

Supporting Information

MIL-53(AI) as a Versatile Platform for Ionic-Liquid/MOF Composites to Enhance CO₂ Selectivity over CH₄ and N₂

Safiyye Kavak^{+, [a, c]} H. Mert Polat^{+, [a, c]} Harun Kulak^{+, [b, c]} Seda Keskin,^{*[b, c]} and Alper Uzun^{*[b, c, d]}

asia_201900634_sm_miscellaneous_information.pdf

MOF	Metal	Organic Ligand	Surface Area (m²/g)	Pore Volume (cm ³ /g)	Hydro (philicity/phobicity)	Exposed Adsorption Sites
MIL-53(Al)	Al ³⁺	но	472	0.161	Hydrophilic	Exposed hydroxyl bridges (µ2(O–H))
CuBTC	Cu ²⁺	о ОН	1324 ^[1]	0.522 ^[1]	Hydrophilic	Open metal site
ZIF-8	Zn ²⁺	CH ₃	1208 ^[2]	0.633 ^[2]	Hydrophobic	None

Table S1. Physical and chemical properties of the MOFs we considered in this work.

Table S2. Phys	ical and chemical	properties of the	ILs we considered	in this work.
		properties or the		

IL	Anion Structure	Molecular Formula	Molecular Weight (g/mol)	Hydro (philicity/phobicity)
[BMIM][BF4]	F B F	$C_8H_{15}BF_4N_2$	226.02	Hydrophilic
[BMIM][PF6]	$F \xrightarrow{F} F$	$C_8H_{15}F_6N_2P$	284.18	Hydrophobic
[BMIM][CF ₃ SO ₃]	$O^{-} = CF_{3}$	C9H15F3N2O3S	288.29	Hydrophilic
[BMIM][SbF6]	$\begin{array}{c} F \\ F $	$C_8F_6H_{15}N_2Sb$	374.97	Hydrophobic
[BMIM][MeSO4]	$O^{-}_{H} O^{-}_{H} OCH_{3}$	$C_9H_8N_2O_4S$	250.32	Hydrophilic
[BMIM][NTf ₂]	$ \begin{array}{cccc} O & O \\ \parallel & \parallel \\ F_3C - S - N - S - CF_3 \\ \parallel & \parallel \\ O & O \end{array} $	$C_{10}H_{15}F_6N_3O_4S_2$	419.36	Hydrophobic

	Density of IL (g/cm ³)	IL loading (wt.%)	IL loading (vol.%)	Pore filling Degree (%)	# of IL molecules/unit cell of MIL- 53(Al)
[BMIM][BF4]/ MIL-53(Al)	1.21	25.8	21.4	77	1.22
[BMIM][PF ₆]/ MIL-53(Al)	1.38	25.4	19	69	0.97
[BMIM][CF ₃ SO ₃]/ MIL-53(Al)	1.29	25.8	20.3	63	0.98
[BMIM][SbF6]/ MIL-53(Al)	NA	26	_	65	0.76
[BMIM][NTf ₂]/ MIL-53(Al)	1.43	24.1	17.5	59	0.62

Table S3. Densities, calculated loading of ILs (wt.% and vol.%), the corresponding pore filling degrees, and the number of IL molecules per unit cell of MIL-53(Al) in the composites

prepared.

Number of ion pairs per unit cell in composites are calculated using IL-loading calculated from XRF and ICP-MS, molecular weight of ILs, crystal density of MIL-53(Al) (0.955 g/cm³) and unit cell volume ($6.6085 \times 16.675 \times 12.813 \text{ Å}^3$) from corresponding The Cambridge Structural Database (CSD)^[3] entry (Refcode: SABVUN^[4]).

Figure S1. N₂ adsorption-desorption isotherms of pristine MIL-53(Al), and (a) $[BMIM][BF_4]/MIL-53(Al)$, (b) $[BMIM][PF_6]/MIL-53(Al)$, (c) $[BMIM][CF_3SO_3]/MIL-53(Al)$, (d) $[BMIM][SbF_6]/MIL-53(Al)$, and (e) $[BMIM][NTf_2]/MIL-53(Al)$.

Figure S2. Pore size distribution (PSD) for MIL-53(Al) and all IL/MIL-53(Al) samples. Color code: red, MIL-53(Al); black, [BMIM][BF4]/MIL-53(Al); blue, [BMIM][PF6]/MIL-53(Al); orange, [BMIM][CF₃SO₃]/MIL-53(Al); violet, [BMIM][SbF6]/MIL-53(Al); olive, [BMIM][MeSO4]/MIL-53(Al); pink, [BMIM][NTf₂]/MIL-53(Al). The inset graph shows a zoomed-in view of the IL/MIL-53(Al) samples for a clearer representation of the PSD between 15-45 Å.

Figure S3. Additional SEM images of (a) pristine MIL-53(Al), (b) $[BMIM][BF_4]/MIL-53(Al)$, (c) $[BMIM][PF_6]/MIL-53(Al)$, (d) $[BMIM][CF_3SO_3]/MIL-53(Al)$, (e) $[BMIM][SbF_6]/MIL-53(Al)$, (f) $[BMIM][NTf_2]/MIL-53(Al)$ at 50 and 12.5 K× magnifications.

X-Ray Diffraction (XRD) Spectroscopy

Sample			Related XRD peaks (°)					
MIL-53(Al)	8.8	9.4	12.3	15.2	17.7	26.6		
[BMIM][BF ₄]/MIL-53(Al)	8	8.5	11.4	14.9	17.0	26.7		
[BMIM][PF ₆]/MIL-53(Al)	8.7	9.9	10.5	15.2	17.7	26.6		
[BMIM][CF ₃ SO ₃]/MIL-53(Al)	8.9	9.1	10.3	15.3	17.7	26.6		
[BMIM][SbF6]/MIL-53(Al)	9.7	9.9	10.3	15.8	18.6	26.6		
[BMIM][NTf ₂]/MIL-53(Al)	8.7	9	10.6-11.1	15.1	17.4	26.6		

Table S4. XRD peak positions of pristine MIL-53(Al) and IL/MIL-53(Al) composites.

Figure S4. Derivative weight change of pristine MIL-53(Al), bulk ILs, and IL/MIL-53(Al) composites, where the IL is (a) [BMIM][BF₄], (b) [BMIM][PF₆], (c) [BMIM][CF₃SO₃], (d) [BMIM][SbF₆], and (e) [BMIM][NTf₂].

Table S5. T'_{onset} values of pristine MIL-53(Al), bulk ILs: [BMIM][BF4], [BMIM][PF6], [BMIM][CF₃SO₃], [BMIM][SbF6] and [BMIM][NTf₂], and composites: [BMIM][BF4]/MIL-53(Al), [BMIM][PF6]/MIL-53(Al), [BMIM][CF₃SO₃]/MIL-53(Al), [BMIM][SbF6]/MIL-53(Al), and [BMIM][NTf₂]/MIL-53(Al).

MOF	IL	T ['] onset of pure IL (°C)	<i>T[']onset</i> of composite (°C)	% wt. loss of bulk IL (700 °C)	% wt. loss of composite (700 °C)
			484		61.8
	[BMIM][BF4]	350	253	99.7	66.1
MIL-	[BMIM][PF ₆]	358	233	99.7	64.6
53(Al)	[BMIM][CF ₃ SO ₃]	342	326	97	70.9
	[BMIM][SbF ₆]	350	285	89	62.1
	[BMIM][NTf ₂]	357	342	99.8	68.7

Fourier Transform Infrared (FTIR) Spectroscopy

All IL/MIL-53(Al) composites showed the characteristic IR features of their ILs in the region of 3200-2800 cm⁻¹. The data indicate red or blue shifts on the peak positions of these features from their corresponding positions in bulk materials. For instance, the symmetric stretching vibration of C(4)HC(5)H, v_{ss} (C(4)HC(5)H), of the imidazolium ring showed red shifts of 3 and 7 cm⁻¹ for [BMIM][BF4]/MIL-53(Al) and [BMIM][PF6]/MIL-53(Al), respectively. $v_{ss}(C(4)HC(5)H)$ of [BMIM][CF₃SO₃]/MIL-53(Al) showed a blue shift of 4 cm⁻¹, while for [BMIM][SbF₆]/MIL-53(Al) and [BMIM][NTf₂]/MIL-53(Al) the shifts were in the spectral resolution. The most acidic H atom in the [BMIM]⁺ is bonded to the C atom between two N atoms in the imidazolium ring. Therefore, v(C(2)-H) vibration is a good indicator of the interactions between anion and cation, and IL and MOF. For [BMIM][BF4]/MIL-53(Al) and [BMIM][PF₆]/MIL-53(Al), v(C(2)-H) red-shifted by 5 and 6 cm⁻¹, respectively, while it was red-shifting by 8 cm⁻¹ for both [BMIM][SbF₆]/MIL-53(Al) and [BMIM][NTf₂]/MIL-53(Al). The v(C(2)-H) vibration red-shifted from 3115 to 3101 cm⁻¹ in [BMIM][CF₃SO₃]/MIL-53(Al) composite. A similar behavior of v(C(4)HC(5)H) and v(C(2)-H) vibrations of IL/MIL-53(Al) composites might be reasonable as both C(4)HC(5)H and C(2)-H are involved in H bonding between anion and cation, and both are the indicators of interionic interactions.^[5] As given in Table S6, [BMIM]⁺ originated IR spectra of IL/MIL-53(Al) composites demonstrated that IL-MOF interaction depends on the type of IL. Anion related peaks could help to understand the anion-cation and IL-MOF interactions in a clearer way. Antisymmetric stretching vibrations of $[BF_4]^-$ and $[PF_6]^-$, $v_{as}(BF_4)$ and $v_{as}(PF_6)$, red-shifted by 8 and 6 cm⁻¹ in [BMIM][BF₄]/MIL-53(Al) and [BMIM][PF₆]/MIL-53(Al), respectively. In the composites prepared by incorporating [BMIM][BF4] and [BMIM][PF6] into MIL-53(Al), the corresponding v(C(2)-H) bands red-shifted, indicate the lengthening of the bond between C(2) and H. This change suggests that hydrogen bonding between anion and cation gets stronger as consistent with the literature.^[6] This strengthening in the hydrogen bond between anion and cation weakens the vas(BF4) and vas(PF6) vibrations. MOF-originated IR peaks of these composites showed that $v_{ss}(Al-O-Al)$, $v_{as}(Al-O-Al)$, $\delta(O-H)$, and $\mu_2(O-H)$ red-shifted by 6, 17, 14, and 4 cm⁻¹ in [BMIM][BF₄]/MIL-53(Al) and 4, 19, 7, and 6 cm⁻¹ in $[BMIM][PF_6]/MIL-53(Al)$, respectively. On the other hand, the position of v(C-C), which is in the organic linker part of the MOF, did not change within the spectral resolution of the measurements. These findings demonstrate that [BMIM][BF₄] and [BMIM][PF₆] interact with the aluminum backbone and bridging (O-H) group of the MIL-53(Al), while they do not

interact with the organic linker side. In the case of [BMIM][CF₃SO₃]/MIL-53(Al), v_{ss}(SO₃) and $v_{as}(SO_3)$, red-shifted by 5 and 6 cm⁻¹, and v(C(4)HC(5)H) and v(C(2)-H) showed blue and red shifts of 4 and 14 cm⁻¹, respectively. (Al–O–Al) vibrations, v(C–C) and δ (C–C–C) did not show any significant shifts, while $\mu_2(O-H)$ vibration was slightly red-shifting by 3 cm⁻¹. These findings might indicate that with a blue shift in v(C(2)-H), the C(2)-H bond shortens in length and hydrogen bonding between anion and cation gets weaker. Red shifts in (SO₃) vibrations can be the result of IL-MOF interactions through (SO₃) side of the anion, and consequently, the (CF₃) side of the anion gets stronger as indicated by a blue shift in vas(CF3). [BMIM][SbF6]/MIL-53(Al) and [BMIM][NTf2]/MIL-53(Al) reveal a similar behavior: their v(C(4)HC(5)H), μ_2 (O-H), v(C-C), δ (C-C-C), and v_{ss}(Al-O-Al) remained the same within the spectral resolution of the measurements. The position of v(C(2)-H) redshifted from 3122 cm⁻¹ to 3114 cm⁻¹ in both composites. For the anion side of $[BMIM][SbF_6]/MIL-53(Al), v(SbF_6)$ slightly blue-shifted from 658 cm⁻¹ to 661 cm⁻¹. Similarly, in the anion side of $[BMIM][NTf_2]/MIL-53(Al)$, the peaks positions for $v_{as}(S-N)$ and $v_{as}(CF_3)$ do not change much. v(C-S) blue-shifted by 11 cm⁻¹, while $v_{ss}(S-N)$, $v_{ss}(SO_2)$, and $v_{as}(SO_2)$ were red-shifting by 4, 3, and 7 cm⁻¹, respectively. These results might indicate that anions of [BMIM][SbF₆] and [BMIM][NTf₂] interact with MIL-53(Al) and share their electrons with the MOF. This electron sharing causes a strengthening in (Sb-F) and (C-S)bond strengths as indicated by blue shifts in $v(SbF_6)$ and v(C-S).

Figure S5. IR spectra of pristine MIL-53(Al) and IL/MIL-53(Al) composites in the region of (a) 4000-2000 cm⁻¹ and (b) 2000-400 cm⁻¹, and of bulk ILs in the region of (c) 4000-2000 cm⁻¹ and (d) 2000-400 cm⁻¹. Color code: red, pristine MIL-53(Al); black, [BMIM][BF4]; blue, [BMIM][PF6]; orange, [BMIM][CF₃SO₃]; violet, [BMIM][SbF6]; pink, [BMIM][NTf₂].

Figure S6. IR spectra comparison of pristine MIL-53(Al), bulk ILs and IL/MIL-53(Al) composites between 4000-400 cm⁻¹, where the IL is (a) [BMIM][BF₄], (b) [BMIM][PF₆], (c) [BMIM][CF₃SO₃], (d) [BMIM][SbF₆], and (e) [BMIM][NTf₂].

Figure S7. IR spectra showing $\mu_2(O-H)$ vibrations of pristine MIL-53(Al) and IL/MIL-53(Al) composites around 3700 cm⁻¹. From bottom to top: pristine MIL-53(Al), [BMIM][BF4]/MIL-53(Al), [BMIM][PF6]/MIL-53(Al), [BMIM][CF₃SO₃]/MIL-53(Al), [BMIM][SbF6]/MIL-53(Al), and [BMIM][NTf₂]/MIL-53(Al), respectively.

Vibrational Band Assignment	Position of the peak (cm ⁻¹)
μ ₂ (O-H)	3706
v _{sym} (Al-O-Al)	658
v _{as} (Al-O-Al)	681
$\delta(C-C-C) + \delta(O-C-O)$	853
δ(Ω-Η)	980
	992
$\delta(C-C-C) + \delta(C-H)$	1024
v _{sym} (O-C-O)	1414
$v(C-C) + \delta(C-H)$	1505

 Table S6. Assignments for the vibrational IR bands of MIL-53(Al).

Table S7. Assignments for the vibrational IR bands of bulk ILs.

Vibrational Band		Positio	on of the pe	ak (cm ⁻¹)	
Assignment	[BMIM] [BF4]	[BMIM] [PF6]	[BMIM] [CF ₃ SO ₃]	[BMIM] [SbF6]	[BMIM] [NTf ₂]
$v_{ss}(C(4)HC(5)H)$	3173	3170	3158	3167	3169
v(C(2)-H)	3125	3124	3115	3122	3122
$v_{ss}(N)CH_3$	2965	2963	2958	2966	2963
v _{FR} (CH ₃)	2933	2936	2924	2938	2935
v _{ss} (CH ₃)	2862	2850	2849	2867	2848
$v_{as}(CH_2)$	2876	2874	2869	2879	2881
	751 ^a	736 ^c	1280 ^d	658 ^g	740 ^h
	1021 ^b	836 ^c	1225 ^d		791 ⁱ
	1169 ^b	557°	1257 ^e		1058 ^j
			1161^{f}		1137 ^k
					1130 ¹
					1167 ^m
$a_{Vac}(BE_4)$ $b_{Vac}(BE_4)$	$v_{\rm vec}(\rm PE_6) = \frac{d}{v_{\rm vec}}(\rm SO_2)$	$e_{Vac}(SO_2)$	$f_{Vac}(CE_2)$	$g_{v}(SbE_{c}) = \frac{h_{v}(C_{c})}{h_{v}(C_{c})}$	$-S$) $i_{Vac}(S-N)$

 ${}^{a}v_{ss}(BF_{4}), {}^{b}v_{as}(BF_{4}), {}^{c}v_{as}(PF_{6}), {}^{d}v_{ss}(SO_{3}), {}^{e}v_{as}(\overline{SO_{3}}), {}^{f}v_{as}(\overline{CF_{3}}), {}^{g}v(SbF_{6}), {}^{h}v(C-S), {}^{i}v_{ss}(S-N), {}^{j}v_{as}(S-N), {}^{k}v_{ss}(SO_{2}), {}^{l}v_{as}(SO_{2}) and {}^{m}v_{as}(CF_{3}).$

Table S8. Assignments of MOF originated IR shifts of IL/MIL-53(Al) composites. Table is color mapped according to the magnitude of the red or blue shifts. For the convenience, [BMIM]⁺ in the names of ILs are not mentioned in the table.

	[BF4] /MIL-53(Al)	[PF ₆] /MIL-53(Al)	[CF ₃ SO ₃] /MIL-53(Al)	[SbF ₆] /MIL-53(Al)	[NTf ₂] /MIL-53(Al)
μ2(O-H)	-4	-6	-3	2	0
v _{sym} (Al=O=Al)	-б	-4	0	-3	-2
vas(Al=O=Al)	-17	-19	3	12	9
δ(C-C-C) + δ(O-C-O)	-4	-3	-2	-3	-1
S(O II)	-13	-6	-9	-10	-12
0(U-H)	-14	-7	-5	-2	-14
δ(C-C-C) + δ(C-H)	-11	-1	3	-6	-2
v _{sym} (O-C-O)	-7	-6	-6	-6	1
ν(C–C) + δ(C–H)	-1	3	2	1	3

Table S9. Assignments of IL originated IR shifts of IL/MIL-53(Al) composites. Table is color mapped according to the magnitude of the red or blue shifts. For the convenience, [BMIM]⁺ in the names of ILs are not mentioned in the table.

	[BF4] /MIL-53(Al)	[PF6] /MIL-53(Al)	[CF ₃ SO ₃] /MIL-53(Al)	[SbF ₆] /MIL-53(Al)	[NTf ₂] /MIL-53(Al)
$v_{ss}(C(4)HC(5)H)$	-4	-8	4	1	-1
v(C(2)-H)	-5	-6	-11	-8	-8
vss(N)CH3	-6	1	6	-6	5
vfr(CH ₃)	-8	-2	10	-8	2
vss(CH3)	-11	9	-1	-11	21
vas(CH ₂)	-5	0	0	-5	-2
	2^{a}	-6 ^c	-5 ^d	3 ^g	11 ^h
	-8 ^b	0°	-6 ^d		-4 ⁱ
	0^{b}	0 ^c	-1 ^e		2^{j}
			6 ^f		-3 ^k
					-7 ¹
					-1 ^m

^a $v_{ss}(BF_4)$, ^b $v_{as}(BF_4)$, ^c $v_{as}(PF_6)$, ^d $v_{ss}(SO_3)$, ^e $v_{as}(SO_3)$, ^f $v_{as}(CF_3)$, ^g $v(SbF_6)$, ^hv(C-S), ^j $v_{ss}(S-N)$, ^k $v_{as}(S-N)$, ^l $v_{as}(SO_2)$, and ^m $v_{as}(CF_3)$.

Figure S8. (a) CO₂, (b) CH₄, and (c) N₂ solubilities of bulk ILs calculated by COSMO-RS. Color code: black, [BMIM][BF₄]; blue, [BMIM][PF₆]; orange, [BMIM][CF₃SO₃]; violet, [BMIM][SbF₆]; olive, [BMIM][MeSO₄]; pink, [BMIM][NTf₂].

Figure S9. Gas adsorption-desorption isotherms of (a) pristine MIL-53(Al), (b) [BMIM][BF₄]/MIL-53(Al), (c) [BMIM][PF₆]/MIL-53(Al), (d) [BMIM][CF₃SO₃]/MIL-53(Al), (e) [BMIM][SbF₆]/MIL-53(Al), and (f) [BMIM][NTf₂]/MIL-53(Al). Color code: black, CO₂; red, CH₄; blue, N₂. Filled (empty) squares represent adsorption (desorption).

Sample	Gas	<i>q</i> ₁ (cc/g)	<i>k</i> ₁ (1/mbar)	<i>q</i> ₂ (cc/g)	k ₂ (1/mbar)	R ²
	CO_2	161.337	0.358	7.756	13.599	0.999
Pristine MIL -53(A1)	CH ₄	101.860	0.163	1.321×10 ⁻¹⁴	0.688	0.999
WIIL-33(AI)	N_2	0.629	12.289	101.563	0.045	0.999
	CO_2	70.618	0.113	17.782	2.483	0.999
[BMIM][BF ₄]/ MIL 53(Al)	CH ₄	18.344	0.102	207.489	4.720×10 ⁻³	0.999
WIIL-33(AI)	N_2	41.829	0.015	40.203	0.015	0.997
	CO_2	581.187	6.055×10 ⁻³	28.715	1.154	0.999
[BMIM][PF ₆]/ MIL -53(Al)	CH ₄	7466.430	2.938×10 ⁻⁴	8.916×10 ⁻⁴	1.527×10 ⁻⁸	0.999
WIIL-35(AI)	N_2	0.382	1.191	2165.180	4.073×10 ⁻⁴	0.999
	CO_2	11.215	0.989	100.075	0.035	0.998
[BMIM][CF ₃ SO ₃]/ MIL 53(Al)	CH ₄	964.945	4.025×10 ⁻⁴	8.829	0.301	0.999
MIL-55(AI)	N_2	0.477	3.942	2075.560	3.573×10 ⁻⁴	0.997
	CO_2	77.429	0.238	10.307	1.647	0.999
[BMIM][SbF ₆]/	CH ₄	37.695	0.146	12.650	0.146	0.999
WIIL-33(AI)	N_2	42.569	0.056	0.149	4.146	0.999
	CO_2	33.579	0.859	302.378	1.009×10 ⁻²	0.999
[BMIM][MeSO4/ MIL -53(A1)	CH ₄	540.923	1.321×10 ⁻³	317.435	5.671×10 ⁻³	0.998
WIIL-33(AI)	N_2	4242.480	1.738×10 ⁻⁴	0.057	1.498	0.983
	CO ₂	0.945	15.491	71.001	0.329	0.999
[BMIM][NTf ₂]/ MIL -53(Al)	CH ₄	875.965	5.034×10 ⁻⁴	29.674	0.193	0.999
WIIL-33(AI)	N_2	1.000×10^{4}	7.662×10 ⁻⁵	1.484	1.668	0.984

Table S10. Fitting parameters of dual-site Langmuir model^{*} for pristine MIL-53(Al) and IL/MIL-53(Al) composites.

*Dual-site Langmuir model is as follows,

$$n(P) = q_1 \times \frac{k_1 \times P}{1 + k_1 \times P} + q_2 \times \frac{k_2 \times P}{1 + k_2 \times P}$$

where *P* is the pressure of bulk gas at equilibrium with the adsorbed phase. q_1 and q_2 represent the saturation capacity on sites #1 and #2, while k_1 and k_2 are the affinity constants.

Fit	MIL-53(Al)			[BMIM][PF ₆]/MIL-53(Al)		
Parameters				CO ₂	CH ₄	N ₂
	CO_2	CH_4	N_2	2		- 12
a 0	-4213.780	-1890.370	-1504.709	-4365.530	-1345.460	-1216.670
a1	98.790	-13.505	10	55.650	-13.530	-14.490
a 2	-1.750	0.034	-0.971	4.450×10^{-2}	-0.930	-0.930
a 3	9.090 x 10 ⁻³	0	0	-3.640×10^{-2}	0	0
a 4	9.570 x 10 ⁻⁶	0	0	3.500×10^{-4}	0	0
a 5	-6.460 x 10 ⁻⁸	0	0	$4.500 imes 10^{-8}$	0	0
b ₀	11.000	3.768	3.236	12.560	3.970	2.780
b 1	-0.280	0.056	0.066	-0.270	0.120	0.510
b 2	5.280 x 10 ⁻³	0	0	6.820×10^{-3}	0	0
b3	-2.820 x 10 ⁻⁵	0	0	-3.700×10^{-5}	0	0

Table S11. Fitting parameters for virial-type thermal adsorption equation^{*} for CO₂, CH₄ and N₂ isotherms measured at 10 and 20 °C for [BMIM][PF₆]/MIL-53(Al) composite material.

*Virial-type thermal adsorption equation:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{5} a_i N^i + \sum_{i=0}^{3} b_i N^i$$

where *N* is the gas uptake, *P* is the pressure of gas at equilibrium, *T* is the temperature and, a_i and b_i are the fitting parameters of the equation.

Isosteric heat of adsorption (Q_{st}) is calculated using the equation below;

$$Q_{st} = -R \sum_{i=0}^{5} a_i N^i$$

where *N* is the gas uptake, *R* is the gas constant, and a_i is fitting parameters obtained by fitting the virial-type thermal adsorption equation.

Figure S10. Ideal (a) CO_2/CH_4 and (b) CO_2/N_2 selectivities of [BMIM][BF4]-incorporated and [BMIM][PF6]-incorporated ZIF-8,^[2,9] CuBTC,^[1,8] and MIL-53(Al) composites as a function of pressure.

Characterization of [BMIM][MeSO₄]/MIL-53(Al)

Figure S11. SEM micrographs of (a and c) MIL-53(Al) and (b and d) [BMIM][MeSO₄]/MIL-53(Al) at a magnification of 100 K× (a, b) and 25 K× (c, d). Reprinted with the permission from Ref.^[7] Copyright 2019 Wiley-VCH.

Figure S12. X-ray diffraction patterns of MIL-53(Al) (blue) and [BMIM][MeSO₄]/MIL-53(Al) (red). Reprinted with the permission from Ref.^[7] Copyright 2019 Wiley-VCH.

Figure S13. (a) TGA and (b) DTG curves of pristine MIL-53(Al) (blue), bulk [BMIM][MeSO₄] (green), and [BMIM][MeSO₄]/MIL-53(Al) (red) samples. Reprinted with the permission from Ref.^[7] Copyright 2019 Wiley-VCH.

Figure S14. FTIR spectra of pristine MIL-53(Al) (blue), bulk [BMIM][MeSO₄] (green), and [BMIM][MeSO₄]/MIL-53(Al) (red) samples between (a) 1800 and 400 cm⁻¹, and (b) 3200 and 2700 cm⁻¹. Reprinted with the permission from Ref.^[7] Copyright 2019 Wiley-VCH.

References

- [1] V. Nozari, M. Zeeshan, S. Keskin, A. Uzun, *CrystEngComm* **2018**, *20*, 7137-7143.
- [2] F. P. Kinik, C. Altintas, V. Balci, B. Koyuturk, A. Uzun, S. Keskin, *ACS Appl. Mater. Interfaces* **2016**, *8*, 30992-31005.
- [3] F. H. Allen, Acta Cryst. 2002, B58, 380-388.
- [4] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, *Chem. Eur. J.* **2004**, *10*, 1373-1382.
- [5] K. Fumino, A. Wulf, R. Ludwig, Angew. Chem. Int. Ed. 2008, 47, 3830-3834.
- [6] K. Nakamoto in *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 4th Ed., Wiley Interscience, New York, USA, **1986**.
- [7] H. Kulak, H. M. Polat, S. Kavak, S. Keskin, A. Uzun, *Energy Technol.* **2019**, Doi: 10.1002/ente.201900157.
- [8] K. B. Sezginel, S. Keskin, A. Uzun, *Langmuir* **2016**, *32*, 1139-1147.
- [9] B. Koyuturk, C. Altintas, F. P. Kinik, S.Keskin, A. Uzun, J. Phys. Chem. C 2017, 121, 10370-10381.