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Prior distributions were chosen to regularize coefficients on the distribution specific means

β(µ) and structural zero parameters β(π). We used a regularized horseshoe prior on these

coefficients, which shrinks irrelevant coefficients towards zero, while regularizing nonzero

coefficients (Piironen, Vehtari, and others 2017). For zero-inflated models, we used a multi-

variate version of the regularized horseshoe (Peltola et al. 2014):
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for each response dimension m = 1, 2 and coefficient j = 1, ..., p. Here ρ is a correlation

parameter, τ1 and τ2 are global variance hyperparameters, c1 and c2 are hyperparameters

that determine the amount of shrinkage on the largest coefficients, and λj is a local scale

parameter drawn from a half-Cauchy distribution that control the amount of shrinkage

applied to coefficient j (Piironen, Vehtari, and others 2017). With this prior specification,

information can be shared across the two response dimensions through the correlation pa-
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rameter ρ, and/or through the local scale parameters λj. For count models without struc-

tural zeros (the Poisson and negative binomial models), this multivariate prior simplifies to

a univariate regularized horseshoe prior.

Spatiotemporal random effects were constructed using a temporally autoregressive, spa-

tially intrinsically autoregressive formulation (Besag and Kooperberg 1995; Banerjee, Car-

lin, and Gelfand 2014). Temporarily suppressing the superscript that indicates whether

the effects are on µ or π, and denoting column t from an S × T Φ as φt we have:

φt=1 ∼ N(0, (τ (φ)(D − W))−1)

φt ∼ N(ηφt−1, (τ (φ)(D − W))−1), t = 2, ..., T

where η is a temporal dependence parameter, τ (φ) is a precision parameter, D is an S × S

diagonal matrix with entries corresponding to the number of spatial neighbors for each

spatial unit, and W is an S × S spatial adjacency matrix with nonzero elements only when

spatial unit i is a neighbor of spatial unit j (wi,j = 1 if i is a neighbor of j, and wi,j = 0

otherwise, including wi,i = 0 for all i). τ (φ) is a precision parameter. We imposed a soft

identifiability constraint that places high prior mass near ∑S
s=1 φ

∗
t,s = 0 for all t.

We applied a univariate regularized horseshoe prior to all β coefficients in burned area

models (Piironen, Vehtari, and others 2017):

βj ∼ N
(
0, τ 2λ̃2

j

)
, λ̃2

j =
c2λ2

j

c2 + τ 2λ2
j

,

Spatiotemporal random effects were constructed in the same way as for the count models.
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