SUPPORTING INFORMATION

Figure S1. Promoter activity analyses of *MtABCG20* in transgenic *M. truncatula* roots.

Figure S2. Promoter activity analyses of *MtABCG20* in transgenic *M. truncatula* nodule.

Figure S3. Phenotypic characterization of *mtabcg20* mutants.

Figure S4. Expression of MtABCG20 in *N. tabacum* BY-2 cells.

Figure S5. Plasma membrane localization of MtABCG20 in BY2 cells.

Figure S6. ABA transport assay in BY2 cells.

Figure S7. Experimental scheme of ABA application onto Medicago embryo.

Figure S8. Real-time PCR expression analyses of *MtHAI2* and *MtEXP1* in embryo axes.

Figure S9. Real-time PCR expression analyses of *MtHAI2* in cotyledons.

Figure S10. Changes of the selected (clustering with AtABCG25) half-size *MtABCGs* expression in roots after exogenous ABA application.

Figure S11. Phylogenetic tree of half-size ABCG proteins from *Arabidopsis thaliana* and *Medicago truncatula*.

Table S1. Accession numbers of *Medicago truncatula* half-size ABCG genes (WBC).**Table S2.** List of primers used in this study.

Supporting Figures

Figure S1. Promoter activity analyses of *MtABCG20* in transgenic *M. truncatula* roots. (A) Control, untreated transgenic roots. (B) Transgenic roots treated by $10 \,\mu$ M ABA.

Figure S2. Promoter activity analysis of *MtABCG20* in transgenic *M. truncatula* nodule.

Figure S3. Phenotypic characterization of *mtabcg20* mutants. (A) Average lateral root number per plant in WT and *mtabcg20* plants. All plants were grown for four weeks on $\frac{1}{2}$ MS medium. Data represent the mean \pm SD of N=5, n=5. (B) Average nodule number per plant in WT and *mtabcg20* plants. 3-day-old seedlings, were inoculated with *S. meliloti* and grown on modified Fahraeus (-N) medium. At 21 days post-inoculation (dpi), nodule numbers were counted. The data represent the mean \pm SD of N=5, n=5.

Figure S4. Expression of MtABCG20 in *N. tabacum* BY-2 cells. (A) Western blot analysis of the crude membranes (30 μ g), obtained from BY2 transformed with empty vector (EV) and BY2 MtABCG20-overexpressing lines. Microsomal fractions were isolated as previously described (Jasinski et al., 2001) from 300 mg of BY2 cells. The proteins were separated by SDS-PAGE and transferred to a polyvinylidene fluoride membrane (Millipore) by electroblotting (semi-dry; apparatus; Bio-Rad). The membrane was incubated with a primary Anti-GFP from mouse (Roche) diluted 1/1000 and the secondary alkaline phosphatase-conjugated goat anti-mouse IgG (Abcam) diluted 1/15000. (B) Coomassie blue-stained gel with crude membrane fraction as a loading control. M - PerfectTM Tricolor Protein Ladder (EURx).

Figure S5. Plasma membrane localization of MtABCG20 in BY2 cells. (A) Non-plasmolysed BY2 cell expressing the fusion protein GFP-MtABCG20. GFP signal was localized on the surface of cells (B) Plasmolysed (5% NaCl for 10 min) BY-2 cells expressing the fusion protein GFP-MtABCG20. GFP signal was distributed on a plasma membranes and Hechtian strands. (C) Control BY2 cell expressing free cytoplasmic GFP. Bars = $15 \mu m$.

Figure S6. ABA transport assay in BY2 cells. ABA efflux from BY2 control (EV) and *MtABCG20*-overexpressing cell lines, conducted at 18°C and monitored by HPLC/MS. The 100% value represents the quantity of cell-associated ABA, defined as the ratio of the single-ion chromatogram peak area to the internal standard, at the time 0 (T0). Values represent the mean of three experiments ± SD. Significant differences between control and overexpressing lines determined by Student's t-test are indicated: *P < 0.05, **P < 0.01.

Figure S7. Experimental scheme of ABA application onto Medicago embryo.

Figure S8. The second biological replicate of real-time PCR expression analyses of *MtHAI2* and *MtEXP1* in embryo axes derived from WT and *mtwbc20* dissected embryos. Embryos were untreated or treated with ABA applied onto the hypocotyl-radicle region. Transcript levels were normalized to the *Actin* gene. The data represent the mean \pm SD of three technical repeats. Significant differences from the WT plants determined by Student's t-test are indicated: *P<0.05, **P < 0.01.

Figure S9. Two biological replicates of real-time PCR expression analyses of *MtHAI2* in cotyledons derived from WT and *mtwbc20* dissected embryos. Embryos were untreated or treated with ABA applied to the hypocotyl-radicle region. Transcript levels were normalized to the *Actin* gene. The data represent the mean \pm SD of three technical repeats. Significant differences from the WT plants determined by Student's t-test are indicated: *P<0.05, ***P<0.001.

	Control			ΑΒΑ 1μΜ		ΑΒΑ 10μΜ			
	1h	6h	24h	1h	6h	24h	1h	6h	24h
MtABCG20	-	and the second	-	-	-		-		-
MtABCG26		_		-	-		-		-
MtABCG12		-	-	-	-	-	-	-	-
MtABCG30		-	-	4	descent.	-	-	married a	-
MtABCG31	and the second	-	-	-	-	-	-		-
Actin	-		-						

Figure S10. Changes of the selected (clustering with AtABCG25) half-size *MtABCGs* expression levels in roots after exogenous ABA application. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of the half-size *MtABCGs* mRNA accumulation in control and ABA (1 μ M and 10 μ M) treated roots at the indicated time points. The *Actin* gene transcript was used as an internal control.

Figure S11. Phylogenetic tree of half-size ABCG proteins from *Arabidopsis thaliana* and *Medicago truncatula*. A maximum likelihood tree (bootstraps: 1000) was conducted using MEGA 6.0 software based on the amino acid sequences after multiple sequence alignment generated with MUSCLE. The cluster with described ABA transporters (AtABCG25 and MtABCG20) is highlighted.

Supporting Tables

Table S1. Accession numbers of *Medicago truncatula* half-size ABCG genes (WBC).

NAME	NAME*	LOCUS
MtABCG1	MtWBC1/MtSTR1**	Medtr8g107450
MtABCG2	MtWBC2/MtSTR2**	Medtr5g030910
MtABCG3	MtWBC3	Medtr5g096390
MtABCG4	MtWBC4	Medtr4g054020
MtABCG5	MtWBC5/MtABCG3***	Medtr4g093845
MtABCG6	MtWBC6	Medtr4g094090
MtABCG7	MtWBC7	Medtr4g094060
MtABCG8	MtWBC8	Medtr4g094050
MtABCG9	MtWBC9	Medtr4g094010
MtABCG10	MtWBC10	Medtr8g093840
MtABCG11	MtWBC11	Medtr4g076900
MtABCG12	MtWBC12	Medtr5g025470
MtABCG13	MtWBC13	Medtr7g100120
MtABCG14	MtWBC14	Medtr4g116540
MtABCG15	MtWBC15	Medtr1g099570
MtABCG16	MtWBC16	Medtr3g096410
MtABCG17	MtWBC17	Medtr4g076940
MtABCG18	MtWBC18	Medtr4g076970
MtABCG19	MtWBC19	Medtr2g095390
MtABCG20	MtWBC20	Medtr1g093990
MtABCG21	MtWBC21	Medtr1g094660
MtABCG22	MtWBC22	Medtr1g063920
MtABCG23	MtWBC23	Medtr7g101780
MtABCG24	MtWBC24	Medtr1g108340
MtABCG25	MtWBC25	Medtr1g115790
MtABCG26	MtWBC26	Medtr1g096580
MtABCG27	MtWBC27	Medtr1g054935
MtABCG28	MtWBC28	Medtr1g054960
MtABCG29	MtWBC29	Medtr7g106880
MtABCG30	MtWBC30	Medtr8g059150
MtABCG31	MtWBC31	Medtr2g079980
MtABCG32	MtWBC32	Medtr3g040670
MtABCG33	MtWBC33	Medtr4g058000
MtABCG34	MtWBC34	Medtr6g066240
MtABCG35	MtWBC35	Medtr2g078080
MtABCG36	MtWBC36	Medtr4g094080

MtABCG/MtWBC have been identified in *M.truncatula* genome, version Mt4.0v2 <u>http://www.medicagogenome.org/</u> (Tang et al., 2014)

* MtWBC1-MtWBC25 (Banasiak and Jasinski, 2014);

** (Gutjahr et al., 2012);

*** (Luginbuehl et al., 2017).

Table S2. List of primers used in this study.

A. Primers for Real-Time PCR/ddPCR/semi-quantitative PCR analyses

Genes	Forward primers	Reverse primers
MtABCG20	5'- TCT CAT GGA TGT TAA GCA GG -3'	5'- CTC CCC ACA TAT TAC CAA GC -3'
MtHAI2	5'-CATTGGCGAGGAATAGTTCG-3'	5'-TGTCCAGACACAGTACACG-3'
MtEXP1	5'-GTATAGGAGAGTTGGGTGC-3'	5'-ATAGCTGTACGAGTCTTCC-3'
MtNCED	5'-TTCTATTCAGCTTCCTTCTCG-3'	5'-GTAAAATCTCTACTCACAGACC-3'
MtGPAT5	5'-TTC CTA CCG TGA GAC TAA CC-3'	5'-CTT TCC GAG TAA AGT TAG TGC-3'
abi1-1	5'-CTT CCA TTA TCC GTT GAC C -3'	5'-CAC ACT TAT GTT GTC TTT GC -3'
Mtβ-Actin	5'-GTACTTTCCAGCAGATGTGG-3'	5'-AACCTACAGACATCCAGTGG-3'

B. Promoters activity analyses (gene specific sequences underlined)

DNA fragments	Forward primers	Reverse primers
PrABCG20-GUS	5'- atgaattc <u>GGACGAGTTATTTGTTTAGG</u> -3'	5'-taggatccATCTTAGATATAAGATAAAGTTTTG-3'
PrABCG20-NLS-GFP	5'-tagttggaatgggttcgaa <u>GGACGAGTTATTTGTTTAGG</u> -3'	5'-ttatggagttgggttcgaaCTTAGATATAAGATAAAGTTTTG-3'

C. Primers used for clonning of MtWBC20 cDNA (gene specific sequences underlined)

DNA fragment	Forward primers	Reverse primers
MtABCG20	5'- <u>ACTTTGAGTTTATCCTCTAGCC</u> -3'	5'- <u>GTTAGTAACACTGACACAGG</u> -3'
MtABCG20 Ascl/Pacl	5'-ggcgcgcc <u>TCTTATATCTAAGATGATGC</u> -3'	5'-ttaattaaGGTTGGACCCTAGACACGC-3'
MtABCG20 Gateway	5'-ggggacaagtttgtacaaaaagcaggcttcCTTATATCTAAGATGATGCC-3'	5'- ggggaccactttgtacaagaaagctgggtcGGCATTTAGGTTGCCC -3'

Supplementary Reference

- Banasiak, J., Jasinski, M. (2014). Defence, symbiosis and ABCG transporters. In Plant ABC transporters (Springer: Heidelberg), p.163-184.
- Gutjahr, C., Radovanovic, D., Geoffroy, J., Zhang, Q., Siegler, H., Chiapello, M., Casieri, L., An, K., An, G., Guiderdoni, E., et al. (2012). The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906-920.
- Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J., and Boutry, M. (2001). A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095-1107.
- Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G.V., Breakspear, A., Oldroyd, G.E.D., and Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175-1178.
- Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., Gentzbittel, L., Childs, K.L., Yandell, M., Gundlach, H., et al. (2014). An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312.