Mice Lacking Epidermal Retinol Dehydrogenases SDR16C5 and SDR16C6 Display Accelerated Hair Growth and Enlarged Meibomian Glands.

Lizhi Wu, Olga V. Belyaeva, Mark K. Adams, Alla V. Klyuyeva, Seung-Ah Lee, Kelli R. Goggans, Robert A. Kesterson, Kirill M. Popov, Natalia Y. Kedishvili

SUPPORTING INFORMATION

- 1. Table S1
- 2. Table S2
- 3. Figure S1
- 4. Figure S2
- 5. Figure S3
- 6. Figure S4
- 7. Figure S5

CCAGAACATGTCTCAAAACCTGG

Table S1. A list of primers used for generating expression constructs and for screening an	ıd
genotyping of knockout mouse strains.	

Primers for expression constructs					
Construct	Primer name	Primer sequence (restriction sites underlined)			
mRDHE2/pBluescript II SK (-)	mE2_Sall_F	TTT <u>GTCGAC</u> ATGTCTCAAAACCTGGA			
mRDHE2/pBluescript II SK (-)	mE2_Xbal_R	TTT <u>TCTAG</u> ATTAAGTTTTCTTCTTTTG			
mRDHE2-His/pVL1393	mE2_Xbal_F	AAA <u>TCTAGA</u> ATGTCTCAAAACCTGGA			
mRDHE2-His/pVL1393	mE2_NotI_R	AATAAT <u>GCGGCCGC</u> AGTTTTCTTCT			
mRDHE2S-His/pVL1393	mE2S_BamHI_F	ATC <u>GGATCC</u> ATGAATTCAGTGGCA			
mRDHE2S-His/pVL1393	mE2S_NotI_R	ATC <u>GCGGCCGC</u> TTGCTCTTTCCTTT			
mRDHE2-FLAG/pCMV-tag4A, mRDHE2-					
FLAG/pCS105	mE2_EcoRI_F	TTT <u>GAATTC</u> ATGTCTCAAAACCTGGAA			
mRDHE2-FLAG/pCMV-tag4A	mE2_XhoI_R	TTT <u>CTCGAG</u> AGTTTTCTTCTTTTGGCC			
mRDHE2-FLAG/pCS105	FLAG_Xbal_R	TAC <u>TCTAGA</u> CTACTTATCGTCGTCATC			
Primers for <i>Rdhe2s^{-/-}</i> strain					
	Primer name	Primer sequence			
Screening of ES cells by long-range PCR					
5' arm	E2Sscreen1F	GGCATCTGGGATCTAACGTTTCTCCA			
5° arm	E2Sscreen1R	AGCAGGCCACCCAACTGACCT			
2' arm	R2R	TCTATAGTCGCAGTAGGCGG			
	Sdr16c6genoR2	GCTGGCAAGCTTCCTTTACAGCCA			
Genotyping of <i>Rdhe2s^{-/-} "</i> knockout first" strain					
W/T allala	WT F	GGCATTTGTGGCATGGGAACTTATG			
	WT R	GCAGGAAGGAAGGCCTTACAAGTC			
"Knockout first" allele	WT F	GGCATTTGTGGCATGGGAACTTATG			
KHOCKOUT HIST allele	KO R (LAR3)	CACAACGGGTTCTTCTGTTAGTCC			
Genotyping of <i>Rdhe2s^{-/-}</i> strain					
W/T allele	WT F	GGCATTTGTGGCATGGGAACTTATG			
	WT R	GCAGGAAGGAAGGCCTTACAAGTC			
KO (Fig. Cre. eveland) ellele	WTF	GGCATTTGTGGCATGGGAACTTATG			
KO (Fip, Cre-excised) allele	KO ^{FLP/CRE excised} R	ACTGATGGCGAGCTCAGACC			
Primers for CRISPR-generated <i>Rdhe2^{-/-};Rdhe2s^{-/-}</i> founders					
	Primer name	Primer sequence			
Screening of targeted exons:					
Evon 2 Sdr16c6	Sdr16c6ex2F	CAACATGAATTCAGTGGCAGACACA			
	Sdr16c6ex2R	TGATCAGCAACTCTGTAGACCTC			
Evon 5 Sdr16c6	Sdr16c6ex5F	ATACTCTGTCCTCAAGGATAAACC			
	Sdr16c6ex5R	GAGGAAGAGCTCACTTACTTGGT			

Sdr16c5ex2F

Exon 2, *Sdr16c5*

	Sdr16c5ex2R	GGTCAGCCACTCTGTACACTT
Evon E. Sdr16cE	Sdr16c5ex5F	CAGACTATTGTGCAAGTAAATTCGC
EXUIT 5, SULTECS	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
Screening for large deletions:		
Dair 1	Sdr16c6ex2F	CAACATGAATTCAGTGGCAGACACA
Pair 1	Sdr16c6ex5R	GAGGAAGAGCTCACTTACTTGGT
Dair 2	Sdr16c6ex2F	CAACATGAATTCAGTGGCAGACACA
	Sdr16c5ex2R	GGTCAGCCACTCTGTACACTT
Dair 2	Sdr16c6ex2F	CAACATGAATTCAGTGGCAGACACA
Pall 5	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
Dair 4	Sdr16c6ex5F	ATACTCTGTCCTCAAGGATAAACC
	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
Dair F	Sdr16c5ex2F	CCAGAACATGTCTCAAAACCTGG
	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
Dair 6	Sdr16c5ex4F	GGTCTTCTTAGATGTATAAAGCCT
	Sdr16c5ex6R	CATGGAAACTGGTGCTGTTACCT
Additional exons:		
Even E. Sdr16cE	Sdr16c5ex3F	CCAGGTTAAGAAAGAAGTTGGTG
EX011 5, 50/10C5	Sdr16c5ex3R	CACCCATAAATGTGCTTTGAAATTGAC
Evon 1 Sdr16cE	Sdr16c5ex4F	GGTCTTCTTAGATGTATAAAGCCT
Ex011 4, 30/1023	Sdr16c5ex4R	ACACTGTGGGAGGCAGACC
Even 6 Sdr16cE	Sdr16c5ex6F	TAGGTGTCCTACTCTGTTACCA
Ex011 0, 30/1003	Sdr16c5ex6R	CATGGAAACTGGTGCTGTTACCT
Evon 2 Sdr16c6	Sdr16c6ex3F	CTGACAATGCTCCCAGCAAG
Ex011 5, 50/1000	Sdr16c6ex3R	AATGCAGAGAATTCTGATGCTCAC
Evons 1 and 5 Sdr16c6	Sdr16c6ex4-5F	GCTGTATACTTCCTACTTTCCTGC
	Sdr16c6ex4-5R	TAAGAGTAGAGGAAGAGCTCACT
Evon 6 Sdr16c6	Sdr16c6ex6F	GAACCTCTGTGTTGTCATTCCAG
	Sdr16c6ex6R	TCTTGAGAGGCCCACATGATG
Evon 7 Sdr16c6	Sdr16c6ex7F	GGTGGTATGCTTCCATTCAGC
Ex0117; 30/1000	Sdr16c6ex7R	GGCAGGATTATGAAAGGCCAG
Genotyping of DKO1 and DKO2 strains		
W/T allele	Sdr16c5ex5F	CAGACTATTGTGCAAGTAAATTCGC
	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
DKO1 allele	Sdr16c6ex5F	ATACTCTGTCCTCAAGGATAAACC
	Sdr16c5ex5R	TGGGCAGAGAGTAAATTTGAATGCC
	Sdr16c5intr4F4	CTTGAGATAATCAACTTGAAAGGAG
	Sdr16c5intr5R2	GAATGGGTCTGAATGGCATTACG

Table S2. CRISPR target sequences.

	Target sequence			
<i>Sdr16c6,</i> Exon 2				
CRISPR1	AACTAAAGTGGCCCCGTGGC	TGG		
CRISPR2	CAATATGGAAACCTGTAGAC	TGG		
<i>Sdr16c6,</i> Exon 5				
CRISPR1	TCATTATCATAGTTAATTCA	AGG		
CRISPR2	TGCCCCTATTTCATCAAAAC	TGG		
Sdr16c5, Exon 2				
CRISPR1	TCACCGGCAACGTTCTTCCG	TGG		
CRISPR2	ATAGTGCTCATAACAGGTGC	TGG		
Sdr16cE Exan E				
SUI 10LS, EXUILS		<i>~~~</i>		
CRISPR1	CATAGATICIGCAAAICCAA	GGG		
CRISPR2	CACTTGCCAAGAAACAATGG	GGG		

Nucleotides in italics represent the protospacer adjacent motif (PAM), the sequence required for CRISPR/Cas9.

Figure S1. Generation of *Rdhe2s^{-/-}* **mice. A.** Diagram of targeting construct for production of *Rdhe2s^{-/-}* mice. Mice carrying the "knockout first" *Rdhe2s* mutant allele (*Sdr16c6*^{tm1a(KOMP)Wtsi}) were mated with FLPeR mice carrying a gene encoding FLP recombinase. The progeny was mated with EIIa-cre mice, which carry a gene encoding Cre recombinase. **B.** Sequences of wild type and null alleles of *Rdhe2s* beginning at codon for residue N145. The mutant sequence is underlined starting at residue 152. Catalytic residues are shown in white on black background. The null allele contains a frameshift mutation and aberrant stop codon at L177 (indicated by *), resulting in a truncated protein that lacks catalytic residues. **C.** Gel electrophoresis of PCR products confirming the Cre and Frt excision. Wild type allele was amplified using primers WT F and WT R; null allele was amplified using primers WT F and KO^{FLP/CRE} excised **R**.

Figure S2. QPCR analysis of genes expressed in hair follicles and sebaceous glands. QPCR was performed using skin from $Rdhe2s^{-/-}$ (E2S KO) female mice (n=3) and their littermates (n=3) (~10 weeks old) fed chow diet as described under *Experimental Procedures*. The differences in gene expression were not statistically significant. Expression levels were normalized per *Hprt*.

Figure S3. Protein sequences encoded by CRISPR-Cas9 – generated alleles

RDI	IE2S:	1	0	20	20	40	FO	60	70	80
	DDUDOC			20	30	10	50			. 80
WT DVO1	RDHE25	MNSVADTAIFFG	KELIIFLE:	SLVERVIPRE	KKDVSGEIVI	TTGAGSGLG	RLLAIHFASHG	ATLVLWDING	EGNMETCRLV	
DKOI	RDHEZS	MNSVADTAIFFG	KELIIFLE:	SLVEKVIPKE	KKDVSGEIVI	TTGAGSGLG	RLLAIHFASHG	ATLVLWDING	CEGNMETCRLV	
DK02	RDHE2S	MNSVADTAIFFG	KELIXELES	STAFKATAKE	KKDVSGEIVI	TTGAGSGLG	ALLAIHFASHG	ATLVLWDINÇ	SEGNMETCQTK	
		9	0 1	100	110	120	130	140	150	160
WT	RDHE2S	KQKGDVKVFAYKCDCSSRIEVYRVADQVKEEVGDVTILINNAGVVTGKSFLNTPDHLVEKSFLVNAISHFWTCKAFLPAM								
DKO1	RDHE2S	KQKGDVKVFAYKCDCSSRIEVYRVADQVKEEVGDVTILINNAGVVTGKSFLNTPDHLVEKSFLVNAISHFWTCKAFLPAM								
DKO2	RDHE2S	R*								
		17	0 1	180	190	200	210	220	230	240
WT	RDHE2S	VKANHGHLVCIS	SIAGLVGI	IGLSDYSSSF	FAAFGFAESI	FLELTMINK	TKVKSTIVCPY	FIKTGMFEGO	TTKYPLLLPI	
DKO1	RDHE2S	VKANHGHLVCIS	SIAGLVGI	GLSDYSSSF	FAAFGFAESI	FLDLVLR*				
DKO2	RDHE2S									
		2	50	260	270	280	290	300	310	
WT	RDHE2S	LEQEYVAQKIFN	AILEEQVYI	LIIPKFAYVA	LFLKQIISP	MMIALGEYLO	GVDTCMTSFTG	RVKAEELQME	TKRKEQ*	
RDI										
1001		1	.0	20	30	40	50	60	70	80
WT	RDHE2	MSQNLESVKNLL	VFLGKSLLS	SVLEALLFHV	ISKPRKNVAC	EIVLITGAG	GLGRLLALQF	ARLGAVLVLW	DVNKEANDEI	!
DKO2	RDHE2	MSQNLESVKNLL	VFLGKSLLS	SVLEALLFHV	ISKPRKNVA	EIVLITGAG	GLGRLLALQF	ARLGAVLVLW	DVNKEANDEI	!
			90	100	110	120	130	140	150	160
WT	RDHE2	HQLAREAGAARV	HAYTCDCSE	RREEVYRVAL	QVKKEVGDVS	ILINNAGIV	GRNFLDCPDD	LMEKSFDVNE	KAHLWMYKAF	•
DKO2	RDHE2	HQLAREAGAARV	HAYTCDCSE	RREEVYRVAL	QVKKEVGDVS	ILINNAGIV	GRNFLDCPDD	LMEKSFDVNE	KAHLWMYKAF	•
		1	70	180	190	200	210	220	230	240
WT	RDHE2	LPAMIANNHGHL	VCISSSAG	LIGVNGLSDY	CASKFAALGE	AESMFIETL	AKKOWGIKTTI	VCPFFIKTGM	FEGCTTKCPI	
DKO2	RDHE2	LPAMIANNHGHL	VCISSSAG	LIGVNGLSGV	LLCYOFWION	MOLGKS*	~			
		2	50	260	270 ~ ~	280	290	300	310	
WT	RDHE2	LLPILDPEYAVR	KIIDAILQE	EQLYLYMPKE	LYFIVFLKS	LPIKTGILIZ	ADYLGVFHMTE	GFTGQKKKT*	r	

Figure S4. Hair regrowth in DKO and WT mice on vitamin A deficient diet. DKO2 mice of both sexes and their WT littermates of the same sex were shaved at ~10 weeks of age. Male mice were photographed on Days 1, 4 and 7 after shaving. Female mice were photographed on Days 5 and 7 after shaving.

Figure S5. Thin-layer chromatography analysis of reaction products derived from incubation of skin microsomes with steroid substrates. Skin microsomal fractions of WT and DKO animals (90 μ g) were incubated with 3 μ M [³H]-labeled steroids solubilized with bovine serum albumin in the presence or absence of 1 mM NAD(H) cofactor as described in [90]. Incubation was performed in 300- μ l reaction volume for 75 min at 37 °C and steroids were extracted, separated by thin layer chromatography and visualized as described before [90]. Abbreviations are as follows: ADT, androsterone; DHT, dihydrotestosterone; DHEA, dehydroepiandrosterone; E2, estradiol; PROG, progesterone; CORT, corticosterone.