-(2,3,4,6-*O*-tetrabenzyl-β/α-D-glucopyranosyl)-α-D-glucopyranoside 27

A solution of donor 1 (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to -30 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv., -30 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.1246 g, 0.4 mmol, 3 equiv., -40 °C) in 2.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **16** (0.0617 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -30 °C or -40 °C with potassium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 23 hours, the reaction was quenched with 0.1 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide **27** (0.0499 g, 0.051 mmol, 38% yield, β : α 16:1) when **4h** was used as the promoter or (0.0525 g, 0.053 mmol, 40% yield, β : α 6:1) when **4i** was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **27** β and α products.

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 – 7.01 (m, 41H), 5.69 (d, *J* = 3.6 Hz, 0.2H), 5.09 (d, *J* = 11.3 Hz, 1H), 5.03 (d, *J* = 11.6 Hz, 0.2H), 4.89 – 4.85 (m, 1H), 4.83 – 4.72 (m, 7H), 4.70 (d, *J* = 12.1 Hz, 0.2H), 4.63 – 4.51 (m, 6H), 4.49 (d, *J* = 6.6 Hz, 1H), 4.46 – 4.34 (m, 5H), 4.27 (d, *J* = 12.1 Hz, 0.2H), 4.09 (d, *J* = 8.9 Hz, 0.2H), 4.06 (d, *J* = 4.4 Hz, 0.2H), 4.03 (d, *J* = 8.9 Hz, 0.2H), 3.96 (t, *J* = 9.5 Hz, 1H), 3.90 (t, *J* = 9.3 Hz, 0.2H), 3.87 – 3.80 (m, 2.6H), 3.71 (d, *J* = 10.8 Hz, 1H), 3.66 (d, *J* = 3.5 Hz, 0.2H), 3.64 (d, *J* = 3.6 Hz, 0.2H), 3.62 (d, *J* = 2.7 Hz, 0.4H), 3.59 (d, *J* = 9.3 Hz, 2H), 3.55 (d, *J* = 4.6 Hz, 0.5H), 3.51 – 3.44 (m, 4H), 3.37 – 3.36 (m, 5H), 3.30 – 3.27 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ 139.8, 138.8, 138.8, 138.7, 138.7, 138.6, 138.5, 138.4, 138.0, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.1, 127.9, 127.9, 127.9, 127.8, 127.7, 127.7, 127.4, 127.2, 126.9, 102.6, 98.6, 97.9, 96.8, 85.0, 83.0, 82.1, 80.6, 80.4, 79.7, 79.0, 78.2, 77.8, 75.7, 75.5, 75.4, 75.1, 74.9, 73.8, 73.6, 73.5, 73.5, 73.4, 73.3, 70.1, 69.7, 69.2, 68.4, 68.3, 68.1, 55.4, 55.30. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[10, 17]

Methyl 2,3,4,6-tetra-*O*-benzyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 6)$ -2,3,4-tri-*O*-benzyl- α -D-glucopyranoside 28

A solution of donor 10 (0.1944 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0464 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 4 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (19% ethyl acetate in hexane) to afford trisaccharide 28 as a single β -isomer (0.1002 g, 0.071 mmol, 71% yield) when 4h was used as the promoter or (0.1281 g, 0.090 mmol, 90% yield) when 4i was used as the promoter.

¹**H** NMR (500 MHz, CDCl₃) δ 7.37 – 7.03 (m, 50H), 5.01 (d, J = 10.6 Hz, 1H), 4.97 – 4.95 (m, 2H), 4.90 (d, J = 11.0 Hz, 1H), 4.83 – 4.73 (m, 5H), 4.71 – 4.68 (m, 5H), 4.60 (d, J = 3.5 Hz, 1H), 4.57 – 4.46 (m, 3H), 4.44 (d, J = 7.7 Hz, 1H), 4.38 – 4.28 (m, 3H), 4.22 (d, J = 11.8 Hz, 1H), 4.14 (d, J = 9.1 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 4.93 – 4.89 (m, 2H), 3.83 – 3.68 (m, 4H), 3.66 (dd, J = 11.0, 4.8 Hz, 1H), 3.55 – 3.48 (m, 4H), 3.46 – 3.37 (m, 2H), 3.37 – 3.28 (m, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 139.1, 138.9, 138.8, 138.7, 138.6, 138.5, 138.2, 138.2, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.9, 127.9, 127.8, 127.7, 127.7, 127.6, 127.5, 127.5, 127.4, 127.4, 127.3, 127.1, 104.0, 102.8, 98.1, 83.2, 82.6, 82.0, 81.6, 80.0, 79.9, 78.0, 76.7, 75.7, 75.4, 75.4, 75.3, 75.0, 74.8, 74.7, 73.7, 73.4, 73.4, 73.1, 72.6, 70.0, 68.6, 68.4, 68.1, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[18]

Methyl 2,3,4-*O*-tribenzyl-6-*O*-(2,3,4,6-*O*-tetrabenzyl-β-D-galactopyranosyl)-α-D-glucopyranoside 31

A solution of donor 29 (0.1080 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0309 g, 0.0667 mmol, 1 equiv.) in 0.7 mL of THF at -30 °C with sodium hexamethyldisilazane (0.067 mL, 0.0667 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.3 mL of THF, and this rinse was then added to the glycosylation reaction. After 8 hours, the reaction was quenched with 0.05 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide **31** (0.0408 g, 0.041 mmol, 62% yield, β : α 12:1) when **4h** was used as the promoter or (0.0562 g, 0.057 mmol, 85% yield, β : α 10:1) when 4i was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **31**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.47 – 7.07 (m, 35H), 4.97 – 4.89 (m, 3H), 4.77 – 4.70 (m, 6H), 4.64 (d, J = 12.1 Hz, 1H), 4.59 – 4.53 (m, 2H), 4.50 (d, J = 11.1 Hz, 1H), 4.45 – 4.37 (m, 2H), 4.30 (d, J = 7.7 Hz, 1H), 4.14 (dd, J = 10.7, 1.4 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 3.89 (d, J = 2.5 Hz, 1H), 3.87 – 3.79 (m, 2H), 3.64 – 3.58 (m, 2H), 3.56 (dd, J = 9.1, 5.4 Hz, 1H), 3.52 – 3.44 (m, 4H), 3.29 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.9, 138.9, 138.6, 138.5, 138.5, 138.3, 138.0, 131.4, 128.6, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 104.4, 98.0, 82.4, 82.2, 80.0, 79.4, 78.3, 75.8, 75.3, 74.9, 74.7, 73.6,

73.5, 73.5, 73.0, 70.1, 68.8, 68.7, 55.3. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[10]

α-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.15 (m, 35H), 4.99 (d, *J* = 3.6 Hz, 1H), 4.96– 4.92 (m, 2H), 4.84 (d, *J* = 11.0 Hz, 1H), 4.80 (d, *J* = 4.5 Hz, 1H), 4.78 (d, *J* = 5.6 Hz, 1H), 4.75 – 4.66 (m, 4H), 4.60 – 4.55 (m, 2H), 4.54 (d, *J* = 4.1 Hz, 1H), 4.52 (d, *J* = 3.5 Hz, 1H), 4.43 (d, *J* = 11.8 Hz, 1H), 4.36 (d, *J* = 11.8 Hz, 1H), 4.02 (dd, *J* = 3.6, 3.6 Hz, 1H), 3.98 – 3.94 (m, 2H), 3.92 – 3.88 (m, 2H), 3.80 – 3.71 (m, 3H), 3.58 (t, *J* = 9.2 Hz, 1H), 3.53 – 3.46 (m, 2H), 3.40 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.29 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 139.0, 138.9, 138.9, 138.6, 138.4, 138.2, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.1, 128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 127.5, 98.1, 98.1, 82.2, 80.4, 78.4, 78.2, 76.7, 75.8, 75.3, 75.1, 74.9, 73.5, 73.5, 73.0, 72.7, 70.5, 69.6, 69.1, 66.6, 55.2, 29.9. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[12]

6-*O*-(2,3,4,6-*O*-tetrabenzyl-β-D-galactopyranosyl)-1,2;3,4-*O*-diisopropylidene-α-D-galactopyranoside 32

A solution of donor 29 (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to -15 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv., -15 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1246 g, 0.4 mmol, 3 equiv., -40 °C) in 2.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 11 (0.0347 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -15 °C or -40 °C with sodium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 5 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide **32** as a single β isomer (0.0604 g, 0.077 mmol, 58% yield) when **4h** was used as the promoter or (0.0957 g, 0.122 mmol, 92% yield) when **4i** was used as the promoter.

¹**H** NMR (500 MHz, CDCl₃) δ 7.52 – 7.18 (m, 20H), 5.56 (d, *J* = 5.0 Hz, 1H), 5.05 (d, *J* = 11.0 Hz, 1H), 4.92 (d, *J* = 11.6 Hz, 1H), 4.78 (d, *J* = 11.9 Hz, 1H), 4.74 – 4.69 (m, 2H), 4.60 (d, *J* = 11.6 Hz, 1H), 4.57 (dd, *J* = 7.9, 2.3 Hz, 1H), 4.45 – 4.36 (m, 3H), 4.30 (dd, *J* = 5.0, 2.4 Hz, 1H), 4.21 (dd, *J* = 7.9, 1.7 Hz, 1H), 4.12 (dd, *J* = 10.6, 3.5 Hz, 1H), 4.08 – 4.06 (m, 1H), 3.88 (d, *J* = 2.7 Hz, 1H), 3.82 (dd, *J* = 9.7, 7.7 Hz, 1H), 3.68 (dd, *J* = 10.6, 7.5 Hz, 1H), 3.59 – 3.54 (m, 2H), 3.53 – 3.47 (m, 2H), 1.49 (s, 3H), 1.43 (s, 3H), 1.30 (d, *J* = 1.3 Hz, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 139.1, 138.8, 138.7, 138.0, 128.7, 128.5, 128.5, 128.4, 128.2, 128.2, 128.0, 127.9, 127.6, 127.6, 127.4, 109.4, 108.7, 104.8, 96.5, 82.0, 79.2, 74.8, 74.6, 73.6, 73.6, 73.4, 73.2, 71.6, 70.9, 70.6, 69.7, 68.7, 67.5, 26.1, 26.1, 25.2, 24.5. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[10]

Methyl 2-*O*-benzyl-3-*O*-(2,3,4,6-tetra-*O*-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 3)-4,6-*O*-benzylidene- α -D-glucopyranoside 33

A solution of donor 29 (0.1080 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF was cooled to -30 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 3 equiv., -30 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 3 equiv., -40 °C) in 1.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulforvl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 12 (0.0248 g, 0.0667 mmol, 1 equiv.) in 0.7 mL of THF at -30 °C or -40 °C with potassium hexamethyldisilazane (0.067 mL, 0.0667 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.3 mL of THF, and this rinse was then added to the glycosylation reaction. The reaction was quenched with 0.05 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column

chromatography (15% ethyl acetate in hexane) to afford disaccharide **33** (4 hrs, 0.0435 g, 0.049 mmol, 73% yield, β : α 11:1) when **4h** was used as the promoter or (19 hrs, 0.0541 g, 0.061 mmol, 91% yield, β : α 5:1) when **4i** was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **33**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.54 – 7.04 (m, 30H), 5.50 (s, 1H), 5.03 (d, *J* = 11.0 Hz, 1H), 4.93 (d, *J* = 11.6 Hz, 1H), 4.80 – 4.74 (m, 3H), 4.71 – 4.66 (m, 2H), 4.60 (d, *J* = 11.6 Hz, 1H), 4.51 (d, *J* = 12.1 Hz, 1H), 4.44 (d, *J* = 3.8 Hz, 1H), 4.35 – 4.28 (m, 2H), 4.23 (d, *J* = 11.6 Hz, 1H), 4.19 (dd, *J* = 10.2, 4.6 Hz, 1H), 3.87 – 3.83 (m, 2H), 3.79 (td, *J* = 10.0, 4.6 Hz, 1H), 3.69 – 3.65 (m, 2H), 3.64 – 3.56 (m, 2H), 3.47 (dd, *J* = 9.7, 2.9 Hz, 1H), 3.39 (dd, *J* = 8.8, 5.4 Hz, 1H), 3.34 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 193.1, 139.2, 139.1, 138.8, 138.5, 138.1, 137.7, 137.4, 128.9, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5, 127.4, 126.3, 103.2, 101.2, 99.2, 82.8, 80.8, 80.3, 79.8, 77.0, 75.2, 74.6, 74.2, 73.6, 73.0, 72.9, 69.2, 68.7, 62.2, 55.4. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[19]

α-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 6.94 (m, 30H), 5.61 (d, *J* = 3.5 Hz, 1H), 5.43 (s, 1H), 4.88 (d, *J* = 11.2 Hz, 1H), 4.85 (d, *J* = 11.8 Hz, 1H), 4.75 – 4.67 (m, 2H), 4.60 – 4.50 (m, 4H), 4.44 (d, *J* = 12.4 Hz, 1H), 4.40 – 4.30 (m, 4H), 4.21 (dd, *J* = 10.2, 4.8 Hz, 1H), 3.99 (dd, *J* = 9.8, 3.5 Hz, 1H), 3.96 – 3.90 (m, 2H), 3.83 (td, *J* = 9.9, 4.7 Hz, 1H), 3.73 (t, *J* = 9.4 Hz, 1H), 3.67 (t, *J* = 10.3 Hz, 1H), 3.63 – 3.56 (m, 2H), 3.54 (t, *J* = 8.6 Hz, 1H), 3.33 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.2, 139.1, 138.7, 138.5, 138.1, 137.7, 128.9, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.2, 128.0, 127.9, 127.8, 127.6, 127.6, 127.5, 127.4, 126.3, 103.2, 101.2, 99.2, 82.8, 80.8, 80.4, 79.8, 75.2, 74.6, 74.1, 73.7, 73.6, 73.0, 72.9, 69.2, 68.7, 62.2, 55.5. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[16a, 19]

Methyl-O-(2,3,4,6-tetra-O-benzyl- β/α -D-galactopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- α -D-glucopyranoside 34

A solution of donor **29** (0.2160 g, 0.4 mmol, 3 equiv.) in 2.0 mL of THF was cooled to -30 °C or -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask

containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0884 g, 0.4 mmol, 3 equiv., -30 °C) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1246 g, 0.4 mmol, 3 equiv., -40 °C) in 1.0 mL of THF that had been pre-cooled to corresponding temperature. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 16 (0.0618 g, 0.133 mmol, 1 equiv.) in 1.4 mL of THF at -30 °C or -40 °C with potassium hexamethyldisilazane (0.133 mL, 0.133 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.6 mL of THF, and this rinse was then added to the glycosylation reaction. After 20 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide 34 (0.0879 g, 0.089 mmol, 67% yield, β : α 6:1) when **4h** was used as the promoter or (0.0932 g, 0.094 mmol, 71% yield, β : α 5:1) when 4i was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **34**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

The procedure below is the glycosylation promoted by 4-bromobenzenesulfonyl chloride 4g and disaccharide 34 was generated in 51% yield, β : α 11:1.

A solution of donor **29** (0.1621 g, 0.3 mmol, 4 equiv.) in 1.5 mL of THF was cooled to -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.3 mL, 0.3 mmol, 4 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 4-bromobenzenesulfonyl chloride **4g** (0.0762g, 0.3 mmol, 4 equiv.) in 1.5 mL of THF that had been pre-cooled to -40 °C. The flask that contained the donor was then rinsed with an additional 0.7 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **16** (0.0348 g, 0.075 mmol, 1 equiv.) in 0.8 mL of THF at -40 °C with potassium hexamethyldisilazane (0.075 mL, 0.075 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.4 mL of THF, and this rinse was then added to the glycosylation reaction. After 46 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH4Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄),

filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (15% ethyl acetate in hexane) to afford disaccharide **34** (0.0374 g, 0.038 mmol, 51% yield, β : α 11:1). The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **34**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.02 (m, 35H), 5.03 (d, *J* = 10.6 Hz, 1H), 4.97 (d, *J* = 11.4 Hz, 1H), 4.87 – 4.60 (m, 7H), 4.56 – 4.51 (m, 3H), 4.39 – 4.27 (m, 3H), 4.24 (d, *J* = 11.8 Hz, 1H), 3.92 – 3.88 (m, 2H), 3.85 – 3.78 (m, 2H), 3.74 (dd, *J* = 9.6, 7.8 Hz, 1H), 3.60 (d, *J* = 9.6 Hz, 1H), 3.56 – 3.41 (m, 3H), 3.41 – 3.27 (m, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 139.5, 139.1, 139.0, 138.6, 138.6, 138.3, 138.2, 128.4, 128.4, 128.3, 128.2, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.4, 127.4, 127.0, 102.8, 98.5, 82.6, 80.3, 80.1, 79.0, 76.7, 75.5, 75.3, 74.7, 73.8, 73.7, 73.5, 73.2, 73.1, 72.6, 70.1, 68.3, 68.1, 55.3. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[17]

a-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.02 (m, 35H), 5.75 (d, *J* = 3.8 Hz, 1H), 4.97 (d, *J* = 11.5 Hz, 1H), 4.86 (d, *J* = 11.4 Hz, 1H), 4.81 (d, *J* = 11.5 Hz, 1H), 4.72 – 4.49 (m, 9H), 4.42 (d, *J* = 12.3 Hz, 1H), 4.30 (d, *J* = 11.6 Hz, 1H), 4.23 (d, *J* = 11.6 Hz, 1H), 4.06 (t, *J* = 9.1 Hz, 1H), 4.01 – 3.91 (m, 3H), 3.88 – 3.77 (m, 3H), 3.70 (dd, *J* = 10.6, 4.6 Hz, 1H), 3.64 (dd, *J* = 10.6, 2.2 Hz, 1H), 3.54 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.48 (t, *J* = 8.2 Hz, 1H), 3.43 (dd, *J* = 8.8, 5.6 Hz, 1H), 3.37 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.7, 138.4, 138.3, 138.0, 128.4, 128.3, 128.3, 128.3, 128.2, 128.2, 128.2, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.4, 127.4, 127.0, 126.8, 97.8, 97.5, 82.0, 80.2, 79.2, 75.7, 74.8, 74.7, 74.3, 73.8, 73.4, 73.4, 73.1, 72.9, 72.8, 69.9, 69.5, 69.5, 68.7, 55.1. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[17]

Methyl

4-*O*-(2',3'-di-*O*-benzyl-4',6'-*O*-benzylidene-β-D-galactopyranosyl)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 35

A solution of donor **30** (0.0976 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0309 g, 0.0667 mmol, 1 equiv.) in 0.7 mL of THF at -30 °C with sodium hexamethyldisilazane (0.067 mL, 0.0667 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.3 mL of THF, and this rinse was then added to the glycosylation reaction. The reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (25% ethyl acetate in hexane) to afford disaccharide **35** (24 hrs, 0.0262 g, 0.029 mmol, 44% yield, β : α 9.5:1) when **4h** was used as the promoter or (7 hrs, 0.0382 g, 0.043 mmol, 64% yield, β : α 6:1) when 4i was used as the promoter. The selectivity was determined by ¹H NMR integration of the anomeric signals of purified **35**. The β and α products did not separate significantly on silica gel, and care was taken to isolate the entire chromatographic band.

β-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.01 (m, 30H), 5.47 (s, 1H), 4.97 (d, *J* = 10.9 Hz, 1H), 4.92 (d, *J* = 10.8 Hz, 1H), 4.81 – 4.71 (m, 6H), 4.64 (d, *J* = 12.1 Hz, 1H), 4.61 (d, *J* = 3.4 Hz, 1H), 4.52 (d, *J* = 11.2 Hz, 1H), 4.30 (d, *J* = 7.8 Hz, 1H), 4.26 (d, *J* = 12.2 Hz, 1H), 4.18 (d, *J* = 10.9 Hz, 1H), 4.07 (d, *J* = 3.4 Hz, 1H), 4.00 – 3.96 (m, 2H), 3.90 – 3.82 (m, 2H), 3.68 (dd, *J* = 11.1, 5.0 Hz, 1H), 3.54 – 3.50 (m, 3H), 3.34 (s, 3H), 3.21 (s, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 139.1, 139.0, 138.7, 138.6, 138.3, 138.1, 129.0, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.8, 127.6, 127.5, 126.6, 104.4, 101.4, 98.2, 82.2, 80.0, 79.5, 78.3, 78.3, 75.8, 75.4, 75.0, 73.9, 73.5, 72.0, 70.1, 69.3, 68.9, 66.6, 55.4. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[20]

α-isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 – 7.15 (m, 30H), 5.44 (s, 1H), 5.04 (d, *J* = 3.4 Hz, 1H), 4.97 (d, *J* = 10.8 Hz, 1H), 4.88 (d, *J* = 11.4 Hz, 1H), 4.81 – 4.64 (m, 6H), 4.58 (d,

J = 12.1 Hz, 1H, 4.55 - 4.49 (m, 2H), 4.12 - 4.08 (m, 2H), 4.05 (dd, J = 10.1, 3.4 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 3.92 (dd, J = 10.1, 3.4 Hz, 1H), 3.86 (d, J = 11.1 Hz, 1H), 3.80 - 3.74 (m, 1H), 3.73 (d, J = 5.0 Hz, 1H), 3.69 (d, J = 11.0 Hz, 1H), 3.56 (t, J = 9.3 Hz, 1H), 3.48 (s, 1H), 3.43 (dd, J = 9.6, 3.6 Hz, 1H), 3.28 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 139.1, 139.0, 138.9, 138.7, 138.4, 138.1, 129.0, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.7, 127.7, 127.6, 126.5, 101.2, 98.6, 98.1, 82.3, 80.3, 78.2, 75.8, 75.2, 75.0, 75.0, 73.5, 73.0, 72.0, 70.3, 69.6, 66.7, 62.8, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[20]

Methyl-(2,3,4-tri-*O*-benzyl-β-L-fucopyranosyl)-(1→6)-2,3,4-tri-*O*-benzyl-α-D-glucopyranoside 37

A solution of donor 36 (0.0868 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 3 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 3 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0623 g, 0.2 mmol, 3 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mLof THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 2 (0.0309 g, 0.0667 mmol, 1 equiv.) in 0.7 mL of THF at -30 °C with sodium hexamethyldisilazane (0.067 mL, 0.0667 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.3 mL of THF, and this rinse was then added to the glycosylation reaction. After 8 hours, the reaction was quenched with 0.05 mL of saturated, aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (18% ethyl acetate in hexane) to afford disaccharide 37 as a single β -isomer (0.0262 g, 0.030 mmol, 45% yield) when 4h was used as the promoter or (0.0321 g, 0.036 mmol, 54% yield) when 4i was used as the promoter. (With the promoter 4-bromobenzenesulfonyl chloride 4g, the disaccharide **37** was generated as a single β -isomer in 60% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.14 (m, 30H), 4.99 – 4.95 (m, 3H), 4.90 – 4.61 (m, 9H), 4.61 – 4.52 (m, 2H), 4.40 (d, *J* = 7.5 Hz, 1H), 4.21 – 4.12 (m, 1H), 3.97 (t, *J*

= 9.1 Hz, 1H), 3.84 – 3.70 (m, 3H), 3.66 (t, *J* = 9.3 Hz, 1H), 3.56 – 3.46 (m, 2H), 3.46 – 3.39 (m, 2H), 3.32 (s, 3H), 1.16 (d, *J* = 6.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 139.0, 138.8, 138.8, 138.5, 138.3, 128.4, 128.4, 128.4, 128.4, 128.3, 128.2, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 127.5, 127.5, 127.4, 103.8, 98.1, 82.5, 82.0, 80.3, 79.5, 77.8, 76.7, 75.7, 75.1, 75.1, 74.6, 73.5, 73.2, 70.4, 70.1, 67.5, 55.1, 16.9. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[21]

Methyl-(2,3,4-tri-*O*-benzyl-β/α-L-fucopyranosyl)-(1→3)-2-*O*-benzyl-4,6-*O*-benzylidine-α-D-glucopyranoside 38

A solution of donor 36 (0.1737 g, 0.4mmol, 4 equiv.) in 2.0 mL of THF was cooled to -40 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.4 mL, 0.4 mmol, 4 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 4-fluorobenzenesulfonyl chloride 4m (0.0776g, 0.4 mmoL) in 2.0 mL of THF that had been pre-cooled to -40 °C. The flask that contained the donor was then rinsed with an additional 1.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -40 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 12 (0.0372 g, 0.1 mmol, 1 equiv.) in 0.8 mL of THF at -40 °C with potassium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 72 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 20 mL). The combined organic phase was washed with brine (40 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (17% ethyl acetate in hexane) to afford disaccharide **38** (34% yield, β : α 11:1). The selectivity was determined by crude ¹H NMR analysis.

This procedure was followed when other sulfonates were used as the promoters.

β-isomer

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 – 7.06 (m, 25H), 5.28 (s, 1H), 5.01 (d, J = 11.7 Hz, 1H), 4.95 – 4.89 (m, 2H), 4.84 (d, J = 7.7 Hz, 1H), 4.81 – 4.68 (m, 4H), 4.67 – 4.62 (m, 2H), 4.39 (t, J = 9.1 Hz, 1H), 4.24 (dd, J = 10.2, 4.8 Hz, 1H), 3.82 – 3.76 (m, 2H),

3.61 (t, *J* = 10.3 Hz, 1H), 3.58 – 3.42 (m, 4H), 3.41 – 3.32 (m, 4H), 1.18 (d, *J* = 6.3 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.5, 139.0, 138.8, 138.6, 137.4, 128.6, 128.3, 128.3, 128.1, 128.0, 128.0, 127.7, 127.6, 127.6, 127.5, 127.4, 127.1, 126.1, 103.3, 101.1, 99.5, 82.5, 82.3, 80.3, 78.1, 77.2, 76.0, 74.8, 74.7, 73.7, 73.0, 70.3, 69.1, 61.8, 55.3, 17.0. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[21]

α-isomer

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 – 7.00 (m, 25H), 5.51 (d, J = 3.7 Hz, 1H), 5.46 (s, 1H), 4.88 – 4.81 (m, 2H), 4.75 – 4.61 (m, 4H), 4.61 – 4.52 (m, 2H), 4.49 (d, J = 3.6 Hz, 1H), 4.30 (t, J = 9.4 Hz, 1H), 4.26 – 4.17 (m, 2H), 4.03 (dd, J = 10.2, 3.7 Hz, 1H), 3.96 (dd, J = 10.2, 2.7 Hz, 1H), 3.83 (td, J = 10.0, 4.7 Hz, 1H), 3.73 – 3.63 (m, 2H), 3.60 (t, J = 9.5 Hz, 1H), 3.51 – 3.50 (m, 1H), 3.33 (s, 3H), 0.80 (d, J = 6.4 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 139.0, 138.8, 138.5, 138.3, 137.5, 129.1, 128.4, 128.3, 128.3, 128.2, 128.1, 127.9, 127.7, 127.6, 127.4, 127.3, 127.3, 126.2, 101.8, 98.8, 97.5, 81.1, 80.0, 79.8, 18.0, 75.9, 74.8, 73.2, 72.9, 72.8, 72.5, 69.2, 66.0, 62.4, 55.3, 16.3. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[21]

Methyl (2,3,4,6-tetra-*O*-benzyl-β-D-glucopyranosyl)-(1→6)-2,3,4-tri-*O*-methyl-α-D-glucopyranoside 40

A solution of donor 1 (0.1080 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 2 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of either *p*-nitrobenzenesulfonyl chloride **4h** (0.0442 g, 0.2 mmol, 2 equiv.) or 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.0623 g, 0.2 mmol, 2 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **39** (0.0236 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF at -30 °C with sodium hexamethyldisilazane (0.1 mL, 0.1 mmol, 1 equiv.) and stirring for 10 minutes.). The flask that had contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 3 hours, the reaction was quenched with 0.05 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The crude product was purified by silica gel flash column chromatography (25% ethyl acetate in hexane) to afford disaccharide **40** as a single β -isomer (0.0682 g, 0.090 mmol, 90% yield) when **4h** was used as the promoter or (0.0691 g, 0.091 mmol, 91% yield) when **4i** was used as the promoter. The selectivity was determined by crude ¹H NMR analysis.

¹**H** NMR (500 MHz, CDCl3) δ 7.52 – 7.03 (m, 21H), 5.10 (d, *J* = 11.0 Hz, 1H), 4.99 (d, *J* = 10.9 Hz, 1H), 4.91–4.82 (m, 4H), 4.70–4.60 (m, 3H), 4.55 (d, *J* = 7.8 Hz, 1H), 4.32 – 4.24 (m, 1H), 3.89 – 3.71 (m, 5H), 3.71 – 3.64 (m, 4H), 3.64 – 3.51 (m, 9H), 3.43 (s, 3H), 3.28 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.22 (t, *J* = 9.2 Hz, 1H).

¹³C NMR (125 MHz, CDCl3) δ 138.7, 138.5, 138.3, 138.2, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 104.0, 97.4, 84.9, 83.5, 82.3, 81.9, 79.9, 78.0, 75.8, 75.2, 75.1, 74.9, 73.5, 69.9, 69.1, 68.9, 60.8, 60.4, 59.0, 55.2. The ¹H NMR and ¹³C NMR spectra coincide with the previous report.^[22]

4.2 Experimental data for variable temperature NMR study

p-nitrobenzenesulfonyl 2,3,4,6-tetra-O-benzyl-a-D-glucopyranoside

A solution of donor 1 (0.0540 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF-d₈ was cooled to -30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.1 mL, 0.1 mmol, 1 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of *p*-nitrobenzenesulfonyl chloride **4h** (0.0221 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF-d₈ that had been pre-cooled to -30 °C. The solution maintained at -30 °C for 2 hrs, transferred by syringe to a pre-cooled 5 mm Low Pressure/Vacuum Valve NMR tube, and promptly inserted into the NMR instrument probe pre-cooled to -30 °C for ¹H NMR, ¹³C NMR, and 2D-Gradient HSQC data acquisition in Figure S1. The temperature was maintained for 1 hour, then warmed by 15 degrees every 15 minutes. At each 15 mins interval, the ¹H NMR spectrum was recorded.

¹**H NMR** (500 MHz, THF-d₈) δ 8.22 (d, *J* = 8.6 Hz, 2H), 8.15 (d, *J* = 8.6 Hz, 2H), 7.29 – 7.11 (m, 20H), 6.18 (d, *J* = 3.2 Hz, 1H), 4.87 (d, *J* = 11.1 Hz, 1H), 4.79 – 4.74 (m, 2H), 4.63 – 4.62 (m, 2H), 4.49 (d, *J* = 11.0 Hz, 1H), 4.37 – 4.31 (m, 2H), 3.79 (t, *J* = 9.3 Hz, 1H), 3.70 (dd, *J* = 9.6, 3.1 Hz, 1H), 3.64 (t, *J* = 9.5 Hz, 1H), 3.53 (s, 1H), 3.50 – 3.49 (m, 1H), 3.10 (d, *J* = 10.3 Hz, 1H).

¹³C NMR (125 MHz, THF-d₈) δ 150.4, 143.0, 138.8, 138.3, 138.1, 137.8, 129.1, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.5, 127.4, 127.4, 127.4, 127.3, 127.3, 127.3, 127.2, 127.1, 127.1, 124.1, 100.0, 80.8, 78.1, 76.0, 75.0, 74.7, 73.0, 72.4, 72.3.

Figure S1. VT-NMR mechanistic studies. (a) 2D Gradient HSQC NMR spectrum of α -glucosyl nosylate at -30 °C. (b) ¹H NMR spectra to evaluate the stability of the α - glucosyl nosylate in THF-d₈ at: (I) 25 °C, (II) 0 °C, (III) -15 °C, (IV) -30 °C.

 $3,5-bis (trifluoromethyl) benzenesulfonyl-2,3,4,6-tetra-\textit{O}-benzyl-\alpha-D-glucopyranoside$

A solution of donor 1 (0.0540 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF-d₈ was cooled to -60 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.1 mL, 0.1 mmol, 1 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.0312 g, 0.1 mmol, 1 equiv.) in 0.5 mL of THF-d₈ that had been pre-cooled to -60 °C. The solution maintained at -60 °C for 2 hrs, transferred by syringe to a pre-cooled 5 mm Low Pressure/Vacuum Valve NMR tube, and promptly inserted into the NMR instrument probe pre-cooled to -60 °C for ¹H NMR, ¹³C NMR, and 2D-Gradient HSQC data acquisition in Figure S2. The temperature was maintained for 30 minutes, then warmed by 20 degrees every 20 minutes. At each 15 mins interval, the ¹H NMR spectrum was recorded.

¹**H NMR** (500 MHz, THF-d₈) δ 8.74 (s, 2H), 8.53 (s, 1H), 7.34 – 7.08 (m, 20H), 6.28 (d, J = 3.3 Hz, 1H), 4.90 (d, J = 11.2 Hz, 1H), 4.81 – 4.75 (m, 2H), 4.70 (d, J = 11.2 Hz, 1H), 4.59 (d, J = 11.3 Hz, 1H), 4.49 (d, J = 10.8 Hz, 1H), 4.33 – 4.36 (m, 2H), 3.82 (t, J = 9.4 Hz, 1H), 3.77 – 3.66 (m, 3H), 3.50 – 3.66 (m, 1H), 3.00 (d, J = 10.5 Hz, 1H). ¹³**C NMR** (125 MHz, THF-d₈) δ 140.4, 138.9, 138.5, 138.1, 137.8, 132.1, 131.9, 129.0, 128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 127.6, 127.6, 127.5, 127.5, 127.4, 127.4, 127.3, 127.3, 124.0, 121.8, 100.3, 80.6, 78.0, 75.8, 75.2, 74.8, 72.9, 72.4, 72.0.

Figure S2. VT-NMR mechanistic studies. (a) 2D Gradient HSQC NMR spectrum of α -glucosyl 3,5-bis(trifluoromethyl)-benzenesulfonate at -60 °C. (b) ¹H NMR spectra to evaluate the stability of the α -glucosyl 3,5-bis(trifluoromethyl)-benzenesulfonate in THF-d₈ at: (I) -60 °C, (II) -40 °C, (III) -20 °C, (IV) 0 °C, (V) 25 °C

S37

4.3 Activated sulfonate donor for elimination reaction test

A solution of donor **1** (0.1080 g, 0.2 mmol, 1 equiv.) in 1.0 mL of THF was cooled to - 30 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.2 mL, 0.2 mmol, 1 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride **4i** (0.0623 g, 0.2 mmol, 1 equiv.) in 1.0 mL of THF that had been pre-cooled to -30 °C. The flask that contained the donor was then rinsed with an additional 0.5 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -30 °C, it was treated with potassium *tert*-butoxide (0.0224g, 0.2 mmol, 1 equiv.). After 4 hrs. The reaction was quenched with 0.2 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 10 mL). The combined organic phase was washed with brine (20 mL) and then dried (Na₂SO₄). An aliquot of (1.0 mL) of this solution was removed for NMR and LCMS according to the literature.^[23]

(Potassium *tert*-butoxide was prepared by heating at 150–160°C/2mm for 1h to remove the *tert*-BuOH according to the literature method.^[24])

(a) ¹H NMR (500 MHz, CDCl₃)

Figure S3. (a) the ¹H NMR for the aliquot of reaction in CDCl₃; (b) the LCMS for the aliquot.

5. KIE Measurements

5.1¹³C KIE measurements

Procedure for the glycosylation of perbenzylated glucosyl donor **1** with permethylated acceptor **39**.

High conversion:

A solution of donor 1 (0.2701 g, 0.5 mmol, 1 equiv.) in 2.5 mL of THF was cooled to -60 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.5 mL, 0.5 mmol, 1 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1559 g, 0.5 mmol, 1 equiv.) in 2.5 mL of THF that had been pre-cooled to -60 °C. The flask that contained the donor was then rinsed with an additional 1.3 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -60 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **39** (0.2361 g, 1.0 mmol, 2 equiv.) in 4.0 mL of THF at -60 °C with sodium hexamethyldisilazane (1.0 mL, 1.0 mmol, 2 equiv.). and stirring for 10 minutes.). The flask that contained the acceptor was rinsed with 2.0 mL of THF, and this rinse was then added to the glycosylation reaction. After 6 hours, the reaction was quenched with 0.5 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (60 mL) and then dried (Na₂SO₄). Internal standard 1-bromo-2,4,6-tri-tert-butylbenzene was added to the crude sample. An aliquot of 0.4 mL was removed for NMR analysis. The rest of the crude product was purified by silica gel flash column chromatography (30% ethyl acetate in hexane) to afford disaccharide 40 exclusively as the β-isomer (0.3443 g, 0.454 mmol, 91% yield relative to donor 1). This reaction was conducted twice. The second time, the yield of this reaction was 90% relative to donor 1.

Partial conversion:

A solution of donor 1 (0.6483 g, 1.2 mmol, 4 equiv.) in 6.0 mL of THF was cooled to -60 °C and treated with sodium hexamethyldisilazane (1 M in THF, 1.2 mL, 1.2 mmol, 4 equiv.). After 10 minutes, this solution was transferred by syringe to a flask containing

the solution of 3,5-bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.3743 g, 1.2 mmol, 4 equiv.) in 6.0 mL of THF that had been pre-cooled to -60 °C. The flask that contained the donor was then rinsed with an additional 3.0 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -60 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **39** (0.0708 g, 0.3 mmol, 1 equiv.) in 1.5 mL of THF at -60 °C with sodium hexamethyldisilazane (0.3 mL, 0.3 mmol, 1 equiv.). and stirring for 10 minutes.). The flask that contained the acceptor was rinsed with 1.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 2 hours, the reaction was quenched with 1.2 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 20 mL). The combined organic phase was washed with brine (80 mL) and then dried (Na₂SO₄). Internal standard 1-bromo-2,4,6-tri-tert-butylbenzene was added to the crude sample. An aliquot of 1.0 mL was removed for NMR analysis. The rest of the crude product was purified by silica gel flash column chromatography (30% ethyl acetate in hexane) to afford disaccharide 40 exclusively as the β-isomer (0.2041 g, 0.269 mmol, 22% yield relative to donor 1). This reaction was conducted twice. The second time, the yield of this reaction was 23% relative to donor 1.

Note: spectra for ¹³C KIE studies were taken in 2.3:1 CDCl₃:C₆D₆ to avoid peak overlap at the C5 resonance of the donor. The samples for ¹³C KIE studies were prepared by dissolving 150 mg of **40** in 0.6 mL of 2.3:1 CDCl₃:C₆D₆ with 0.5mM of Cr(acac)₃ as a relaxation reagent.

Tables S6–S8 of Integrals for ¹³C KIE Measurements

sample name (raw integral)	C1	C2	C3	C4	C5	blocks*
sample 1 (full conversion 1)	11.2474	10.2324	10.3012	10.3829	10.1132	200
sample 2 (full conversion 2)	10.6913	9.7816	9.8166	9.9089	9.6774	174
sample 3 (partial conversion 1)	10.8754	10.1588	10.2488	10.325	10.109	199
sample 4 (partial conversion 2)	10.2786	9.6152	9.7069	9.7771	9.5636	200

Table S6.

* each block corresponds to 32 scans

Table S7.

sample name (standard deviation)	C1	C2	C3	C4	C5
sample 1 (full conversion 1)	0.2473	0.2308	0.2364	0.2253	0.2206
sample 2 (full conversion 2)	0.2600	0.2205	0.2349	0.2363	0.2330
sample 3 (partial conversion 1)	0.2532	0.2168	0.2492	0.2201	0.2603
sample 4 (partial conversion 2)	0.2710	0.2208	0.2013	0.2073	0.2002

Table S8.

ratios (¹³ C/ ¹² C)	C1	C2	C3	C4	C5
sample 1 (full conversion 1)	1.0919	0.9933	1.0000	1.0079	0.9817
sample 2 (full conversion 2)	1.0891	0.9964	1.0000	1.0094	0.9858
sample 3 (partial conversion 1)	1.0611	0.9912	1.0000	1.0074	0.9864
sample 4 (partial conversion 2)	1.0589	0.9906	1.0000	1.0072	0.9852

Table S9.

experimental KIEs	C1	C2	C4	C5
measurement 1	1.032(4)	1.004(4)	1.001(4)	0.997(4)
measurement 2	1.035(4)	1.005(4)	1.002(4)	0.998(4)

5.2 α-SDKIE measurements

To gain further insight into the mechanism of the glycosylation reactions, secondary H/D KIE measurements were conducted. The KIE was calculated according to:

 $KIE = \ln(1-F)/\ln[1-(FR_p/R_0)]$

where F is the fractional conversion of the α -sulfonate (yield of **40**), R₀ is the ratio of heavy to light isotopologues in starting material, and R_p is the ratio of heavy to light isotopologues in product. The quantity of heavy isotopologue was calculated by subtracting the NMR integral of the anomeric peak from that of a reference peak. (Two reference peaks were considered and their integrals were found to be within 0.5% of one another. The average of the two reference integrals was taken as the overall reference.)

R = [heavy]/[light]

R= [(integral of reference 1+ integral of reference 2)/2- integral of anomeric peak]/ integral of anomeric peak

Three independent α -SDKIE measurements were made. For each of the three pairs of spectra, R_0 was determined by integrating the spectrum of the full conversion sample,

while R_p was determined by integrating the spectrum of the partial conversion sample. This method ensures minimizes errors, since the same peaks and integration ranges are used for all measurements. To further improve consistency, the NMR samples were prepared with the same concentration.

The NMR spectra were recorded on a Bruker Avance III NMR spectrometer at 500 MHz for ¹H NMR. The relaxation delay was set to 60 s. Each ¹H spectrum was acquired with a 5.5 ppm sweep width and 4 scans. The NMR data was processed using MestReNova version 6.1. The baseline was corrected to remove the baseline distortions that are associated with ¹H NMR using the Whittaker Smoother method found in MestReNova.

Partial conversion:

Donor 1-H/D (prepared by mixing an approximately equal quantity of the nondeuterated material to deuterated material; total 0.2161 g, 0.4 mmol) was dissolved in 2.0 mL of THF. A portion (0.2 mL) of this solution was used for the full conversion reaction. The remaining donor solution was cooled to -60 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.36 mL, 0.36 mmol). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 3,5bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.1123 g, 0.36 mmol, 4 equiv.) in 1.8 mL of THF that had been pre-cooled to -60 °C. The flask that contained the donor was rinsed with an additional 0.9 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this mixture has stirred for two hours at -60 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor 39 (0.0213 g, 0.09 mmol, 1 equiv.) in 0.5 mL of THF at -60 °C with sodium hexamethyldisilazane (0.09 mL, 0.09 mmol, 1 equiv.) and stirring for 10 minutes). The flask that contained the acceptor was rinsed with 0.5 mL of THF, and this rinse was then added to the glycosylation reaction. After 2 hours, the reaction was quenched with 0.1 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 15 mL). The combined organic phase was washed with brine (30 mL) and then dried (Na₂SO₄). The internal standard 1-bromo-2,4,6-tri-tert-butylbenzene (0.09 mmol) was added to the solution containing the crude sample. An aliquot (1.0 mL) of this solution was removed for NMR analysis. The remaining solution was concentrated, and the crude product was purified by silica gel flash column chromatography (30% ethyl acetate in hexane) to afford disaccharide 40 exclusively as the β -isomer. R_p was measured by ¹H NMR (15.8 mM of disaccharide 40 in CD_2Cl_2 , ns = 4, d1 = 60 s).

Full conversion:

The portion (0.2 mL) of the above donor solution was cooled to -60 °C and treated with sodium hexamethyldisilazane (1 M in THF, 0.04 mL, 0.04 mmol). After 10 minutes, this solution was transferred by syringe to a flask containing the solution of 3,5bis(trifluoromethyl)benzenesulfonyl chloride 4i (0.0125 g, 0.04 mmol, 1 equiv.) in 0.2 mL of THF that had been pre-cooled to -60 °C. The flask that contained the donor was rinsed with an additional 0.2 mL of THF, and this rinse was then added to the donor and sulfonyl chloride reaction mixture. After this reaction mixture has stirred for two hours at -60 °C, it was treated with a freshly prepared solution of the alkoxide acceptor (prepared by treating a solution of acceptor **39** (0.0378 g, 0.16 mmol, 4 equiv.) in 0.8 mL of THF at -60 °C with sodium hexamethyldisilazane (0.16 mL, 0.16 mmol, 4 equiv.) and stirring for 10 minutes.). The flask that contained the acceptor was rinsed with 0.4 mL of THF, and this rinse was then added to the glycosylation reaction. After 6 hours, the reaction was quenched with 0.01 mL of saturated aqueous ammonium chloride (NH₄Cl), diluted with water, and extracted with diethyl ether (4 x 5 mL). The combined organic phase was washed with brine (10 mL) and then dried (Na₂SO₄). An internal standard 1-bromo-2,4,6-tri-tert-butylbenzene (0.04 mmol) was added to the solution containing the crude sample. An aliquot of 1.0 mL was removed for NMR analysis. The rest of the solution was concentrated, and the crude product was purified by silica gel flash column chromatography (30% ethyl acetate in hexane) to afford disaccharide 40 exclusively as the β -isomer. R₀ was measured by ¹H NMR (15.8 mM of disaccharide 40 in CD₂Cl₂, ns = 4, d1 = 60s).

structure of 40

Reference peak 1 (ref 1):

The region from 4.954 ppm to 4.897 ppm in the ¹H NMR spectrum (CD_2Cl_2) was taken as reference peak 1. This peak corresponds to one of the diastereotopic methylene protons of the benzyl group attached to the C3 position of the donor in product **40**. Reference peak 2 (ref 2): The region from 5.074 ppm to 4.988 ppm in the ¹H NMR spectrum (CD_2Cl_2) was taken as reference peak 2. This peak corresponds to one of the diastereotopic methylene protons of the benzyl group attached to the C2 position of the donor in product **40**.

Anomeric peak:

The region from 4.519 ppm to 4.468 ppm in the ¹H NMR spectrum (CD_2Cl_2) was taken as the anomeric peak.

		full conv	version			partial con	version			
run	integral of anomeric peak	integral of ref 1	integral of ref 2	R ₀	integral of anomeric peak	integral of ref 1	integral of ref 2	R _p		
integration range (ppm)	4.519- 4.468	4.954- 4.897	5.074- 4.988		4.519- 4.468	4.954- 4.897	5.074- 4.988			
1	51.09	99.71	100.00	0.9545	54.52	99.80	100.00	0.8324		
2	51.39	99.65	100.00	0.9425	54.61	99.97	100.00	0.8309		
3	52.14	99.60	100.00	0.9141	55.56	100.26	100.00	0.8022		

Table S10. NMR integral and calculation of R_0 and R_p for α -SKIE

Table S11. Summary of α -SKIE

run	F	ln(1-F)	R ₀	R _p	$\ln[1-(FR_p/R_0)]$	a-SDKIE
1	0.235	-0.2679	0.9545	0.8324	-0.2293	1.17
2	0.235	-0.2679	0.9425	0.8309	-0.2322	1.15
3	0.245	-0.2810	0.9140	0.8022	-0.2421	1.16
average						1.16

full conversion (product 40 ¹H NMR in CD₂Cl₂, 500 MHz)

partial conversion (product 40 ¹H NMR in CD₂Cl₂, 500 MHz)

Figure S4. One set of ¹H NMR spectra of product **40** (one full conversion sample and one partial conversion sample).

5.3 Detailed characterization of disaccharide 40

Spectra were taken by 20 mg of disaccharide **40** in CDCl₃. Aryl peaks are not given. (Donor on left and acceptor on right)

#	¹ H (ppm)	¹³ C (ppm)	Notes (¹ J _{CH})
1	5.01	74.87	
2	4.91	75.72	
3	4.82	75.02	
4	4.81	97.35	acceptor anomeric (170 Hz)
5	4.78	75.72	
6	4.75	74.87	
7	4.59	73.44	
8	4.59	73.44	
9	4.55	75.02	
10	4.47	103.90	donor anomeric (159 Hz)
11	4.19	68.83	
12	3.76	69.08	donor C6 (142 Hz)
13	3.72	69.85	
14	3.71	68.83	
15	3.70	69.08	donor C6 (142 Hz)
16	3.66	84.83	donor C3 (140 Hz)
17	3.58	77.97	donor C4 (145 Hz)
18	3.52	83.48	
19	3.51	82.19	donor C2 (144 Hz)
20	3.50	75.09	donor C5 (137 Hz)
21	3.20	81.80	
22	3.13	79.83	
Α	3.62	60.81	
В	3.50	60.40	
С	3.47	58.94	
D	3.36	55.18	

 Table S12. Characterization of disaccharide 40

6. DFT Calculation Procedures and Data

6.1. General procedures

DFT calculations were carried out using Gaussian 16, Revision A.03:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

All stationary points were verified to be true local minima or first-order saddle points by frequency analysis (298.15 K). The default Gaussian standard state was used.

Kinetic isotope effects were predicted using PyQuiver (<u>www.github.com/ekwan/PyQuiver</u>). 3D renderings were made with CYLview. Graphs and statistical analyses were generated in Python using numpy and matplotlib. Conformational searching was performed with Macromodel.

All key Gaussian output files have been deposited at <u>https://github.com/ekwan/bennett_glycosylation</u>, along with the PyQuiver configuration files that are necessary to reproduce the findings discussed below.

A .zip file containing the $S_N 2$ transition structures has been included separately. Files are in plain-text Gaussian input file format. The electronic energy, free energy, and number of imaginary frequencies are included in the title card.

6.2. Prediction of $S_N 1$ isotope effects

We assumed that the transition state for an S_N1 reaction resembles its carbocation and estimated equilibrium isotope effects (EIEs) by comparing the aryl sulfonate to its corresponding cation. The predicted EIEs are essentially insensitive to the choice of DFT method.^[25] Therefore, B3LYP-D3(BJ)/6-31G*/PCM(THF) was chosen as a "standard" method. However, the predicted EIEs are somewhat sensitive to conformation, as the bond lengths of the cation (and therefore the vibrational energies of the cation) depend on the degree to which adjacent bonds are aligned for hyperconjugation. Several hundred candidate conformations for both per-methyl glucose 3,5-bis(trifluoromethyl)sulfonate and per-methyl glucose cation were generated using molecular mechanics (Macromodel, OPLS_2005 force field, gas phase). Each structure was then re-minimized using the above DFT method. The lowest-energy glucose sulfonate conformation was chosen as the ground state reference for all subsequent calculations.

Figure S5. Distribution of predicted EIEs for an S_N1 process
 (213 K, unscaled frequencies). Black bars and numbers indicate the predicted values for the lowest-energy glucose cation.

We then considered the predicted EIEs for an S_N1 process. The EIE at C1 is near unity. This reflects a near-perfect cancellation of two opposing effects: leavinggroup bond heterolysis (normal effect) and hyperconjugative stabilization of the carbocation by all adjacent bonds (inverse effect). This latter hyperconjugative effect is manifested in the significant normal KIEs at C2 and C5, as well as the smaller effects at more remote centers.

The secondary hydrogen/deuterium EIE largely reflects the relative stiffness of the out-of-plane mode between the ground state and the cation. The predicted EIEs range from 1.5-1.7 with a value of 1.62 for the lowest-energy conformation of the cation. This is a relatively large secondary EIE that is consistent with the transition from sp³ to sp² bonding at C1. More realistic models of the S_N1 process would include the leaving group (and possibly the nucleophile). These groups would restrict the motion of C1, stiffening the out-of-plane mode in the transition state, and therefore

reduce the expected isotope effect. The experimental isotope effect is far less than the predicted range of values for an S_N1 process, providing evidence against an oxocarbenium ion.

6.3. Prediction of S_N2 isotope effects

The relatively large normal KIE experimentally observed at C1 suggests that the reaction is proceeding through an S_N2 pathway. Therefore, detailed computational models of many possible S_N2 transition states were constructed and their predicted KIEs compared to experiment. Once again, B3LYP-D3(BJ)/6-31G* was employed as a standard method. This method has previously been demonstrated^[26] to reproduce experimental KIEs for traditional S_N2 reactions. Solvation was found to be extremely important. A hybrid implicit/explicit solvation model was used in which an explicit sodium counterion for the alkoxide was included, along with one explicit dimethyl ether ligand. The rest of the solvent was represented implicitly with PCM (THF).

There are many possible degrees of freedom in the coupling between two glucose molecules. To reduce the size of the system, all protecting groups were truncated to methyl. (Experimentally, the reaction was performed with methyl protecting groups on the acceptor and benzyl protecting groups on the donor. Performing the reaction with methyl protecting groups on both partners resulted in a reaction with reduced yield but high stereoselectivity.)

We developed a systematic nomenclature scheme so that we could extensively explore the remaining degrees of freedom. The conformations of the donor and acceptor were taken from the lowest six conformations found for the glucose 3,5bis(trifluoromethyl)sulfonate and labeled A–F. The orientation of the acceptor relative to the donor was designated as "up" (U) or "down" (D). The orientation of the aryl group of the arylsulfonate was designated as "left" (L) or "right" (R). This led to a four-character system for labeling candidate transition structures. For example, AAUL indicates that both the donor and acceptor were in the lowest-energy ground state conformation, with the acceptor in the "up" orientation and the leaving group in the "left" orientation. (A few configurations from exploratory work were designated as "original" using the abbreviations ORG1, ORG2, etc.) In some cases, the conformation drifted away from the original labeling during the transition state search. In all cases, the transition state label reflects the original label only.

After a comprehensive search, a total of 106 distinct transition states were found, spanning a range of 34 kcal/mol in electronic energy:

conformer	type	energy	forming	breaking	angle	imaginary
FAUR	а	0.0000	2.387	1.928	160.372	356
CDUR	а	1.7875	2.373	1.940	108.144	378

ADDRa2.38112.3981.963161.803334BCDRb2.41692.4872.162138.258155CADRa2.88162.4622.049157.238255BCURb3.21802.5622.137134.684113EADRb3.26082.5002.182134.646138CADRb3.30742.5732.118135.133119BCDLb3.57562.5662.121137.184120CCULb3.64882.5722.136138.398126CCDLb3.64882.5722.136130.274142AAULa4.76522.3761.975163.002252AADLa4.79152.4862.008165.005222AADLa4.79152.4862.008165.005222AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.25272.4292.355132.056129CCULa5.35672.4892.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.09242.5132.243122.77099DCDRb6.60992.5132.377116.013109BDLa6.87502.3981.944162.230 <th>CDDR</th> <th>а</th> <th>2.3228</th> <th>2.426</th> <th>1.948</th> <th>162.949</th> <th>336</th>	CDDR	а	2.3228	2.426	1.948	162.949	336
BCDR b 2.4169 2.487 2.162 138.258 155 CADR a 2.8816 2.462 2.049 157.238 255 BCUR b 3.2008 2.500 2.182 134.646 138 CADR b 3.3074 2.573 2.118 135.133 119 BCDL b 3.5756 2.566 2.121 137.184 120 CCUL b 3.6964 2.552 2.131 136.845 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 322 AADL b 5.1097 2.486 2.008 165.005 222 AADL b 5.1097 2.486 2.008 163.025 338 FAUR b 5.2527 2.429 2.355 132.056 129 CCUL a 5.567 2.469	ADDR	а	2.3811	2.398	1.963	161.803	334
CADR a 2.8816 2.462 2.049 157.238 255 BCUR b 3.2180 2.562 2.137 134.684 113 EADR b 3.2608 2.500 2.182 134.646 138 CADR b 3.5756 2.566 2.121 137.184 120 BCOL b 3.6964 2.552 2.131 136.838 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 522 AADL a 4.7652 2.376 1.975 163.002 522 AADL b 5.1097 2.486 2.008 165.005 222 AADL b 5.2527 2.429 2.355 132.056 129 CCUL a 5.3567 2.489 2.341 122.858 83 EDR a 5.4600 2.403 1.922 164.772 351 CCDL a 5.5779 2.459	BCDR	b	2.4169	2.487	2.162	138.258	155
BCUR b 3.2180 2.562 2.137 134.684 113 EADR b 3.2608 2.500 2.182 134.646 138 CADR b 3.3074 2.573 2.118 135.133 119 BCDL b 3.6756 2.566 2.121 137.184 120 CCUL b 3.6964 2.552 2.131 136.845 130 CCDL b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 352 AADL a 4.7915 2.486 2.008 165.005 222 AADL b 5.1097 2.486 2.341 122.858 87 FAUR b 5.2527 2.429 2.355 132.056 129 CCUL a 5.3567 2.489 2.120 135.393 129 CCUL a 5.5677 2.459 2.034 163.255 338 EDDR a 6.092 2.513	CADR	а	2.8816	2.462	2.049	157.238	255
EADRb3.26082.5002.182134.646138CADRb3.30742.5732.118135.133119BCDLb3.57562.5662.121137.184120CCULb3.69642.5522.131136.845130ECDRb4.65172.4612.309130.274142AAULa4.76522.3761.975163.002352AADLa4.76522.3761.975163.002352AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.4692.179132.186155ACDRa5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.69992.5132.377116.013109BDLa7.01702.4681.990164.277248DCURb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.079362.3601.948164.854 <td>BCUR</td> <td>b</td> <td>3.2180</td> <td>2.562</td> <td>2.137</td> <td>134.684</td> <td>113</td>	BCUR	b	3.2180	2.562	2.137	134.684	113
CADR b 3.3074 2.573 2.118 135.133 119 BCDL b 3.5756 2.566 2.121 137.184 120 CCUL b 3.6964 2.552 2.131 136.845 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 352 AADL a 4.7915 2.486 2.008 165.005 222 AADL b 5.1097 2.486 2.0341 122.858 87 FAUR b 5.2527 2.429 2.355 132.056 129 ECUL b 5.2927 2.538 2.120 135.039 129 CCUL a 5.3567 2.388 1.945 163.255 338 EDR a 5.4600 2.403 1.922 164.772 351 CCDL a 5.9670 2.593 2.291 119.900 114 FCDL b 6.092 2.513	EADR	b	3.2608	2.500	2.182	134.646	138
BCDL b 3.5756 2.566 2.121 137.184 120 CCUL b 3.6488 2.572 2.136 138.398 126 CCDL b 3.6964 2.552 2.131 136.845 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 352 AADL b 5.1097 2.486 2.341 122.858 87 FAUR b 5.2527 2.429 2.355 132.056 129 ECUL b 5.2927 2.538 2.120 135.039 129 CCUL a 5.3567 2.489 2.034 163.988 232 DADL b 5.9670 2.593 2.291 119.900 114 FCDL b 6.092 2.513 2.243 122.770 99 DCDR b 6.093 2.513 2.377 116.013 109 BDL a 7.0430 2.546	CADR	b	3.3074	2.573	2.118	135.133	119
CCUL b 3.6488 2.572 2.136 138.398 126 CCDL b 3.6964 2.552 2.131 136.845 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 352 AADL b 5.1097 2.486 2.008 165.005 222 AADL b 5.2527 2.429 2.355 132.056 129 ECUL b 5.2527 2.429 2.034 163.255 338 EDR a 5.4600 2.403 1.922 164.772 351 CCDL a 5.5779 2.459 2.034 163.988 232 DADL b 5.9670 2.593 2.291 119.900 114 FCDL b 6.0082 2.584 2.124 138.72 127 EADL b 6.2948 2.513 2.433 122.770 99 DCDR b 6.6099 2.513	BCDL	b	3.5756	2.566	2.121	137.184	120
CCDL b 3.6964 2.552 2.131 136.845 130 ECDR b 4.6517 2.461 2.309 130.274 142 AAUL a 4.7652 2.376 1.975 163.002 352 AADL a 4.7915 2.486 2.008 165.005 222 AADL b 5.1097 2.486 2.341 122.858 87 FAUR b 5.2527 2.429 2.355 132.056 129 CCUL a 5.3567 2.388 1.945 163.255 338 EDDR a 5.4600 2.403 1.922 164.772 351 CCDL a 5.5779 2.459 2.034 163.988 232 DADL b 5.9670 2.593 2.291 119.900 114 FCDL b 6.0082 2.584 2.124 138.872 127 EADL b 6.2948 2.513 2.377 116.013 109 BCDR b 6.0994 2.646	CCUL	b	3.6488	2.572	2.136	138.398	126
ECDRb4.65172.4612.309130.274142AAULa4.76522.3761.975163.002352AADLa4.79152.4862.008165.005222AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.09342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.2552.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.5722.572138.82199BDULa8.43972.5892.152138.82199 <td>CCDL</td> <td>b</td> <td>3.6964</td> <td>2.552</td> <td>2.131</td> <td>136.845</td> <td>130</td>	CCDL	b	3.6964	2.552	2.131	136.845	130
AAULa4.76522.3761.975163.002352AADLa4.79152.4862.008165.005222AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.02482.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.9362.3601.948161.075365CDRb8.56922.5322.218152.902108FDULb8.56922.5572.551135.189112BAULa9.9372.5721.972154.283	ECDR	b	4.6517	2.461	2.309	130.274	142
AADLa4.79152.4862.008165.005222AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.46002.4031.922164.772351CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.60992.5132.377116.013109BDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.03302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.5572.251135.189112BDULa8.44982.4681.927147.610296CADLb8.56922.5572.251135.189 <td>AAUL</td> <td>а</td> <td>4.7652</td> <td>2.376</td> <td>1.975</td> <td>163.002</td> <td>352</td>	AAUL	а	4.7652	2.376	1.975	163.002	352
AADLb5.10972.4862.341122.85887FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.46002.4031.922164.772351CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CDLb8.97562.5572.251135.189112BAULa9.93372.5721.972154.283 <td>AADL</td> <td>а</td> <td>4.7915</td> <td>2.486</td> <td>2.008</td> <td>165.005</td> <td>222</td>	AADL	а	4.7915	2.486	2.008	165.005	222
FAURb5.25272.4292.355132.056129ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCULb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.49442.4731.951163.967 <td>AADL</td> <td>b</td> <td>5.1097</td> <td>2.486</td> <td>2.341</td> <td>122.858</td> <td>87</td>	AADL	b	5.1097	2.486	2.341	122.858	87
ECULb5.29272.5382.120135.039129CCULa5.35672.3881.945163.255338EDDRa5.46002.4031.922164.772351CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCURb7.25852.4712.296135.930133CADLa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486 <td>FAUR</td> <td>b</td> <td>5.2527</td> <td>2.429</td> <td>2.355</td> <td>132.056</td> <td>129</td>	FAUR	b	5.2527	2.429	2.355	132.056	129
CCULa5.35672.3881.945163.255338EDDRa5.46002.4031.922164.772351CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCURb7.025852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142	ECUL	b	5.2927	2.538	2.120	135.039	129
EDDRa5.46002.4031.922164.772351CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142 <td>CCUL</td> <td>а</td> <td>5.3567</td> <td>2.388</td> <td>1.945</td> <td>163.255</td> <td>338</td>	CCUL	а	5.3567	2.388	1.945	163.255	338
CCDLa5.57792.4592.034163.988232DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142 <td>EDDR</td> <td>а</td> <td>5.4600</td> <td>2.403</td> <td>1.922</td> <td>164.772</td> <td>351</td>	EDDR	а	5.4600	2.403	1.922	164.772	351
DADLb5.58672.4692.179132.186155ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142 <td>CCDL</td> <td>а</td> <td>5.5779</td> <td>2.459</td> <td>2.034</td> <td>163.988</td> <td>232</td>	CCDL	а	5.5779	2.459	2.034	163.988	232
ACDRb5.96702.5932.291119.900114FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481	DADL	b	5.5867	2.469	2.179	132.186	155
FCDLb6.00822.5842.124138.872127EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DULb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481<	ACDR	b	5.9670	2.593	2.291	119.900	114
EADLb6.29482.5132.243122.77099DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DDULb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	FCDL	b	6.0082	2.584	2.124	138.872	127
DCDRb6.60992.5132.377116.013109BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	EADL	b	6.2948	2.513	2.243	122.770	99
BDDLa6.87502.3981.944162.230334DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DURb10.69032.6202.145132.481160	DCDR	b	6.6099	2.513	2.377	116.013	109
DCURb6.99342.6462.018132.206111ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDULb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	BDDL	а	6.8750	2.398	1.944	162.230	334
ACDLa7.01702.4681.990164.277248DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DDULb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	DCUR	b	6.9934	2.646	2.018	132.206	111
DCDLb7.04302.5462.183129.31397FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	ACDL	а	7.0170	2.468	1.990	164.277	248
FADLb7.25852.4712.296135.930133CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.69032.6202.145132.481160	DCDL	b	7.0430	2.546	2.183	129.313	97
CADLa7.45602.4531.986164.854251EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.69032.6202.145132.481160	FADL	b	7.2585	2.471	2.296	135.930	133
EAULa7.79362.3601.948161.075365CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDLb10.37542.5532.045135.034144ADULb10.69032.6202.145132.481160	CADL	а	7.4560	2.453	1.986	164.854	251
CCDRb8.43972.5892.152138.82199BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	EAUL	а	7.7936	2.360	1.948	161.075	365
BDULa8.44982.4681.927147.610296CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDLb10.37542.5532.045135.034144ADULb10.69032.6202.145132.481160	CCDR	b	8.4397	2.589	2.152	138.821	99
CADLb8.56922.5322.218125.902108FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.69032.6202.145132.481160	BDUL	а	8.4498	2.468	1.927	147.610	296
FDULb8.97562.5572.251135.189112BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144ADULb10.69032.6202.145132.481160	CADL	b	8.5692	2.532	2.218	125.902	108
BAULa9.39372.5721.972154.283195EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	FDUL	b	8.9756	2.557	2.251	135.189	112
EADLa9.49442.4731.951163.967271AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	BAUL	а	9.3937	2.572	1.972	154.283	195
AADRb9.68882.4282.309128.486148FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	EADL	а	9.4944	2.473	1.951	163.967	271
FDDRa9.82112.4911.987152.142239FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	AADR	b	9.6888	2.428	2.309	128.486	148
FCDRb10.35862.5492.181139.845105DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	FDDR	а	9.8211	2.491	1.987	152.142	239
DDDLb10.37542.5532.045135.034144DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	FCDR	b	10.3586	2.549	2.181	139.845	105
DDURb10.47642.5092.230127.886141ADULb10.69032.6202.145132.481160	DDDL	b	10.3754	2.553	2.045	135.034	144
ADUL b 10.6903 2.620 2.145 132.481 160	DDUR	b	10.4764	2.509	2.230	127.886	141
	ADUL	b	10.6903	2.620	2.145	132.481	160
EAUR b 10.8866 2.532 2.193 74.747 138	EAUR	b	10.8866	2.532	2.193	74.747	138

CAUR	b	11.0411	2.603	2.191	129.432	152
AAUR	b	11.1019	2.463	2.167	133.207	215
BCUL	а	11.2037	2.566	1.930	151.347	249
AAUL	а	11.3519	2.353	1.960	146.406	363
DDDR	а	11.5284	2.413	1.981	160.300	312
BDUL	b	11.9100	2.611	2.178	129.549	86
ADDL	b	11.9492	2.587	2.272	124.322	194
DCUL	b	12.0487	2.611	2.139	130.964	159
EDDR	b	12.0557	2.674	2.223	124.882	66
FCUR	b	12.3964	2.437	2.213	131.863	152
BDDL	а	12.6640	2.398	1.978	147.583	349
ECDL	b	12.9602	2.621	2.064	135.562	167
EDDL	а	13.1272	2.530	1.911	150.383	277
CDUR	b	13.2539	2.468	2.197	136.650	199
ADUL	а	13.2642	2.543	1.928	156.631	228
DADR	b	13.6975	2.574	2.276	128.596	160
ADUR	а	13.8669	2.490	1.960	156.777	228
FAUL	b	14.4052	2.619	2.230	125.276	105
CADL	с	14.5679	2.702	1.908	114.531	111
FADL	а	14.9101	2.493	2.029	163.522	207
EDDL	b	14.9368	2.482	2.208	129.700	229
DCUR	а	15.1039	2.557	2.001	148.644	212
BDDL	b	15.1777	2.470	2.357	127.840	119
DADL	а	15.2131	2.822	1.911	138.161	115
DAUR	b	15.2751	2.535	2.174	135.896	190
DCDL	а	16.0037	2.509	2.031	163.652	205
ECDL	а	16.0795	2.499	1.999	162.591	194
ORG2	а	16.1409	2.626	2.010	153.694	211
ADDR	b	16.4420	2.430	1.975	149.100	320
CCDR	с	16.4478	2.695	1.817	134.083	272
BCUR	с	16.9232	2.751	1.781	149.145	272
BCUL	с	17.6896	2.623	1.825	151.025	339
DCDL	с	17.7963	2.604	1.765	164.215	337
ECUL	с	17.8996	2.479	2.761	92.161	138
DDUL	а	17.9494	2.627	1.868	159.366	306
DDDR	b	18.2475	2.523	2.283	125.952	70
FCDR	с	18.7734	2.613	1.844	147.192	340
EDDL	b	19.3966	2.426	2.307	133.981	126
DDUR	а	20.6249	2.631	1.895	148.945	216
BAUR	с	21.4003	2.687	1.831	140.620	291
FCUL	а	22.2016	2.643	1.919	145.955	214
DDUL	b	22.3042	2.637	1.845	139.746	290
CAUL	с	22.3472	2.741	1.737	131.388	142
FCUL	с	22.6774	2.466	1.769	157.986	409

BCDR	С	22.6842	2.665	1.786	172.981	329
FADL	С	22.7471	2.601	1.760	150.465	311
BDUR	С	22.9521	2.596	1.961	142.747	142
DADL	С	23.2194	2.621	1.829	126.545	263
CDDL	С	23.4025	2.693	1.709	167.232	217
DAUR	С	23.6939	2.657	1.860	132.288	287
EDUL	С	24.4791	2.512	1.848	146.326	382
CCUL	С	25.0791	2.662	1.791	150.799	296
CCDL	С	25.8784	2.693	1.786	151.963	284
BCDL	С	25.9315	2.752	1.746	155.896	272
DCUL	С	28.5948	2.704	1.810	119.139	231
AADL	С	31.0292	2.657	1.932	126.166	122
CDDR	С	31.7619	2.720	1.750	136.283	206
AAUR	С	32.4446	2.681	1.863	158.016	283
DDDR	С	33.8933	2.587	1.707	162.901	316
AAUL	С	33.8940	2.668	1.828	169.793	369

Legend:

Conformer = donor/acceptor conformation

Type = solvation sphere geometry (a=sodium bound to alkoxide, b = bridging sodium, c = sodium bound to sulfonate)

Energy = electronic energy in kcal/mol

Forming and breaking = bond distances in Å

Angle = nucleophile-carbon-leaving-group angle, and imaginary refers to the curvature of the reaction coordinate in cm^{-1} . The highlighted structure (BCDR, type b) near the top was the lowest in energy and is described in the main text.

The calculated KIEs were:

conformer	type	C1	C2	С3	C4	C5	C 6	HD
FAUR	а	1.0821	1.0039	1.0007	1.0013	1.0008	1.0004	1.1882
CDUR	а	1.0836	1.0041	1.0003	1.0001	0.9988	0.9982	1.1064
CDDR	а	1.0756	1.0042	1.0011	1.0019	0.9995	0.9991	1.1955
ADDR	а	1.0759	1.0046	1.0014	1.0003	0.9984	0.9984	1.2136
BCDR	b	1.0362	1.0072	1.0023	1.0018	1.0056	0.9981	1.2991
CADR	а	1.0651	1.0072	1.0007	1.0012	1.0014	0.9988	1.2761
BCUR	b	1.0297	1.0060	1.0014	1.0024	1.0058	0.9987	1.3928
EADR	b	1.0306	1.0075	1.0020	1.0039	1.0099	1.0008	1.4268
CADR	b	1.0316	1.0058	1.0013	1.0022	1.0059	0.9985	1.3998
BCDL	b	1.0318	1.0057	1.0008	1.0022	1.0062	0.9985	1.3637
CCUL	b	1.0333	1.0062	1.0013	1.0018	1.0060	0.9985	1.3588
CCDL	b	1.0338	1.0049	1.0008	1.0021	1.0061	0.9985	1.3214
ECDR	b	1.0288	1.0122	1.0026	1.0025	1.0051	0.9994	1.3205
AAUL	а	1.0790	1.0041	1.0000	1.0011	1.0002	0.9989	1.1840

AADL	а	1.0634	1.0046	1.0002	1.0013	1.0007	0.9990	1.1943
AADL	b	1.0187	1.0080	1.0019	1.0024	1.0062	0.9986	1.4929
FAUR	b	1.0285	1.0067	1.0007	1.0026	1.0080	0.9999	1.4067
ECUL	b	1.0315	1.0059	1.0020	1.0040	1.0093	1.0013	1.4113
CCUL	а	1.0811	1.0029	0.9996	1.0009	1.0004	0.9989	1.2133
EDDR	а	1.0771	1.0032	1.0014	1.0023	1.0042	1.0022	1.2128
CCDL	а	1.0648	1.0058	1.0002	1.0006	1.0014	0.9990	1.2106
DADL	b	1.0328	1.0064	1.0014	1.0049	1.0116	1.0012	1.4621
ACDR	b	1.0170	1.0103	1.0063	1.0078	1.0072	0.9996	1.6830
FCDL	b	1.0350	1.0055	1.0008	1.0029	1.0066	0.9995	1.3349
EADL	b	1.0205	1.0072	1.0027	1.0044	1.0115	1.0020	1.5152
DCDR	b	1.0164	1.0125	1.0094	1.0082	1.0091	1.0042	1.7543
BDDL	а	1.0790	1.0032	0.9996	1.0008	0.9999	0.9987	1.2073
DCUR	b	1.0301	1.0040	1.0014	1.0031	1.0122	1.0030	1.3763
ACDL	а	1.0691	1.0060	0.9998	1.0006	1.0007	0.9990	1.2038
DCDL	b	1.0265	1.0059	1.0008	1.0045	1.0136	1.0030	1.4827
FADL	b	1.0303	1.0075	1.0010	1.0023	1.0081	1.0005	1.4510
CADL	а	1.0701	1.0057	0.9998	1.0007	1.0002	0.9988	1.1977
EAUL	а	1.0792	1.0043	1.0011	1.0024	1.0021	1.0019	1.1480
CCDR	b	1.0308	1.0060	1.0013	1.0019	1.0066	0.9985	1.2926
BDUL	а	1.0744	1.0041	1.0002	1.0005	1.0012	0.9988	1.2784
CADL	b	1.0237	1.0104	1.0069	1.0084	1.0059	0.9998	1.3707
FDUL	b	1.0269	1.0069	1.0018	1.0032	1.0069	1.0001	1.3685
BAUL	а	1.0593	1.0041	0.9996	1.0004	1.0022	0.9993	1.2867
EADL	а	1.0711	1.0052	1.0008	1.0007	1.0039	1.0034	1.1722
AADR	b	1.0300	1.0120	1.0007	1.0004	1.0074	0.9988	1.3577
FDDR	а	1.0643	1.0041	1.0002	1.0010	1.0012	0.9982	1.2539
FCDR	b	1.0324	1.0069	1.0020	1.0029	1.0058	0.9997	1.2806
DDDL	b	1.0380	1.0050	1.0007	1.0041	1.0113	1.0020	1.4041
DDUR	b	1.0267	1.0054	1.0014	1.0054	1.0124	1.0013	1.5007
ADUL	b	1.0274	1.0073	1.0027	1.0013	1.0095	1.0007	1.4267
EAUR	b	1.0269	1.0093	1.0029	1.0041	1.0097	1.0014	1.3099
CAUR	b	1.0214	1.0054	1.0015	0.9997	1.0051	0.9988	1.3850
AAUR	b	1.0420	1.0112	1.0013	0.9998	1.0033	0.9968	1.3019
BCUL	а	1.0683	1.0048	0.9998	1.0018	1.0000	0.9984	1.2707
AAUL	а	1.0849	1.0038	1.0007	1.0002	0.9995	0.9989	1.2000
DDDR	а	1.0717	1.0036	1.0000	1.0025	1.0064	0.9998	1.2492
BDUL	b	1.0227	1.0060	1.0013	1.0020	1.0057	0.9994	1.5015
ADDL	b	1.0174	1.0109	1.0032	1.0040	1.0080	0.9993	1.7364
DCUL	b	1.0271	1.0060	1.0010	1.0029	1.0121	1.0023	1.4148
EDDR	b	1.0193	1.0059	1.0013	1.0031	1.0107	1.0024	1.4533
FCUR	b	1.0354	1.0098	1.0015	1.0033	1.0114	1.0021	1.2570
BDDL	а	1.0708	1.0050	1.0007	1.0006	1.0021	0.9975	1.1000
ECDL	b	1.0315	1.0053	1.0016	1.0025	1.0070	1.0005	1.3039

EDDL	а	1.0681	1.0048	1.0001	1.0036	1.0040	1.0016	1.2202
CDUR	b	1.0384	1.0107	1.0007	0.9992	1.0028	0.9983	1.3813
ADUL	а	1.0608	1.0036	0.9993	1.0006	1.0049	1.0004	1.1763
DADR	b	1.0244	1.0112	1.0014	1.0036	1.0117	1.0023	1.4469
ADUR	а	1.0597	1.0032	0.9996	1.0007	1.0047	1.0005	1.1726
FAUL	b	1.0228	1.0115	1.0069	1.0071	1.0063	1.0024	1.4756
CADL	С	1.0396	1.0042	1.0035	1.0070	1.0090	1.0021	1.4866
FADL	а	1.0599	1.0047	1.0005	1.0016	1.0005	0.9972	1.1952
EDDL	b	1.0344	1.0106	1.0023	1.0031	1.0074	1.0010	1.3685
DCUR	а	1.0531	1.0041	1.0008	1.0032	1.0082	1.0005	1.2722
BDDL	b	1.0239	1.0076	1.0005	1.0011	1.0079	0.9986	1.4516
DADL	а	1.0415	1.0047	0.9999	1.0034	1.0060	1.0001	1.0918
DAUR	b	1.0353	1.0082	1.0019	1.0027	1.0099	1.0011	1.3126
DCDL	а	1.0579	1.0036	1.0002	1.0029	1.0061	1.0000	1.1922
ECDL	а	1.0586	1.0052	1.0010	1.0014	1.0026	0.9995	1.1962
ORG2	а	1.0575	1.0114	0.9999	1.0006	1.0029	1.0024	1.1074
ADDR	b	1.0685	1.0051	1.0003	1.0010	1.0010	0.9978	1.2186
CCDR	С	1.0597	1.0000	0.9980	1.0026	1.0024	0.9989	1.2953
BCUR	с	1.0655	1.0034	1.0000	0.9996	0.9995	0.9978	1.1666
BCUL	с	1.0737	1.0047	0.9991	0.9991	0.9989	0.9972	1.2126
DCDL	С	1.0756	1.0006	1.0036	1.0080	1.0065	1.0044	1.2120
ECUL	с	1.0131	1.0119	1.0018	1.0040	1.0106	1.0020	1.9210
DDUL	а	1.0650	1.0020	1.0024	1.0071	1.0098	1.0053	1.1356
DDDR	b	1.0209	1.0066	1.0009	1.0044	1.0142	1.0040	1.4893
FCDR	с	1.0691	1.0035	0.9992	1.0011	1.0005	0.9994	1.2657
EDDL	b	1.0272	1.0075	1.0015	1.0032	1.0083	1.0016	1.4589
DDUR	а	1.0595	1.0032	0.9979	1.0024	1.0058	1.0007	1.1544
BAUR	с	1.0656	1.0010	0.9992	1.0002	1.0018	0.9981	1.2667
FCUL	а	1.0593	1.0058	1.0011	1.0028	0.9993	0.9995	1.2237
DDUL	b	1.0526	1.0014	1.0041	1.0066	1.0096	1.0038	1.1660
CAUL	с	1.0508	0.9978	0.9991	1.0040	0.9996	0.9984	1.3209
FCUL	С	1.0934	1.0111	1.0005	0.9999	0.9985	1.0003	1.0906
BCDR	С	1.0759	1.0070	1.0012	0.9987	0.9989	0.9969	1.1149
FADL	с	1.0623	1.0034	1.0071	1.0036	1.0004	1.0050	1.1853
BDUR	с	1.0387	1.0059	0.9999	1.0003	1.0023	0.9978	1.4100
DADL	с	1.0596	0.9999	0.9990	1.0044	1.0083	1.0009	1.3642
CDDL	С	1.0635	1.0025	1.0037	1.0088	1.0060	1.0048	1.1011
DAUR	с	1.0582	1.0032	1.0015	1.0026	1.0081	1.0012	1.4972
EDUL	с	1.0766	1.0035	1.0011	1.0029	1.0034	0.9998	1.3198
CCUL	с	1.0670	1.0007	0.9994	1.0019	0.9997	0.9980	1.2670
CCDL	с	1.0669	1.0013	0.9996	1.0013	0.9997	0.9983	1.2418
BCDL	с	1.0663	1.0008	0.9989	1.0003	0.9998	0.9980	1.1570
DCUL	с	1.0562	1.0022	1.0009	1.0028	1.0095	1.0010	1.4230
AADL	с	1.0395	1.0051	1.0004	1.0006	1.0027	0.9989	1.9306

CDDR	С	1.0566	0.9981	0.9999	1.0064	1.0011	0.9982	1.2364
AAUR	с	1.0653	1.0068	1.0000	0.9997	1.0010	0.9968	1.2392
DDDR	с	1.0749	1.0016	1.0042	1.0064	1.0036	1.0050	1.0938
AAUL	с	1.0764	1.0075	1.0003	1.0018	1.0049	1.0033	1.0618

For each structure, KIEs were calculated at 213 K relative to the lowest energy conformation of permethyl-glucose bis-trifluoromethyl sulfonate (used previously as the reference for the S_N1 analysis). All KIEs were calculated with unscaled vibrational frequencies and employed the Bell tunneling correction.^[27]

The transition states were classified into three types by the coordination geometry of sodium: (a) bound to alkoxide (red); (b) bridging (green); and (c) bound to sulfonate (blue). These transition states spanned a range of geometries:

Figure S6. Transition structures for glycosylation. The highlighted points are the lowest-energy structures within each transition state type. The green transition states are consistent with experiment.

The KIE at C1 was particularly characteristic of each transition state type:

To examine the validity of the constrained transition state approach, the lowest-energy type a structure was constrained to the forming and breaking bond distances of the lowest energy type b structure (and vice versa). The results were:

We also constructed a regression model for the type a structures:

predicted KIE at C1 = -0.0452 x forming bond distance -0.0321 x breaking bond distance + 0.0086 x imaginary frequency / 100 + 1.2204

The fit was good:

adj. $R^2 = 0.946$ RMS error = 0.002

However, when this regression model was used for the type b structures, a substantial systematic error was observed:

Thus, it is not always true that KIEs are largely dependent on geometric parameters and independent of mechanism (or DFT method). The constrained transition state approach should be used with caution.

6.4. Choice of computational method for modeling S_N2-like glycosylations

The analysis above relied on B3LYP-D3(BJ)/6-31G*/PCM as a "standard" computational method that is expected to work reasonably well for glycosylation reactions. In this section, we consider what might have happened if we had chosen a different computational method. The lowest-energy type b transition structure (BCDR) was re-optimized with 28 other functionals:

theory	forming	breaking	angle	imaginary
b1b95	2.441	2.181	140.191	169
b3lyp	2.517	2.230	134.450	140
b3lyp_d3bj	2.487	2.162	138.258	155
b3p86	2.448	2.154	138.458	202
b971	2.508	2.209	135.687	175
b972	2.508	2.285	130.981	122
b97d	2.574	2.142	142.107	153
b97d3	2.576	2.187	136.883	108
b97d3_d3bj	2.558	2.175	136.971	108
b98	2.508	2.226	134.834	161
bhandh	2.290	2.053	145.758	307

bhandhlyp	2.468	2.237	134.900	108
blyp_d3bj	2.560	2.168	137.511	117
bp86_d3bj	2.486	2.123	141.020	169
cam_b3lyp_d3bj	2.424	2.155	139.961	202
lcwpbe_d3bj	2.367	2.126	143.478	265
m062x	2.376	2.158	143.477	258
m062x_d3	2.375	2.154	142.944	270
m06_hf_d3	2.229	2.022	150.020	524
m06l_d3	2.549	2.113	138.465	101
m11	2.407	2.123	144.898	252
mpw1lyp	2.507	2.220	135.122	140
mpw1pbe	2.442	2.185	137.625	190
mpw1pw91	2.451	2.187	137.359	183
mpw3pbe	2.458	2.184	137.504	186
n12sx	2.434	2.130	140.091	243
pbe0	2.441	2.159	139.123	205
pbe0_d3bj	2.413	2.128	141.689	220
tpsstpss_d3bj	2.487	2.093	141.485	169

The corresponding predicted KIEs were:

theory	C1	C2	С3	C4	C5	C6	HD
b1b95	1.0428	1.0084	1.0027	1.0010	1.0045	0.9982	1.2420
b3lyp	1.0296	1.0087	1.0023	1.0012	1.0065	0.9982	1.4172
b3lyp_d3bj	1.0362	1.0072	1.0023	1.0018	1.0056	0.9981	1.2991
b3p86	1.0453	1.0084	1.0022	1.0009	1.0042	0.9980	1.3324
b971	1.0345	1.0087	1.0023	1.0013	1.0053	0.9980	1.5064
b972	1.0274	1.0098	1.0020	1.0012	1.0068	0.9983	1.5301
b97d	1.0352	1.0049	1.0017	1.0023	1.0061	0.9968	1.1909
b97d3	1.0271	1.0067	1.0021	1.0021	1.0060	0.9976	1.3631
b97d3_d3bj	1.0269	1.0077	1.0025	1.0017	1.0055	0.9980	1.4015
b98	1.0320	1.0090	1.0023	1.0013	1.0059	0.9980	1.5062
bhandh	1.0742	1.0052	1.0024	1.0021	1.0035	0.9983	1.1051
bhandhlyp	1.0297	1.0095	1.0023	1.0011	1.0073	0.9987	1.3214
blyp_d3bj	1.0268	1.0066	1.0025	1.0024	1.0054	0.9977	1.3708
bp86_d3bj	1.0382	1.0061	1.0020	1.0020	1.0045	0.9978	1.3159
cam_b3lyp_d3bj	1.0464	1.0073	1.0022	1.0015	1.0047	0.9981	1.2215
lcwpbe_d3bj	1.0633	1.0069	1.0023	1.0010	1.0040	0.9983	1.2086
m062x	1.0607	1.0068	1.0028	1.0013	1.0042	0.9983	1.1215
m062x_d3	1.0611	1.0067	1.0031	1.0016	1.0043	0.9983	1.1458
m06_hf_d3	1.1153	1.0031	1.0027	1.0011	1.0004	0.9977	1.0234
m06l_d3	1.0322	1.0078	1.0041	1.0019	1.0058	0.9982	1.3699
m11	1.0560	1.0056	1.0033	1.0013	1.0037	0.9981	1.1151

mpw1lyp	1.0307	1.0085	1.0023	1.0014	1.0064	0.9982	1.3750
mpw1pbe	1.0438	1.0091	1.0024	1.0008	1.0048	0.9980	1.3521
mpw1pw91	1.0424	1.0091	1.0024	1.0008	1.0050	0.9980	1.3537
mpw3pbe	1.0424	1.0088	1.0025	1.0010	1.0049	0.9979	1.3564
n12sx	1.0531	1.0074	1.0022	1.0014	1.0037	0.9983	1.3034
pbe0	1.0472	1.0086	1.0024	1.0010	1.0043	0.9981	1.3172
pbe0_d3bj	1.0519	1.0072	1.0024	1.0014	1.0043	0.9979	1.2553
tpsstpss_d3bj	1.0391	1.0060	1.0023	1.0021	1.0043	0.9980	1.3080

Figure S7. Dependence of transition structure on DFT. Each circle represents a transition state. Shaded circles give predicted KIEs at C1 that are within one standard deviation of the experimental mean. The black circle surrounds the B3LYP-D3(BJ) structure. The starting material would be in the lower right, while the product would be in the upper right. All structures used 6-31G* and PCM(THF).

Although the transition structures predicted by various DFTs are qualitatively similar, the predicted KIEs at C1 span a broad range from 1.027 to 1.115 with an average value of 1.044. Furthermore, the above plot suggests a positive correlation between the forming and breaking bond distances (note the inverted y-axis). This correlation can be interpreted as different DFTs varying in the degree to which they predict "tight" or "loose" transition states.

Furthermore, there is a strong correlation between the forming bond length and the predicted KIE at C1:

Figure S8. The predicted KIEs at C1 across 29 DFTs are highly correlated with the forming bond distance.

This result suggests that, although a variety of geometries can be obtained by varying the choice of DFT, only a few of those geometries will be consistent with experiment. Furthermore, Figure S7 also suggests that B3LYP-D3(BJ) predicts an "average" geometry with respect to the predictions of other functionals. To explore this idea in more detail, we performed a principal components analysis (PCA). A range of geometric parameters were taken as features: the forming bond distance, the breaking bond distance, the nucleophile-C1-leaving-group angle, the sodium alkoxide distance, the sodium-sulfonate oxygen bond distance, the C1-sodium-sulfonate oxygen bond angle, and the C6-O-C1-nucleophile dihedral angle. Each feature was normalized to a mean of 0 and a standard deviation of 1. Then, a PCA analysis was performed (on all 8 dimensions). The explained variance for each parameter was (values in %):

```
principal component 1 (PC1): 61.47%
principal component 2 (PC2): 17.08%
principal component 3 (PC3): 12.49%
principal component 4 (PC4): 5.55%
principal component 5 (PC5): 2.53%
principal component 6 (PC6): 0.61%
principal component 7 (PC7): 0.26%
principal component 8 (PC8): 0.00%
```

Thus, the first principal component (PC1) and second principal component (PC2) explained 79% of the variance. B3LYP-D3(BJ) is also near the centroid in PCA space:

Figure S9. Principal components analysis of the transition structures predicted by various DFTs. The B3LYP-D3(BJ) geometry is near the centroid and can be considered a "typical" prediction.

The finding that B3LYP-D3(BJ) is a "typical" prediction indicates that the good agreement between theory and experiment cannot be ascribed to the fortuitous generation of an implausible geometry, due to an unexpected deficiency of B3LYP-D3(BJ). While further benchmark studies, will be necessary to evaluate the accuracy of B3LYP-D3(BJ) as a method for predicting glycosylation KIEs, the results above provide reasonable ground to choose B3LYP-D3(BJ) as an interim method.

Having addressed the choice of DFT, we turned our attention to the choice of basis set, which might be expected to have a significant effect here. The model system involves two anions: the alkoxide and the sulfonate. As a result, it is reasonable to expect that diffuse functions might be important. Unfortunately, the system is quite large and suffered from numerical convergence issues when calculating frequencies. (Surprisingly, the energy and gradient calculations worked normally.) Both the 6- $31+G^*$ and jun-cc-pVDZ basis sets, which constitute very mild levels of augmentation, failed to converge. However, it was possible to place the diffuse functions of the 6- $31+G^*$ basis set on the alkoxide and sulfonate oxygens to create a "locally dense" basis set. In the archived files, this basis set is denoted as the custom basis.

We attempted to locate the analogous transition structures using the custom basis. Of the 29 transition structures found previously with 6-31G*, 22 analogous transition structures were found with the custom basis (the other 7 did not converge in geometry after repeated attempts):

theory	forming	breaking	angle	imaginary
b1b95	2.529	2.219	135.909	108
b3lyp_d3bj	2.562	2.176	135.695	104

b971	2.584	2.279	130.793	67
b972	2.578	2.447	125.566	62
b97d	2.660	2.120	140.002	134
b97d3	2.679	2.135	134.909	87
b98	2.579	2.285	131.179	68
bhandh	2.328	2.075	144.351	260
bp86_d3bj	2.563	2.126	138.328	124
cam_b3lyp_d3bj	2.497	2.188	137.579	132
lcwpbe_d3bj	2.429	2.180	140.747	184
m062x	2.438	2.175	141.126	196
m062x_d3	2.440	2.165	140.689	212
m06_hf_d3	2.308	2.115	145.832	358
m06l_d3	2.622	2.094	135.358	87
m11	2.489	2.132	141.717	194
mpw1pbe	2.499	2.244	133.707	120
mpw1pw91	2.506	2.246	133.416	115
mpw3pbe	2.520	2.240	133.561	118
n12sx	2.514	2.197	135.993	151
pbe0_d3bj	2.468	2.154	139.714	175
tpsstpss_d3bj	2.558	2.092	139.374	130

The computed KIEs were:

theory	C1	C2	С3	C4	C5	C6	HD
b1b95	1.0310	1.0081	1.0017	1.0015	1.0065	0.9977	1.3278
b3lyp_d3bj	1.0267	1.0075	1.0023	1.0022	1.0064	0.9984	1.3195
b971	1.0177	1.0086	1.0020	1.0019	1.0072	0.9990	1.3911
b972	1.0137	1.0104	1.0020	1.0014	1.0080	0.9988	1.6047
b97d	1.0299	1.0049	1.0020	1.0028	1.0064	0.9969	1.2048
b97d3	1.0223	1.0064	1.0022	1.0023	1.0060	0.9978	1.3276
b98	1.0176	1.0087	1.0020	1.0019	1.0071	0.9989	1.3943
bhandh	1.0647	1.0062	1.0026	1.0023	1.0041	0.9984	1.1277
bp86_d3bj	1.0300	1.0065	1.0022	1.0024	1.0052	0.9981	1.3398
cam_b3lyp_d3bj	1.0336	1.0082	1.0023	1.0018	1.0057	0.9984	1.2505
lcwpbe_d3bj	1.0469	1.0085	1.0024	1.0012	1.0049	0.9986	1.2571
m062x	1.0488	1.0072	1.0028	1.0018	1.0050	0.9986	1.1226
m062x_d3	1.0497	1.0072	1.0031	1.0018	1.0046	0.9984	1.1700
m06_hf_d3	1.0775	1.0053	1.0024	1.0010	1.0018	0.9980	1.0203
m06l_d3	1.0283	1.0072	1.0036	1.0021	1.0059	0.9978	1.4490
m11	1.0444	1.0063	1.0034	1.0016	1.0042	0.9984	1.1460
mpw1pbe	1.0303	1.0097	1.0022	1.0015	1.0061	0.9984	1.4264
mpw1pw91	1.0290	1.0096	1.0022	1.0015	1.0063	0.9985	1.4277
mpw3pbe	1.0287	1.0095	1.0021	1.0015	1.0061	0.9984	1.4273

n12sx	1.0357	1.0090	1.0025	1.0016	1.0049	0.9986	1.3010
pbe0_d3bj	1.0421	1.0080	1.0023	1.0015	1.0048	0.9980	1.2757
tpsstpss_d3bj	1.0315	1.0065	1.0023	1.0022	1.0044	0.9982	1.3165

In general, the transition states were looser. The forming bond length was somewhat longer:

Figure S10. Breaking bond lengths increased with the addition of diffuse functions.

The breaking bond length was modestly increased as well:

Figure S11. The forming bond lengths also increased with the addition of diffuse functions.

There was also a striking dependence between the predicted KIE at C1 and the breaking bond length:

Figure S12. The KIE at C1 depends strongly on the forming bond length.

Interestingly, the geometries that were consistent with experiment remained in a similar region of the reaction coordinate (Figure S13). While B3LYP-D3(BJ) was within experimental error with the 6-31G* basis set (1.036 predicted vs. 1.034 ± 0.004 experimental), it was modestly outside of experimental error with the custom basis set (1.027 ± 0.004). However, the geometries that reproduced experiment were from a very similar region of the reaction coordinate.

Figure S13. Agreement between transition structure and the experimental KIE at C1. Calculations with (red) and without (blue) diffuse functions

gave structures in a similar region of the reaction coordinate. Some structures were consistent with experiment (solid circles), while many were not (open circles). Both basis sets gave agreement with experiment in a similar region of the reaction coordinate. The highlighted points denote B3LYP-D3(BJ).

6.5. Lowest energy structure

The following are coordinates for the lowest-energy transition structure (BCDR):

0 1			
С	-1.82206300	1.49821800	2.21782500
С	-2.11842700	2.32169300	0.96299600
С	-1.24282600	3.57667200	0.92527000
С	0.49833200	2.51558900	2.21278700
С	-0.32125400	1.22428100	2.32556900
Н	-1.34858400	4.08775900	-0.04141600
Н	-1.85126200	1.72940500	0.07977500
Н	-2.15201400	2.06945800	3.09517400
Н	0.25689900	3.14815500	3.07671200
Н	-0.05262400	0.54707700	1.50888800
0	0.13031100	3.22143600	1.00134800
0	-1.62543500	4.42505900	1.97008200
0	-3.47916000	2.72023300	0.90347500
0	-2.55470600	0.27905700	2.12836000
0	-0.04341300	0.60557100	3.58045700
С	2.01814400	2.29697600	2.15383600
Н	2.28455000	1.79993600	3.10999700
Н	2.46281200	3.31656200	2.22435500
0	2.45361900	1.62507700	1.03522700
С	-4.28309200	1.89063600	0.07674700
Н	-3.93472200	1.90708300	-0.96582300
Н	-4.28776500	0.85563800	0.43092400
Н	-5.29792300	2.29516100	0.11387200
С	-3.08895400	-0.17136200	3.36517000
Н	-2.29736300	-0.37793700	4.09276800
Н	-3.77983000	0.57165400	3.78950100
Н	-3.63925400	-1.08899500	3.15183800
С	0.74977300	-0.57091900	3.47514300
Н	0.20312100	-1.36551500	2.95424400
Н	1.68799000	-0.38510200	2.94287400
Н	0.97023400	-0.89498600	4.49586700
С	3.82240200	-1.51671200	-1.33119500
С	3.19719400	-0.19854600	-0.86528600

С	1.84602000	-0.41333100	-0.25418600
С	2.21083900	-2.75110900	0.17331800
С	3.67776600	-2.53958300	-0.19822800
Н	1.16342200	0.40357700	-0.13706000
Н	3.78425000	0.20072900	-0.02228900
Н	3.30197000	-1.86835600	-2.22977400
Н	1.67508500	-3.18410000	-0.67630700
Н	4.21772800	-2.16327700	0.67705800
0	1.54084800	-1.46617900	0.42563800
0	-0.51687100	0.19651100	-3.88181900
0	3.07200300	0.80972000	-1.84746700
0	5.19790800	-1.29699800	-1.59253900
0	4.19017300	-3.79824900	-0.60044400
С	1.97652100	-3.59924600	1.40237300
Н	2.30022700	-4.62570600	1.17636000
Н	0.89938700	-3.62206300	1.62466100
0	2.70643800	-3.05368900	2.48038700
S	-0.29157500	0.03778900	-2.43472300
0	-0.17851000	1.32244400	-1.67512500
0	0.83459600	-0.91374800	-2.09798900
С	-1.75146500	-0.76810200	-1.75948300
С	-2.99261400	-0.56180500	-2.35533500
С	-1.62481700	-1.55665800	-0.62016800
С	-4.12143000	-1.15333800	-1.78772200
Н	-3.07061900	0.04167700	-3.25191700
С	-2.75900800	-2.15274500	-0.07467800
Н	-0.65675600	-1.70785600	-0.16258500
С	-4.01209700	-1.95419600	-0.65027900
Н	-4.89237600	-2.41687400	-0.22119700
С	4.29999300	1.45303600	-2.20679800
Н	4.92941200	1.61181900	-1.32482600
Н	4.85315900	0.86325500	-2.94165900
Н	4.02383700	2.41951200	-2.63129200
С	5.68701500	-1.97950400	-2.74339400
Н	5.54646100	-3.06142200	-2.65498000
Н	5.18749400	-1.62270100	-3.65499500
Н	6.75346600	-1.75199100	-2.80814600
С	5.26386400	-4.26732200	0.21284300
Н	6.12920200	-3.59709500	0.14354700
Н	4.95628700	-4.35332800	1.26261600
Н	5.53554100	-5.25342600	-0.16948900
С	2.48404200	-3.75720400	3.69286800
Н	3.08211700	-3.26350000	4.46116900
Н	1.42384000	-3.72458200	3.98126500

Н	2.79582400	-4.80813000	3.60728400
С	-0.97469900	5.69050100	1.93425100
Н	-1.41196100	6.29180800	2.73360500
Н	0.10450300	5.59172100	2.09828000
Н	-1.14441500	6.18927000	0.96915000
Na	1.53637400	2.64926800	-0.81633100
0	3.07159800	4.33269300	-1.04929100
С	3.17165200	5.49656500	-1.85429700
Н	4.11767200	5.50588700	-2.41357500
Н	2.33551300	5.47845100	-2.55702300
Н	3.11273400	6.40624600	-1.24075800
С	4.11206700	4.23210000	-0.07873000
Н	4.07886300	5.08515900	0.61259900
Н	3.93329800	3.29770800	0.45992100
Н	5.09486800	4.20842000	-0.56988800
С	-5.47954000	-0.86784900	-2.36621100
F	-6.03096300	0.23884600	-1.80663300
F	-6.34293000	-1.88310000	-2.15278600
F	-5.42503400	-0.64719300	-3.69571500
С	-2.60302000	-3.08614400	1.09250200
F	-1.59198400	-2.71351300	1.91268800
F	-2.31999300	-4.34514600	0.68349000
F	-3.72646300	-3.15965100	1.83989300

6.6. Conclusion

Overall, our interpretation is that most commonly-used computational methods can reproduce the experimental KIEs, although the both the choice of DFT and basis set are important. The effect of the choice of DFT can be ascribed to the numerous noncovalent interactions in this system, as well as electron correlation effects in the partially formed or broken bonds. The effect of basis set is likely basis set superposition error. In turn, these effects create a range of predictions for the KIE at C1. However, the region of the reaction coordinate that agrees with experiment is remarkably small and independent of basis set. (This analysis only considered one template transition structure, so whether this is also independent of DFT choice cannot be determined.) Furthermore, B3LYP-D3(BJ) gives transition structures that are average when compared with the transition structures given by other DFTs. Thus, while the agreement with experiment obtained with B3LYP-D3(BJ)/6-31G* is likely due in part to the cancellation of errors, the predicted transition structure is meaningful and is similar to what would be predicted by other functionals in the same region of the reaction coordinate.

7. References

- [1] D. Waschke, J. Thimm, J. Thiem, Org. Lett. 2011, 13, 3628-3631.
- J. Y. Baek, H.-W. Kwon, S. J. Myung, J. J. Park, M. Y. Kim, D. C. K. Rathwell,
 H. B. Jeon, P. H. Seeberger, K. S. Kim, *Tetrahedron* 2015, *71*, 5315-5320.
- J. Dinkelaar, L. J. van den Bos, W. F. J. Hogendorf, G. Lodder, H. S. Overkleeft,
 J. D. C. Codée, G. A. van der Marel, *Chem. Eur. J.* 2008, *14*, 9400-9411.
- [4] E. Sasaki, C.-I. Lin, K.-Y. Lin, H.-w. Liu, J. Am. Chem. Soc. 2012, 134, 17432-17435.
- [5] G. Sennari, T. Hirose, M. Iwatsuki, S. Omura, T. Sunazuka, *Chem. Comm.* 2014, 50, 8715-8718.
- [6] a) H. Xu, Y. Lu, Y. Zhou, B. Ren, Y. Pei, H. Dong, Z. Pei, Adv. Synth. Catal.
 2014, 356, 1735-1740; b) J. Xue, Z. Guo, J. Carbohydr. Chem. 2008, 27, 51-69.
- [7] a) D. Lloyd, M. Bylsma, D. K. Bright, X. Chen, C. S. Bennett, *J. Org. Chem.*2017, 82, 3926-3934; b) L. Liu, J. Zha, A. DiGiandomenico, D. McAllister, C. K. Stover, Q. Wang, G.-J. Boons, *Angew. Chem. Int. Ed.* 2015, 54, 10953-10957.
- [8] G. Tseberlidis, P. Zardi, A. Caselli, D. Cancogni, M. Fusari, L. Lay, E. Gallo, Organometallics 2015, 34, 3774-3781.
- [9] M. Boultadakis-Arapinis, P. Lemoine, S. Turcaud, L. Micouin, T. Lecourt, J. Am. Chem. Soc. 2010, 132, 15477-15479.
- [10] H. Liu, X. Li, J. Org. Chem. 2014, 79, 5834-5841.
- [11] C.-S. Chao, C.-Y. Lin, S. Mulani, W.-C. Hung, K.-k. T. Mong, *Chem. Eur. J.* 2011, 17, 12193-12202.
- [12] A.-H. A. Chu, S. H. Nguyen, J. A. Sisel, A. Minciunescu, C. S. Bennett, Org. Lett. 2013, 15, 2566-2569.
- [13] S. Kaeothip, J. P. Yasomanee, A. V. Demchenko, J. Org. Chem. 2012, 77, 291-299.
- [14] A. M. Vibhute, A. Dhaka, V. Athiyarath, K. M. Sureshan, Chem. Sci. 2016, 7, 4259-4263.
- [15] H. Chiba, S. Funasaka, T. Mukaiyama, Bull. Chem. Soc. Jpn. 2003, 76, 1629-1644.
- [16] a) L. Sun, X. Wu, D.-C. Xiong, X.-S. Ye, *Angew. Chem. Int. Ed.* 2016, 55, 8041-8044; b) H. Nagai, K. Sasaki, S. Matsumura, K. Toshima, *Carbohydr. Res.* 2005, 340, 337-353.
- [17] K.-T. Huang, N. Winssinger, Eur. J. Org. Chem. 2007, 2007, 1887-1890.
- [18] M.-j. Xia, W. Yao, X.-b. Meng, Q.-h. Lou, Z.-j. Li, *Tetrahedron Lett.* 2017, 58, 2389-2392.
- [19] D.-C. Xiong, L.-H. Zhang, X.-S. Ye, Adv. Syn. Catal. 2008, 350, 1696-1700.
- [20] D. Crich, M. de la Mora, A. U. Vinod, J. Org. Chem. 2003, 68, 8142-8148.
- [21] A.-H. A. Chu, A. Minciunescu, V. Montanari, K. Kumar, C. S. Bennett, Org. Lett. 2014, 16, 1780-1782.
- [22] K. C. H. Yongho Park, Nadine Kuhl, Eugene E. Kwan, Richard Y. Liu, Eric N. Jacobsen Science 2017, 355, 162-166.
- [23] a) G. S. Jones, W. J. Scott, J. Am. Chem. Soc. 1992, 114, 1491-1492; b) D. J.
 Chambers, G. R. Evans, A. J. Fairbanks, *Tetrahedron* 2004, 60, 8411-8419.
- [24] W. von E. Doering, R. S. Urban, J. Am. Chem. Soc. 1956, 78, 5938-5942.
- [25] E. E. Kwan, Y. Park, H. A. Besser, T. L. Anderson, E. N. Jacobsen, *J. Am. Chem. Soc.* **2017**, *139*, 43-46.
- [26] E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen, Nat Chem 2018, 10, 917-923.
- [27] Bell, R.P. Trans. Faraday Soc. 1959, 55, 1–4.

= 128.59 $= 138.67$ $= 138.67$ $= 138.53$ $= 138.39$ $= 138.26$ $= 138.26$ $= 138.26$ $= 138.26$ $= 138.26$ $= 128.26$ $= 128.05$ $= 128.05$ $= 128.05$ $= 128.05$ $= 128.05$ $= 128.05$ $= 128.05$	84.93 84.93 77.16 77.16 75.79 75.10 75.79 73.56 73.56 73.56 73.56
---	---

¹³C NMR (125 MHz, CDCl₃)

~138.751 ~138.196	<pre>-128.399 -128.381 -128.381 128.240 127.982 127.917 136.433 -104.438</pre>	-96.428 84.593 77.73 77.763 77.080 77.080 77.080 77.080 77.024 77.5024 77.337 77.080 77.337 77.080 77.337 77.337 77.080 77.5024 77.5024 77.5024 77.5024 77.5024 77.5026 77.5026 77.5026 77.5020 77.5020 68.814	√26.080 ~26.045 ~25.073 \24.487
\mathbf{Y}			

-OBn BnO BnO BnO **17**β Ó 13 C NMR (125 MHz, CDCl₃)

f1 (ppm)

'	· · ·	I	'	' 1	'	' '				'	· I	' 1	' '	' '	'	· · ·		'	'	' ' '		· ·
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											fl (ppm))										

139.00 138.86 138.62 138.62 138.23 138.23	128.49 128.49 128.46 128.46 128.36 128.36 128.36 128.36 128.36 128.36 128.36 128.36 85.05 85.05 85.05 85.05 85.05 85.05 85.05 85.05 85.05 85.05 172.95 175.

138.779 138.716 138.540 138.428 138.428 138.258 137.460	128.385 128.368 128.368 128.082 128.082 127.976 127.976 127.976	82.861 79.699 77.414 77.160 77.160 77.160 77.002 75.009 75.002 75.002 75.002 75.002 75.002 75.002 75.002

Ph OBn BnO BnO-BnÒ -OMe BnÓ 24β BnO 24β SnO 13 C NMR (125 MHz, CDCI₃)

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 f1 (ppm)

2.0

1.5

1.0

0.5

0.0

-0.5

-1.

9.5

9.0

0.0

8.0

8.5

f1 (ppm)

$\int_{-138.76}^{-139.13} \frac{139.13}{138.76}$	128.51 128.41 128.22 128.20 128.20 128.20 108.66 104.78	96.46 96.46 77.41 77.41 77.41 77.41 74.61 73.60 73.60 73.56 73.56 73.56 73.56 73.56 77.3.56 77.3.56 77.74 77.77777777	26.12 26.08 25.16 24.53

0 1 3 1 2 2 0 8 1	040080904008000040080000000000000000000	0 4 4 LN 0 4 U
3000000000000000000000000000000000000	0 8 7 8 7 8 0 0 8 8 8 8 7 6 6 8 7 0 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4 いてい ar -
94m19L99	0 0 4 0 4 8 0 4 8 0 0 0 0 0 4 8 0 0 - 0 0 0 7 4 7	4 4 m U -N O A V
00000000000	666887777799999999486774	0 4 4 4 mu 0
		\dot{n} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m} \dot{m}

-98.09	82.02 77.31 77.31 77.06 77.06 77.06 73.45 73.19 53.37
--------	---

-16.90

 ^{13}C NMR (125 MHz, CDCl_3)

			k	
 130 120 110	0 100 90 f1 (ppm)	80 70 60	50 40 30 2	0 10 0 -10

$\int_{137.38}^{139.54} 139.54$	128.34 128.13 128.13 128.02 127.55 127.55 101.12 82.51 82.51 82.51 82.51 82.51 82.51 82.51 77.20 177.20	—16.99
---------------------------------	--	--------

0153701070735000737	000101000000000000000000000000000000000	000000000000000000000000000000000000000
7077807600077807787	0 7 8 9 6 7 0 9 0 0 0 7 0 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0, 1, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 1 0 0 1 1 0 8 8 0 1 1 1 8 8 8 6 6 0 0 0	8 0 1 2 0 1 0 2 1 0 2 1 0 0 0 0 0 0 0 0 0
444466666666666666666666666666666666666	0 0 1 1 1 1 1 1 1 2 2 8 8 8 8 7 7 9 1 1 1 1 7 5 7	0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6















210 200

10











