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Appendix 1 – Supplementary Methods 

Ecological niche modelling procedures 

We addressed collinearity in predictor variables through removing strongly correlated variables 

(R > 0.75; calculated in ENMTools, Warren et al. 2010), as well as variables that did not 

contribute to the model. Over-fitting and the effect of adjusting model parameters and 

regularization were assessed using Akaike Information Criterion (AIC) as implemented in 

ENMTools. The best fit model based on AIC scores included a regularization value of one, five 

features (linear, quadratic, product, threshold and hinge) and 1500 iterations. Following the 

recommendations in Merow et al. (2013), we used the raw output during the model 

comparison stage and the cumulative output to produce our final models and for model 

evaluation. 

Molecular lab protocols 

Genomic DNA was extracted using the Qiagen DNeasy Blood and Tissue extraction kit, and 

quantified with Qubit® Fluorometer 2.0 and the dsDNA High Sensitivity assay kit (Invitrogen, 

ThermoFisher Scientific). DNA degradation was assessed through visualisation on1% agarose 

gels. We excluded samples with low DNA quantity (<2 ng/μl) or quality. To equalise DNA 

concentration at around 2-3 ng/μl, we diluted samples with high DNA concentrations using the 

Qiagen elution buffer (EB). 
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The ddRAD library preparation protocol was based on the methodology originally reported by 

Peterson et al. (2012), with modifications / refinements as described in Manousaki et al. (2016). 

Briefly, each of the 95 DNA samples was simultaneously digested by two high fidelity restriction 

enzymes (RE): SbfI (CCTGCA|GG recognition site), and SphI (GCATG|C recognition site), both 

sourced from New England Biolabs (NEB, UK). Digestions were incubated at 37°C for 50 min, 

using 10 U of each enzyme per microgram DNA in 1× CutSmart Buffer (NEB), in a 6 µL total 

reaction volume. After cooling the reactions to room temperature, 3 µL of a premade barcode / 

adapter mix was added to the digested DNA, and incubated at room temperature for 10 min. 

This adapter mix comprised individual-specific barcoded combinations of P1 (SbfI-compatible) 

and P2 (SphI-compatible) adapters at 6 nM and 72 nM concentrations respectively, in 1× 

reaction buffer 2 (NEB). Adapters were compatible with Illumina sequencing chemistry (see 

Peterson et al., 2012). The barcoded adapters were designed such that adapter– genomic DNA 

ligations did not reconstitute RE sites, while residual RE activity limited concatemerization of 

genomic fragments. The adapters included an inline five- or seven-base barcode for sample 

identification. Ligation was performed over 3 hr at 22°C by addition of a further 3 µL of a 

ligation mix comprising 4 mM rATP (Promega, UK), and 2000 cohesive-end units of T4 ligase 

(NEB) in 1× CutSmart buffer. The ligated samples were then heat denatured at 65°C for 20 min, 

cooled, and combined into a single pool. The pooled sample was column-purified (MinElute PCR 

Purification Kit, Qiagen, UK), and eluted in 100 µL EB buffer (Qiagen, UK). Size selection of 

fragments, ranging from approximately 400 bp to 700 bp, was performed by agarose gel 

separation. Following gel purification (MinElute Gel Extraction Kit, Qiagen, UK), the eluted size-
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selected template DNA (60 µL in EB buffer) was PCR amplified (13 cycles PCR; 28 separate 12.5-

µL reactions, each with 1 µL template DNA) using a high fidelity Taq polymerase (Q5 Hot Start 

High-Fidelity DNA Polymerase, NEB). The PCR reactions were combined (350 µL total), and 

column-purified (MinElute PCR Purification Kit). The 55 µL eluate, in EB buffer, was then 

subjected to a further size-selection cleanup using an equal volume of AMPure magnetic beads 

(Perkin-Elmer, UK), to maximize removal of small fragments (less than ca. 200 bp). The final 

library was eluted in 19 µL EB buffer and sequenced, over three consecutive Illumina MiSeq 

runs (v2 chemistry, 300 cycle kit, 162 bp paired end reads; Illumina, Cambridge, UK). 

Bioinformatics for genomic data analysis 

The MiSeq generated reads were processed using a software pipeline designed specifically for 

RAD analysis, Stacks (v.1. 17; Catchen et al., 2013). First, the ‘process_radtags’ function was 

used to demultiplex the individual samples. During this step sequence reads with quality scores 

below 10, missing either restriction site or with ambiguous barcodes were discarded. Barcodes 

were removed and all sequences trimmed to be no greater than 148 bases long. For the 

purposes of this analysis paired-end reads were treated as separate loci, read 2 sequences 

being appended to read 1 sequence files. These sequences were assigned to RAD loci and 

genotypes using the ‘denovo_map.pl’ component of Stacks. The key parameter values 

employed in identifying RAD loci were; a minimum stack depth of 10 (m=10), a maximum of 2 

mismatches allowed in a locus (M=2) in an individual and up to 1 mismatch between loci when 

building the catalog (n=1). Finally the ‘populations’ component of Stacks was used to export 
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filtered data (polymorphic loci containing 1-3 SNPs and present in at least 70% of samples for 

each population) in PLINK file format (PED and MAP files). 

Population structure analysis methods 

We ran assignment tests in STRUCTURE (Pritchard et al. 2000) for population cluster values of 

K=1-9. We performed five independent runs for each K with 100,000 burn-in iterations followed 

by 500,000 MCMC steps. We assumed the admixture model and did not include any prior 

information on populations.  The number of distinct clusters was determined using STRUCTURE 

HARVESTER (Earl & von Holdt 2012) based on the conservative Evanno’s method (Evanno et al. 

2005). We re-ran the analysis for each identified population cluster to look for sub-structuring. 

Cluster assignment was visualised with DISTRUCT (Rosenberg 2004). 

Outlier scan methods 

Bayescan (Foll & Gaggiotti 2008) was run with 1,000,000 iteration, 50,000 burn-in and 20 pilot 

runs. Results were visualised in R using the script provided with the Bayescan download 

package with no modifications, setting false discovery rate (FDR) to 0.05.  

LOSITAN (Antao et al. 2008) was run with 1,000,000 simulations under the Infinite Alleles 

mutation model, using the ‘Neutral’ mean Fst and forcing mean Fst options, and setting FDR to 

0.05 and confidence intervals to 0.99. 
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Methods for generating resistance cost surfaces for the landscape genetics analysis 

The ENM was transformed into opposite continuous resistance costs, whereby high probability 

of occurrence (100) received the lowest resistance costs (1), as well as into a categorical layer 

divided into 10 quantiles. The altitude and slope layers (downloaded from WordlClim, 

www.worldclim.org) were converted into continuous resistance costs that increased with 

elevation/slope (range 0-100). The forest cover gradient variable was generated through 

reclassifying the GlobCover2009 map into five forest cover categories. We also generated a 

continuous tree cover variable from Hansen et al. (2013) percent tree canopy cover map. 
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Appendix 2 – LFMM R script 

## Script for running LFMM through the R package LEA (Frichot & François 2015) based on the 
tutorial in http://membres-timc.imag.fr/Olivier.Francois/LEA/tutorial.htm 
 
library(LEA) 
 
# Data input from ped file 
data = read.table("snp_dataset.ped") 
output = ped2lfmm("snp_dataset.ped") 
 
# Input environmental data from text file saved as '.env' 
data_env = read.table("rainwarmq.env") 
 
# Running lfmm 
project = NULL 
project = lfmm("snp_dataset.lfmm", "rainwarmq.env", K = 3, repetitions = 5, iterations = 
100000, burnin = 10000, CPU = 4, 
                   project = "new") 
 
summary(project) 
 
# Get the zscores of each run for K = 3 
zs_k3_rain = z.scores(project, K = 3) 
 
# Combine the z-scores using the Stouffer method 
zs.stouffer_k3_rain = apply(zs_k3_rain, MARGIN = 1, median) 
 
# Calculate the genomic inflation factor 
lambda_k3_rain = median(zs.stouffer_k3_rain^2)/.456 
 
# Calculate adjusted p-values 
cp.values_k3_rain = pchisq(zs.stouffer_k3_rain^2/lambda_k3_rain, df = 1, lower = FALSE) 
plot(ecdf(cp.values_k3_rain),xlim=c(0,1),ylim=c(0,1)) 
abline(a=0,b=1) 
 
for (alpha in c(.05,.1,.15,.2)) { 
  # expected FDR 
  print(paste("expected FDR:", alpha)) 
  L = length(cp.values_k3_rain) 
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# Return a list of candidates with an expected FDR of alpha. 
  w = which(sort(cp.values_k3_rain) < alpha * (1:L) / L) 
  candidates = order(cp.values_k3_rain)[w] 
   
  # Estimated FDR and True Positives 
  estimated.FDR_k3_rain = length(which(candidates <= 350))/length(candidates) 
  estimated.TP_k3_rain = length(which(candidates > 350))/50 
  print(paste("FDR:", estimated.FDR_k3_rain, "True Positive:", estimated.TP_k3_rain)) 
} 
 
# Get list of candidate loci using the Benjamini-Hochberg procedure 
q = 0.05       # expected false discovery rate 
L = length(cp.values_k3_rain) 
a <-sort(cp.values_k3_rain) 
plot(a) 
lines(q*(1:L)/L) 
w = which(sort(cp.values_k3_rain) < q * (1:L) / L) 
candidates_k3_rain_0.05 = order(cp.values_k3_rain)[w] 
print(candidates_k3_rain_0.05) 
 
# Get the p-values 
p_k3_rain = p.values(project, K = 3) 
 
# Get the -log10(p-values) for K = 3 
mp_k3_rain = mlog10p.values(project, K = 3) 
 
# Write as text files 
write.table(zs.stouffer_k3_rain, "zs_k3_rain.txt", sep="\t") 
write.table(mp_k3_rain, "log10_k3_rain.txt", sep="\t") 
write.table(p_k3_rain, "p_values_k3_rain.txt", sep="\t") 
write.table(candidates_k3_rain_0.05, "candidate_loci_k3_rain_0.05.txt", sep="\t") 
  



 
 

10 
 

Appendix 3 – Supplemental Tables 

Table S1 – Environment variables included in the ecological niche models and their source. 

 

Variable Source Comments 

Bio7 - Temperature annual range WorldClim (www.worldclim.org)  
 Bio10 - Mean temperature of the warmest 

quarter WorldClim (www.worldclim.org)  
 Bio11 - Mean temperature of the coldest 

quarter WorldClim (www.worldclim.org)  
 Bio12 - Annual rainfall WorldClim (www.worldclim.org)  
 Bio15 - Rainfall seasonality WorldClim (www.worldclim.org)  
 Bio18 - Rainfall during the warmest quarter WorldClim (www.worldclim.org)  
 Slope WorldClim (www.worldclim.org)  
 

Land cover - GlobCover 2009 map 

European Space Agency 
(http://due.esrin.esa.int/page_gl
obcover.php)  

reclassified 
into 10 
categories 
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Table S2 – Plecotus austriacus SNPs identified by Bayescan outlier test as potentially under 

selection and the significance of their correlations (logistic regressions) with summer rainfall 

(GLMs rain) and temperature (GLMs temp) across the whole study areas (Full) and within Iberia 

(IB). Significant correlations after Bonferroni correction are highlighted in bold. 

 

Outlier SNPs GLMs rain full GLMs rain IB GLMs temp full GLMs temp IB 

517 NS NS P<0.001 NS 

1268 P<0.001 P<0.001 NS NS 

1644 P<0.01 P<0.05 NS P<0.05 

1911 NS NS P<0.001 NS 

2196 zero inflated zero inflated zero inflated zero inflated 

3848 P<0.01 NS P<0.001 P<0.05 

3869 zero inflated zero inflated zero inflated zero inflated 

4735 NS NS P<0.01 NS 

5401 zero inflated zero inflated zero inflated zero inflated 

5874 P<0.001 P<0.001 NS NS 

7135 NS NS NS P<0.001 

9060 zero inflated zero inflated zero inflated zero inflated 

9306 zero inflated zero inflated zero inflated zero inflated 

9872 NS P<0.01 NS NS 

10617 P<0.001 P<0.001 P<0.01 NS 

12222 P<0.01 NS P<0.001 P<0.05 

14219 zero inflated zero inflated zero inflated zero inflated 

14883 P<0.01 NS P<0.001 P<0.05 

15650 P<0.001 P<0.01 P<0.001 P<0.01 

18702 P<0.01 NS P<0.01 P<0.01 

22104 P<0.01 NS P<0.01 P<0.01 

22863 NS P<0.01 NS NS 

23049 zero inflated zero inflated zero inflated zero inflated 
24071 NS NS NS NS 
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Table S3 – The eight Plecotus austriacus SNPs identified as under climate-driven selection by 

Bayescan, LFMM, logistic regressions (GLMs) and LOSITAN (FDist), with their associated climatic 

variables and LFMM dataset (Full = whole study area; IB = Iberia only).     

 

SNP name Climate 
variable 

LFMM 
dataset 

GLMs LOSITAN Comments 

1268 Rain IB P<0.001 P<0.01  

1644 Rain Full + IB P<0.001 P<0.005  

3848 Temperature IB P<0.001 P<0.005  

5874 Rain IB  P<0.001 P<0.01  

9872 Rain IB P<0.01 P<0.005  

10617 Temperature 
+ Rain 

Full + IB P<0.001 NS Full only for 
Rain 

14883 Temperature 
+ Rain 

IB P<0.001 P<0.005  

15650  Temperature 
+ Rain 

Full + IB P<0.001 P<0.005 Full only for 
Rain 

 

 

 

  



 
 

13 
 

Tables S4 –Frequencies of potential climate-adaptive alleles in the Iberian Plecotus austriacus 

populations, including overall mean frequencies. Sensitivity is determined based on the overall 

mean frequency of potential climate-adaptive alleles in the population (high sensitivity <0.5, 

low sensitivity >0.5) and the number of adaptive alleles present at particularly low frequencies 

(<0.25), ranging from very high (++), to high (+), medium (0), and low (-).  

 

SNP Lisboa Bizkaia Girona Granada Albacete Valladolid Valencia 

1268 1.00 0.50 0.33 1.00 0.89 0.60 0.50 

1644 0.75 0.50 0.28 0.58 0.89 0.50 0.56 

3848 0.72 0.65 0.50 0.79 1.00 0.72 0.78 

5874 0.94 0.50 0.33 1.00 0.89 0.60 0.50 

9872 0.85 0.15 0.61 0.31 0.44 0.30 0.17 

10617 0.94 0.10 0.44 0.67 0.62 0.69 0.28 

14883 0.31 0.30 0.20 0.69 0.56 0.50 0.06 

15650 0.50 0.19 0.29 0.43 0.72 0.80 0.19 

        Mean 0.75 0.36 0.37 0.68 0.75 0.59 0.38 

Sensitivity   - ++ + - - - ++ 
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Table S5 – Genetic differentiation (Fst values) between Plecotus austriacus populations based 

on the neutral dataset (top triangle) and SNPs potentially associated with climate-adaptive 

genetic variation (bottom triangle). Lis=Lisboa, Bas= Bizkaia, Cat=Girona, Dev=Devon, 

Dor=Dorset, Gra=Granada, Alb=Albacete, Vld=Valladolid, and Val=Valencia. 

 
  Lis Bas Cat Dev Dor Gra Alb Vld Val 

Lis   0.038 0.035 0.106 0.091 0.027 0.035 0.027 0.036 

Bas 0.350   0.026 0.088 0.078 0.031 0.038 0.032 0.041 

Cat 0.287 0.026   0.080 0.070 0.029 0.034 0.025 0.033 

Dev 0.508 0.298 0.266   0.057 0.100 0.106 0.097 0.101 

Dor 0.292 0.288 0.097 0.541   0.088 0.094 0.082 0.093 

Gra 0.042 0.285 0.272 0.476 0.333   0.028 0.024 0.033 

Alb 0.074 0.288 0.296 0.559 0.399 0.039   0.028 0.037 

Vld 0.080 0.203 0.110 0.406 0.195 0.078 0.061   0.031 

Val 0.319 0.001 0.022 0.334 0.234 0.302 0.277 0.195   
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Table S6 – Measure of heterozygosity in neutral SNPs and corresponding relative levels of 

neutral genetic diversity in Plecotus austriacus populations. Relative neutral genetic diversity is 

ranked from low (Het<0.75) to medium (Het=0.75-0.9) and high (Het>0.9). Neutral sensitivity to 

future climate change is determined based on the potential contribution of genetic diversity to 

future adaptive potential (- low sensitivity due to high levels of neutral genetic diversity; 0 

medium sensitivity; + high sensitivity due to relatively low levels of genetic diversity). 

 

Population  Heterozygosity Neutral Genetic Diversity Neutral Sensitivity  

Lisboa 0.8855 medium 0 

Bizkaia 0.9638 high - 

Girona 0.9182 high - 

Devon 0.8351 medium 0 

Dorset 0.6636 low + 

Granada 0.8442 medium 0 

Albacete 0.9436 high - 

Valladolid 0.9596 high - 

Valencia 0.9711 
high - 

  



 
 

16 
 

Tables S7 – Results of multiple regressions on distance matrices (MRDM) of genetic distance 

(Fst) in the Plecotus austriacus neutral dataset against geographic distance (geo-dist) and 

landscape variables for which the sea was assigned a cost of 200 (ENM=ecological niche model, 

forest=forest cover gradient), and of the residuals of the regression of genetic and geographic 

distance (Fst~geo-dist) against landscape resistance.  

 

Variables R
2
 F P Comments 

Fst ~ geo-dist 0.649 63.1 0.0001 
 

Fst ~ ENM continuous 0.842 180.7 0.0001 
 

Fst ~ ENM 10 quantiles 0.798 134.5 0.0001 
 

Fst ~ forest cover gradient 0.588 48.6 0.0001 
 

Fst ~ % tree cover continuous 0.572 45.4 0.0001 
 

Fst ~ altitude 0.299 14.5 0.0004 
 

Fst ~ slope 0.667 68.2 0.0001 
 

Fst ~ ENM + forest 0.844 89.1 0.0001 forest NS 

Fst ~ ENM + altitude 0.85 93.6 0.0001 altitude NS 

Fst ~ ENM + slope 0.842 88.3 0.0001 slope NS 

Fst ~ ENM + forest + altitude 0.851 60.9 0.0001 forest/altitude NS 

     Residuals(Fst~geo-dist) ~ ENM 0.197 8.3 0.005 
 

Residuals(Fst~geo-dist) ~ forest NS 

 

0.181 NS 

Residuals(Fst~geo-dist) ~ altitude NS 
 

0.831 NS 

Residuals(Fst~geo-dist) ~ slope NS 
 

0.884 NS 

Residuals(Fst~geo_dist) ~ ENM + forest NS 

 

0.614 NS 

Residuals(Fst~geo_dist) ~ ENM + altitude NS 

 

0.304 NS 

Residuals(Fst~geo-dist) ~ ENM + slope NS   0.184 NS 
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Tables S8 – Results of multiple regressions on distance matrices (MRDM) of genetic distance 

(Fst) in the Plecotus austriacus neutral dataset against geographic distance (geo-dist) and 

landscape variables for which the sea was assigned a cost of 120 (ENM=ecological niche model, 

forest=forest cover gradient), and of the residuals of the regression of genetic and geographic 

distance (Fst~geo-dist) against landscape resistance.  

 

Variables R
2
 F P Comments 

Fst ~ geo_dist 0.649 63.1 0.0001 
 Fst ~ ENM 0.715 85.4 0.0001 

 Fst ~ forest 0.588 48.6 0.0001 
 Fst ~ altitude NS 

 
0.0921 NS 

Fst ~ slope 0.503 34.4 0.0001 
 Fst ~ ENM + forest 0.757 51.4 0.0002 
 Fst ~ ENM + altitude 0.754 50.5 0.0001 
 Fst ~ ENM + slope 0.727 43.9 0.0001 slope NS 

Fst ~ ENM + forest + altitude 0.776 36.9 0.0001 forest/altitude NS 

     Residuals(Fst~geo_dist) ~ ENM 0.172 7.1 0.01 
 Residuals(Fst~geo_dist) ~ forest NS 

 
0.355 NS 

Residuals(Fst~geo_dist) ~ slope NS 
 

0.632 NS 

Residuals(Fst~geo_dist) ~ altitude NS 
 

0.197 NS 

Residuals(Fst~geo_dist) ~ ENM + forest NS 
 

0.813 NS 

Residuals(Fst~geo_dist) ~ ENM + slope NS 
 

0.567 NS 

Residuals(Fst~geo_dist) ~ ENM + altitude NS   0.544 NS 
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Table S9 – Combinatorial barcodes used to identify individual bat samples in the pooled ddRAD 

sequence output. Read 1 sequences begin with P1 barcode; paired Read 2 sequences begin with 

P2 barcode. Detailed location information is given in Table 1. 

 

# Sample ID Population P1 barcode (read 1) P2 barcode (read 2) 

1 Bas_001 Basque TCTCTCA TAGCA 

2 Bas_003 Basque GTACACA TAGCA 

3 Bas_005 Basque CTCTTCA TAGCA 

4 Bas_006 Basque CTAGGAC TAGCA 

5 Bas_008 Basque ACGTA TAGCA 

6 Bas_009 Basque AGAGT TAGCA 

7 Bas_010 Basque ATGCT TAGCA 

8 Bas_011 Basque GACTA TAGCA 

9 Bas_012 Basque CAGTCAC TAGCA 

10 Bas_013 Basque GCTAACA TAGCA 

11 Cat_017 Catalunya ACACGAG TAGCA 

12 Cat_019 Catalunya AGGACAC TAGCA 

13 Cat_021 Catalunya TCAGA AGCTGTC 

14 Cat_023 Catalunya GATCG AGCTGTC 

15 Cat_024 Catalunya CATGA AGCTGTC 

16 Cat_026 Catalunya ATCGA AGCTGTC 

17 Cat_027 Catalunya TCGAG AGCTGTC 

18 Cat_028 Catalunya GTCAC AGCTGTC 

19 Cat_029 Catalunya GCATT AGCTGTC 

20 Cat_031 Catalunya CGATA AGCTGTC 

21 Aqu_P02 Lisboa TGCAACA AGCTGTC 

22 Aqu_P03 Lisboa CGTATCA AGCTGTC 

23 Aqu_P04 Lisboa CACAGAC AGCTGTC 

24 Aqu_P05 Lisboa ACTGCAC AGCTGTC 

25 Aqu_P06 Lisboa TCTCTCA AGTCA 

26 Aqu_P07 Lisboa GTACACA AGTCA 

27 Aqu_P08 Lisboa CTCTTCA AGTCA 

28 Aqu_P09 Lisboa CTAGGAC AGTCA 

29 Aqu_P11 Lisboa ACGTA AGTCA 

30 Aqu_P12 Lisboa AGAGT AGTCA 
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Table S9 continued 

 

# Sample ID Population P1 barcode (read 1) P2 barcode (read 2) 

31 Pal_051 Albacete ATGCT AGTCA 

32 Pal_052 Albacete GACTA AGTCA 

33 Pal_053 Albacete CAGTCAC AGTCA 

34 Pal_054 Albacete GCTAACA AGTCA 

35 Pal_055 Albacete ACACGAG AGTCA 

36 Pal_056 Albacete AGGACAC AGTCA 

37 Pal_057 Albacete TCAGA TACGTGT 

38 Pal_058 Albacete GATCG TACGTGT 

39 Pal_059 Albacete CATGA TACGTGT 

40 Pal_060 Albacete ATCGA TACGTGT 

41 Gra_071 Granada TCGAG TACGTGT 

42 Gra_072 Granada GTCAC TACGTGT 

43 Gra_073 Granada GCATT TACGTGT 

44 Gra_074 Granada CGATA TACGTGT 

45 Gra_075 Granada TGCAACA TACGTGT 

46 Gra_076 Granada CGTATCA TACGTGT 

47 Gra_077 Granada CACAGAC TACGTGT 

48 Gra_078 Granada ACTGCAC TACGTGT 

49 Gra_079 Granada TCTCTCA GCATA 

50 Val_081 Valladoid GTACACA GCATA 

51 Val_082 Valladoid CTCTTCA GCATA 

52 Val_083 Valladoid CTAGGAC GCATA 

53 Val_085 Valladoid ACGTA GCATA 

54 Val_086 Valladoid AGAGT GCATA 

55 Val_087 Valladoid ATGCT GCATA 

56 Val_088 Valladoid GACTA GCATA 

57 Val_090 Valladoid CAGTCAC GCATA 

58 Val_091 Valladoid GCTAACA GCATA 

59 Val_092 Valladoid ACACGAG GCATA 
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Table S9 continued 

 

# Sample ID Population P1 barcode (read 1) P2 barcode (read 2) 

60 Val_094 Valencia AGGACAC GCATA 

61 Val_095 Valencia TCAGA GAGATGT 

62 Val_096 Valencia GATCG GAGATGT 

63 Val_097 Valencia CATGA GAGATGT 

64 Val_098 Valencia ATCGA GAGATGT 

65 Val_099 Valencia TCGAG GAGATGT 

66 Val_100 Valencia GTCAC GAGATGT 

67 Val_101 Valencia GCATT GAGATGT 

68 Val_103 Valencia CGATA GAGATGT 

69 Des_104 Vila Real TGCAACA GAGATGT 

70 Des_105 Vila Real CGTATCA GAGATGT 

71 Des_106 Vila Real CACAGAC GAGATGT 

72 Des_107 Vila Real ACTGCAC GAGATGT 

73 Des_108 Vila Real TCTCTCA CGATC 

74 Des_109 Vila Real GTACACA CGATC 

75 Des_110 Vila Real CTCTTCA CGATC 

76 Des_111 Vila Real CTAGGAC CGATC 

77 Dev_U02 Devon ACGTA CGATC 

78 Dev_U03 Devon AGAGT CGATC 

79 Dev_U04 Devon ATGCT CGATC 

80 Dev_U05 Devon GACTA CGATC 

81 Dev_U06 Devon CAGTCAC CGATC 

82 Dev_U07 Devon GCTAACA CGATC 

83 Dev_U08 Devon ACACGAG CGATC 

84 Dev_U09 Devon AGGACAC CGATC 

85 Dev_U10 Devon TCAGA CATCTGT 

86 Dor_U11 Dorset GATCG CATCTGT 

87 Dor_U12 Dorset CATGA CATCTGT 

88 Dor_U13 Dorset ATCGA CATCTGT 

89 Dor_U14 Dorset TCGAG CATCTGT 

90 Dor_U15 Dorset GTCAC CATCTGT 

91 Dor_U16 Dorset GCATT CATCTGT 

92 Dor_U17 Dorset CGATA CATCTGT 

93 Dor_U18 Dorset TGCAACA CATCTGT 

94 Dor_U19 Dorset CGTATCA CATCTGT 

95 Dor_U20 Dorset CACAGAC CATCTGT 
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Appendix 4 – Supplemental Figures 

 

 
 

Figure S1 – Variables included in the ecological niche model and their relative contribution to 

the model in terms of their effect on increasing model gain when used in isolation (size of dark 

blue relative to red bar) and on decreasing model gain when omitted from the model (extent of 

reduction in light blue bars relative to the red bar). bio_rain = annual rainfall, coldq_tav = 

average temperature of the coldest quarter, glb_landcover = global land cover, rain_seas = 

rainfall seasonality, rain_warmq = summer rainfall, temp_range = annual temperature range 

(maximum minus minimum annual temperatures), warmq_tav = average temperature of the 

warmest quarter. 
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Figure S2 – Estimates of population structure based on individual-based assignment tests 

(STRUCTURE) and Evanno’s method delta K (B, D) for the full Plecotus austriacus dataset (A, B) 

and within the Iberian cluster (C, D). Lis=Lisboa, Bas= Bizkaia, Cat=Girona, Dev=Devon, 

Dor=Dorset, Gra=Granada, Alb=Albacete, Vld=Valladolid, and Val=Valencia. 
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Figure S3 – Frequency of climate-adaptive SNPs in Plecotus austriacus populations, presented 

over climatic maps (summer rainfall and maximum temperatures). White represents alleles 

adapted to warmer and dryer conditions. Only Iberian genotypes are shown for SNPs that are 

only associated with climatic conditions in Iberia. 
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Figure S4 – Patterns of Isolation by Environment in Plecotus austriacus SNPs associated with 

climate-adaptive genetic variation across the whole study area (A) and within Iberia (B). 

 
 
 
 


