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Supplemental Methods17

Wildfire submodel18

For each timestep between 2001 and 2016, wildfire was estimated deterministically using19

annual burn perimeters from a state fire database (FRAP) (CalFIRE, 2016). Over the20

historical period, fire severity was modeled based on the relative proportion of each severity21

class (low, medium, and high) calculated from an analysis of annual burn severity maps22

(1985-2014) from the Monitoring Trends in Burn Severity (MTBS) database (Eidenshink et23

al., 2007). Between 2017-2100, burn area was estimated for each climate model (GCM) and24

radiative forcing scenario (RCP) based on a statistical model of wildfire which considered the25

effects of climate, vegetation, population density, and fire history (Westerling, 2018). The26

exogenous statistical fire model was used to derive burn area projections for each climate27

model, radiative forcing scenario, and land-use scenario (Sleeter, Wilson, Sharygin, & Sherba,28

2017). For each scenario, 100 stochastic simulations were run and summarized to produce29

a time series of maps where each 1/16 degree cell had a projected mean burned area. The30

spatial maps were then summarized to provide a mean and standard deviation of total burn31

area for each ecoregion considered in this study.32

The LUCAS model simulated individual fire events which spread across the landscape within33

a timestep. Fire events are projected based on 1) the expected annual burn area within34

an ecoregion, 2) the relative probability of an individual cell experiencing a fire, 3) the35

distribution of fire size, and 4) the distribution of fire severity classes. Within each ecoregion,36

the annual burn area was sampled, with replacement, from the distribution of burn area based37

on the statistical fire model. To preserve the spatial pattern of fire projected by the statistical38

model, we calculated the relative probability of fire for each 1/16 degree cell based on the39

mean estimated burn area in each timestep. Both fire size and severity were assumed to be40

stationary and were sampled based on historical data from FRAP and MTBS, respectively.41

Carbon fluxes associated with fire were based on Sleeter et al. (2018).42
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Drought-induced tree mortality submodel43

To estimate the effects of climate on forest carbon we developed a model of drought-induced44

tree mortality. We used annual forest mortality data coinciding with two multi-year extreme45

drought periods that peaked in 2004 and 2016 and resulted in widespread tree mortality,46

especially for the latter drought period (Stephens et al., 2018). We used the US Forest Service47

Aerial Detection Survey (Moore, McAfee, & Iaccarino, 2018) annual tree mortality data,48

partitioned into low, medium, and high tree mortality classes (1-10, 11-20, and >20 trees per49

acre, respectively). We used the 60-month Standardized Precipitation Evapotranspiration50

Index (SPEI) (Vicente-Serrano, Beguera, & Lopez-Moreno, 2010) to track long-term drought51

annually across California using PRISM (PRISM Climate Group, Oregon State University,52

2016) 4-km historical climate data for monthly temperature and precipitation inputs, using the53

Thornwaite method to calculate potential evapotranspiration. We fit a binomial GLM model54

for each of the three mortality classes, using SPEI as a single predictor in the model. We used55

these models to spatially predict future drought-induced mortality for each climate model56

and radiative forcing scenario on an annual timestep. We estimated the annual mortality area57

for each ecoregion from the model outputs and sampled, with replacement, from a Gaussian58

distribution created from these annual ecoregional means and an assumed 50% standard59

deviation. We constructed annual relative probability maps from the spatial predictions and60

used this to constrain the pattern of disturbance. See SI Methods for more detail. We sampled61

from a uniform distribution using proportional carbon flux ranges of 0.01-0.10, 0.10-0.5, and62

0.5-1.0 for the low, medium, and high tree mortality classes, respectively.63

Soil Carbon64

We calculated soil carbon stock at standard intervals using soil organic carbon and bulk65

density produced for the contiguous U.S. at 100 m spatial resolution (Hengl et al., 2017,66

2014; Ramcharan et al., 2018), and coarse fragments (>2mm) produced globally at 250 m67

spatial resolution (Hengl et al., 2017). We summed the carbon stocks over the depth intervals68

3



from 0-100 cm, and re-sampled to 1-km using mean re-sampling. SOC estimates from the69

SoilGrids 250-m global product explained 69% of the variation in observed data based on70

10-fold repeated cross-validation (Hengl et al., 2017). A separate comparison of multiple71

SOC estimates from global databases suggested the SoilGrids data product yielded the most72

accurate results at both global and regional scales (Tifafi, Guenet, & Hatté, 2018).73

Effects of climate variability and change on net primary production (NPP)74

Annual variation in growth was estimated based on an empirical model of NPP (Del Grosso75

et al., 2008) and annual climate model projections of mean annual temperature and total76

precipitation (Pierce, Cayan, & Thrasher, 2014) and is described in detail in Sleeter et77

al. (2018). The NPP model is based on an empirical relationship between total (above-78

and below-ground) NPP and mean annual precipitation (MAP) for non-tree dominated79

ecosystems (shrublands and grasslands); for forest ecosystems the equation includes both80

MAP and mean annual temperature (MAT) as predictor variables. Parameters in these81

equations were optimized by minimizing root mean square error (RMSE) for modeled and82

observed TNPP, which ensures that the mean predicted TNPP value will be nearly identical83

to the mean observed value. Regional model estimates of forest TNPP compare well with84

those derived from satellite data (1% difference) and biogeochemical process models (12%85

difference) (Cleveland et al., 2015). A spatially explicit stationary growth multiplier was86

used to scale the growth on individual cells to reflect variations in productivity due to local87

environmental site conditions. The spatial growth multiplier was estimated by calculating88

the NPP anomaly for each simulation cell relative to its ecoregional mean based on 30-year89

climate normals (PRISM Climate Group, Oregon State University, 2016).90

We chose not to incorporate a CO2 fertilization effect (CFE) on NPP into our scenarios.91

Although many biochemical reaction rates increase in response to increased substrate concen-92

tration, there is growing evidence that other factors may limit the effect of rising atmospheric93

CO2 on net carbon assimilation by plants. Satellite-derived estimates of NPP suggest that94
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Earth system models overestimated the CFE by 50% over a 30-year period (Smith et al.,95

2016), and data from free air carbon dioxide enrichment (FACE) studies indicate the CFE96

was reduced or disappeared entirely under limitation by water and nutrients (Reich, Hobbie,97

& Lee, 2014) or extreme weather conditions (hotter, drier, or wetter) (Obermeier et al., 2017).98

The magnitude and persistence of a CFE on NPP under future climates is unresolved, so we99

were unable to parameterize a CFE effect based on available data.100

Effects of climate warming on heterotrophic respiration (Rh)101

Future warming, and its effect on DOM turnover rates, was represented using climate model102

temperature projections and a Q10 function. We assumed a Q10 of 2.0 for the decay of103

down deadwood, decomposition of litter to the soil pool, and gaseous emissions from the104

soil pool, and a Q10 of 2.65 was assumed for gaseous emissions from the litter pool. These105

rates are generally consistent with those used in the Carbon Budget Model of the Canadian106

Forest Sector (CBM-CFS3) (Kurz et al., 2009). The CBM-CFS3 model does not include107

a Q10 for the decomposition of the slow recalcitrant pool, which might indicate our model108

overestimates the temperature sensitivity of SOC decay rates. However, a recent whole-profile109

warming experiment in California determined an effective Q10 for soil CO2 efflux to be110

2.4 (Pries, Castanha, Porras, & Torn, 2017), suggesting our estimate of SOC temperature111

sensitivity may be conservative. Similar to the approach used to estimate temporal and112

spatial variability in NPP, a stationary spatial multiplier was used to reflect within ecoregion113

variability in DOM/SOC turnover based on 30-year climate normals. Next, for each GCM114

and RCP, ecoregion scale non-stationary temporal multipliers were used to reflect changes115

based on projected temperature.116

Perennial croplands and age117

We created a custom classification of the location and age of orchard croplands across118

California using a machine learning algorithm and a stack of satellite images and derivative119
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products. Our training/testing data-set consisted of field-level vector data of crop types120

obtained from agricultural commissioners from seven broadly representative agricultural121

counties. To assess orchard age, we used spectral unmixing to create an annual time series of122

bare ground fractional cover and created a metric to identify the occurrence of new orchard123

establishment that accounts for background variability in bare ground exposure of agricultural124

fields.125

We created a custom classification of the location and age of perennial croplands across126

California because of a lack of perennial crop separation from other agricultural types127

(i.e. NLCD) (Homer et al., 2015) or the low local accuracy from data-sets like the US128

Cropland Data Layer (CDL) (Boryan, Yang, Mueller, & Craig, 2011). Our evaluation of CDL129

orchards against a field-level California-specific data layer commissioned by the Department130

of Water Resources (DWR) (California Department of Water Resources, 2017) with 97.4%131

orchard accuracy, found a statewide accuracy of only 64% for CDL for 2014. We excluded132

vineyards because of their low above-ground biomass relative to orchards. Our training133

and testing data-set consisted of county agricultural data from seven broadly representative134

counties (Butte, Colusa, Fresno, Merced, Monterey, Sonoma, Yolo) using field-level geospatial135

data from 2010-2011. The final data-set consisted of 10,000 randomly sampled points for136

orchards and 90,000 randomly sampled points for non-orchards (evenly split among other137

agriculture classes and natural vegetation). We used predictors composed of Landsat 5 surface138

reflectance bands for three different seasons in California (December-March, April-August,139

September-November) broadly corresponding to vegetation responses to precipitation. In140

addition, we included the NIRv vegetation index (Badgley, Field, & Berry, 2017) for each141

season, fractional land cover using spectral unmixing (shade, bare ground, vegetation, and142

urban) derived from the Landsat Greenest Pixel data product (Chander, Markham, & Helder,143

2009), elevation (Gesch et al., 2002), and slope as predictors. All data were obtained and144

pre-processed using Google Earth Engine, and re-sampled to 100 meter resolution. We trained145

a model for 2010 using a gradient boosting machine (GBM) algorithm (Candel, Parmar,146
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LeDell, & Arora, 2016) with 10-fold cross validation and an exhaustive hyperparameter search.147

The 2010 model had a final validation (using a 10% holdout from the training data) accuracy148

of 86.8% and reliability of 91.9%. We then applied this model to prediction data from 2001149

in order to generate a map of predicted orchards in California for that year. We assume this150

model is generalizable to previous years as all predictors are derived from the same satellite151

sensor (Landsat 5), with the exception of the elevation and slope, which are not expected152

to have changed. There is no available validation data from 2001 to create a statewide153

assessment for this layer. The map was re-sampled to 1-km using mode re-sampling.154

Existing data layers also lacked orchard age, which is needed to produce refined estimates of155

orchard carbon stocks. To assess orchard age, we created an annual (1985-2001) fractional156

land cover using spectral unmixing (shade, bare ground, vegetation, and urban) derived from157

the Landsat Greenest Pixel data product (Chander et al., 2009). For every pixel identified as158

orchard, we used the bare ground fractional cover layer to find the year where the coefficient159

of variation across the entire time period crossed below a threshold of 1. We found this160

metric indicative of one or two years post-orchard removal after extensive manual testing161

using NAIP imagery as the ground truth. This 30 meter resolution pixel-level age map was162

passed through a majority filter with a kernel size of 150 meters (close to the minimum field163

size of 2.25 ha). This smoothed age map was re-sampled to 1-km using mode re-sampling.164

Forest Age165

We created a forest age map for the year 2001 using a combination of the Gradient Nearest166

Neighbor Forest Structure Stand Age (GNN Age) (Landscape Ecology, Modeling, Mapping,167

and Analysis (LEMMA), 2018; Ohmann, Gregory, Henderson, & Roberts, 2011), Monitoring168

Trends in Burn Severity (MTBS) (Eidenshink et al., 2007), and North American Forest169

Dynamics (NAFD) (Goward et al., 2012). We clipped all layers to California and re-projected170

them to the same extent and pixel dimensions. We extracted the high burn severity class from171

the 1984-2001 MTBS layers, assuming this to be a stand-age resetting event. We converted172
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all the high burn pixels to age since fire using 2001 as the anchor point, and combined173

them into a single layer by taking the minimum value across all layers. We used the ‘last174

disturbance year’ NAFD data layer and the GNN stand age layer and converted both to year175

since disturbance using 2001 as the anchor point. We combined all three of these into a single176

stand age at 2001 layer taking the minimum value.177
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Supplemental Figures178
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Figure 1: Maps of initial conditions and strata used in the LUCAS model. State class type
was estimated based methods described in Sleeter et al., 2017. Forest age was estimated
based on a gradiant nearest neighbor approach and described in the methods. Ecoregions
were based on the U.S. EPA’s Level III classification. County boundaries were derived from
the U.S. Census Bureau’s TIGER boundary files. Ownership was derived from the U.S.
Geological Survey’s Protected Areas Database
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Figure 2: Maps of model initial carbon stocks. Initial stocks were estimated based on the
ecoregion, state class type, and age of each simulation cell using a look-up table derived from
a dynamic global vegetation model (DGVM). Values were further scaled based on a spatialy
explicit growth multiplier calculated using 30-year climate normals and an empirical model
of NPP. See the materials and methods section for additional details, as well as Daniel et al.,
2018.
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Figure 3: Mean cumulative (2001-2100) transition area for urbanization, agricultural expan-
sion, agricultural contraction, and management transitions considered in this study. Bars
show the mean estimated area for each land-use scenario averaged over all model simulations.
Colored bar components show the specific from-to transition associated with each conversion
type. Error bars show the Monte Carlo confidence intervals for the total cumulative conversion
area.
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and ribbons show the Monte Carlo confidence intervals calculated over all scenario simulations.
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Figure 5: Maps show a) historical average annual temperature and c) precipitation based
on 30-year climate normals. Plots show projected b) mean annual temperature and d)
precipitation for California based on four climate models and two RCP scenarios from the
LOCA down-scaled projections. Black lines show historical data based on PRISM. Projected
data show the rolling 5-year average for temperature and the rolling 10-year average for
precipitation.
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Figure 6: Mean annual estimated transition area for wildfire (top) and drought-induced
tree mortality (bottom). Estimates are shown for each climate model (GCM; columns) and
radiative forcing scenario (RCP; rows).
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are from the PRISM Climate Group.
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Table 1: Comparison of carbon stocks from this study to other recent studies. Summaries of
each study were based on resampling raster carbon stock maps to match the spatial extent,
resolution, and projection of this study. Blackard; Estimates include above-ground live
biomass carbon only. Gonzalez; Wildlands follow IPCC classification and include forestland
(including shrubland and woodland), grassland, wetlands, and other land, excluding cropland
and settlements. Estimates include above-ground live biomass carbon only. Kellendorfer;
Estimates include above-ground live biomass carbon only. SSURGO; All valid cell values
contained in the SSURGO map were included and were based on estimates to 2-meters
depth. Wilson; Estimates of Live include above and below-ground live biomass carbon. DOM
includes carbon stored in standing deadwood, down deadwood, and litter pools. This Study;
Includes estimates for all lands classified as forest, grassland, shrubland, and agriculture
(annual and perennial) but excludes wetlands and settlements. Live estimates include above
and below ground carbon. SOC includes carbon stored up to 2-meters depth.

Tg C

Source Ecosystems DOM Live SOC

Blackard Forest — 1065.2 —
Gonzalez 2001 Wildlands — 918.1 —
Gonzalez 2010 Wildlands — 849.3 —
Kellendorfer Forest — 894.7 —
SSURGO Wildlands + Ag — — 1851.5
This Study 2001 Wildlands + Ag 375.9 1804.3 2643.0
This Study 2010 Wildlands + Ag 389.2 1799.3 2604.4
Wilson Forest 619.3 1113.4 538.2
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