1	The ParB homologs, Spo0J and Noc, together prevent premature midcell Z ring
2	assembly when the early stages of replication are blocked in <i>Bacillus subtilis</i> .
3	
4	SUPPLEMENTARY MATERIALS
5	
5	
6	
7	Isabella V. Hajduk, Riti Mann, Christopher D. A. Rodrigues, Elizabeth J. Harry
8	
9	
10	
11	¹ The ithree institute, University of Technology Sydney, PO Box 123 Broadway NSW 2007
12	Australia
13	
14	
15	Running title: ParB homologs block premature midcell Z ring assembly
16	
17	
18	
19	
20	For correspondence:
21	Elizabeth Herry@ute edu eu
22	
23	
25	
26	
27	
28	The ithree institute
29	Faculty of Science
30	University of Technology Sydney
31	T. +61 (02) 9514 4173
32	M. +61 (0) 404 643 181
33	PO Box 123 Broadway NSW 2007 Australia
34	

1 Table S1: *Bacillus subtilis* strain list used in this study

Strain	Genotype	Source
SU5	168 <i>trpC2</i>	E. Nester
SU492	168 trpC2 amyE::(spc P _{xyl} -ftsZ-yfp)	Lab stock
SU504	168 trpC2_amyE::Pspachy-ftsZ (cat)	Rodrigues & Harry, 2012
SU533	168 trpC2 Δnoc∷cat	Lab stock
SU629	168 <i>trpC2</i> Δ <i>noc::tet amyE::(spc</i> P _{xyl} -noc-yfp)	Lab stock
SU656	168 trpC2 Δnoc∷tet	Lab stock
SU661	168 <i>trp</i> C2⁺ <i>dna-1</i>	Rodrigues & Harry, 2012
SU682	168 trpC2 amyE::(spc Pxyl-ftsZ-yfp) ∆minCD::cat	Lab stock
SU746	168 trpC2⁺ dna-1 amyE::(spc P _{xyt} -ftsZ-yfp)	This work
SU747	trpC2 ∆soj::neo	Scholefield <i>et al</i> , 2011
SU748	trpC2 ∆spo0J::neo, amyE::spo0J (cat)	Gruber & Errington, 2009
SU765	168 trpC2∆soj-spo0J∷tet	This work
SU766	168 trpC2⁺ dna-1 ∆soj-spo0J∷tet	This work
SU767	168 trpC2 amyE::(spc P _{xyl} -ftsZ-yfp) Δsoj-spo0J::tet	This work
SU768	168 trpC2⁺ dna-1 amyE::(spc P _{xyl} -ftsZ-yfp) Δsoj-spo0J::tet	This work
SU769	168 trpC2 Δspo0J::kan	This work
SU770	168 trpC2⁺ dna-1 ∆spo0J∷kan	This work
SU771	168 trpC2 Δsoj∷kan	This work
SU772	168 trpC2⁺ dna-1 Δsoj∷kan	This work
SU802	168 trpC2⁺ dna-1 Δnoc∷cat	This work
SU803	168 trpC2 Δnoc::cat Δsoj-spo0J::tet	This work
SU804	168 trpC2 ⁺ dna-1 Δnoc::cat Δsoj-spo0J::tet	This work
SU823	168 trpC2 Δsoj-spo0J∷tet hutM(345°)::lacO(cat), thrC (283°)::lacl-	This work
	cfp(erm) amyE::(spc P _{xyl} -ftsZ-yfp)	
SU824	168 trpC2 ⁺ dna-1 Δsoj-spo0J∷tet hutM(345°)∷lacO(cat), thrC (283°)∷lacI-	This work
	cfp(erm) amyE::(spc P _{xy/} -ftsZ-yfp)	
SU827	168 trpC2 Δnoc::cat Δsoj::kan	This work
SU828	168 trpC2⁺ dna-1 Δnoc∷cat Δsoj∷kan	This work
SU829	168 trpC2 Δnoc::cat Δspo0J::kan	This work
SU830	168 trpC2⁺ dna-1 Δnoc::cat Δspo0J::kan	This work
SU831	168 trpC2 Δnoc∷cat amyE::(spc P _{xy/} -noc-yfp)	This work
SU832	168 trpC2⁺ dna-1 Δnoc::cat amyE::(spc P _{xyl} -noc-yfp)	This work
SU833	168 trpC2 Δnoc::cat Δspo0J::kan amyE::(spc P _{xyl} -noc-yfp)	This work
SU834	168 trpC2 ⁺ dna-1 Δnoc::cat Δspo0J::kan amyE::(spc P _{xyl} -noc-yfp)	This work
SU835	168 trpC2 Δnoc::cat Δsoj-spo0J::tet amyE::(spc P _{xyl} -ftsZ-yfp)	This work
SU836	168 trpC2 ⁺ dna-1 Δnoc::cat Δsoj-spo0J::tet amyE::(spc P _{xyl} -ftsZ-yfp)	This work
SU849	smc-ssrA loxP (kan), lacA::P _{xyl} A Ec sspB loxP (erm)	Wang <i>et al.</i> 2014a
SU850	168 trpC2 smc-ssrA loxP (kan), lacA::PxyIA Ec sspB loxP (erm)	This work
SU851	168 trpC2 ⁺ dna-1 smc-ssrA loxP (kan), lacA::PxyIA Ec sspB loxP (erm)	This work
SU874	168 trpC2 Δnoc::cat, smc-ssrA loxP (kan), lacA::PxyIA Ec sspB loxP	This work
	(erm)	
SU875	168 trpC2 ⁺ dna-1 Δnoc::cat, smc-ssrA loxP (kan), lacA::PxylA Ec sspB	This work
	loxP (erm)	
SU876	168 trpC2 ∆soj-spo0J∷tet, smc-ssrA loxP (kan), lacA::PxyIA Ec sspB	This work
	loxP (erm)	
SU877	168 trpC2⁺ dna-1 Δsoj-spo0J::tet, smc-ssrA loxP (kan), lacA::PxyIA Ec	This work
	sspB loxP (erm)	
SU878	168 trpC2 Δnoc::cat, Δsoj-spo0J::tet, smc-ssrA loxP (kan), lacA::PxylA	This work
	Ec sspB loxP (erm)	
SU879	168 trpC2 ⁺ dna-1 Δnoc::cat, Δsoj-spo0J::tet, smc-ssrA loxP (kan),	This work
	lacA::PxyIA Ec sspB loxP (erm)	
SU887	168 trpC2_amyE::Pspachy-ftsZ (cat) ∆spo0J::kan	This work
SU888	168 trpC2_amyE::Pspachy-ftsZ (cat) Δnoc::tet	This work
SU889	168 trpC2_amyE::Pspachy-ftsZ (cat) Δspo0J::kan Δnoc::tet	This work
SU890	168 trpC2 amyE::(spc Pxyl-ftsZ-yfp) Δspo0J::kan	This work
SU891	168 trpC2 amyE::(spc Pxyl-ftsZ-yfp) Δnoc::cat	This work
SU892	168 trpC2 amyE::(spc Pxyl-ftsZ-yfp) Δspo0J::kan Δnoc::cat	This work
SU893	168 trpC2 amyE::(spc Pxyl-ftsZ-yfp) Δspo0J::kan ΔminCD::cat	This work
SU894	yuxG(-87°)::lacO48 (phleo), yhdG(+87°)::tetO48 (cat), ycgO::P _{ftsw} tetR-	Wang <i>et al.</i> 2014a
	cfp (spec) terminators P _{ftsw} lacl-mypet	
SU895	168 trpC2+ dna-1 yuxG(-87°)::lacO48 (phleo), yhdG(+87°)::tetO48 (cat),	This work
	ycgO::P _{ftsw} tetR-cfp (spec) terminators P _{ftsw} lacl-mypet	
SU897	168 trpC2+ dna-1 soj-spo0J::tet, yuxG(-87°)::lacO48 (phleo),	This work
	yhdG(+87°)::tetO48 (cat), ycgO::P _{ftsW} tetR-cfp (spec) terminators P _{ftsW}	
	lacl-mypet	
SU899	168 trpC2⁺ dna-1 ∆spo0J::kan, ycgo::spo0J (erm)	This work
SU901	168 trpC2 ⁺ dna-1 Δnoc::cat Δspo0J::kan, ycgo::spo0J (erm)	This work
SU903	168 trpC2⁺ dna-1 ∆soj-spo0J::tet, ycgo::spo0J (erm)	This work
SU905	168 trpC2 ⁺ dna-1 Δnoc::cat Δsoj-spo0J::tet, ycgo::spo0J (erm)	This work

1 Table S2: Plasmids and oligonucleotides used in this study

2

Plasmid	Description	Source
pKM084	ycgO::cat	D. Rudner
pIH003	ycgO::Psoj-optRBS-spo0J (erm)	This work
Oligonucleotides	Sequence ^a	Source
oIH004	cgc GAATTC AAACCATTTTCTCACCATCCTG	This work
oIH005	cgc GCTAGC CTTTCACATGAACATGTACTATC	This work
olH008	cgc GCTAGC ACATAAGGAGGAACTACTATGGCtaaAGGCCTTGGAAAAGGGAT	This work
olH0010	gcg GGATCC TTATGATTCTCGTTCAGACA	This work

a Bold letters indicate the recognition sequence for restriction enzymes

3 4

5 Plasmid construction

6

pIH003 [*ycgO::Psoj-optRBS-spo0J (erm)*] was generated by a two-way ligation of a EcoRI-Nhel PCR product containing the promoter region for the *soj-spo0J* operon (amplified with oligonucleotide primers olH004 and olH005), and a Nhel-BamHI PCR product containing the *spo0J* gene (amplified with oligonucleotide primers olH008 and olH0010) into pKM084 cut with EcoRI-BamHI. Both PCR products were amplified from SU5 genomic DNA as the template. pKM084 is an ectopic integration vector for recombination into the *ycgO* locus (David Rudner).

14

16

15 SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Z ring positioning when initiation of DNA replication is blocked in vegetatively grown fixed cells. (A-D) Vegetative cells were grown in PAB to the midexponential phase at the permissive temperature (34°C), then shifted to the nonpermissive temperature (48°C) for a further 60 min: (A) wild-type; SU5, (B) *dna-1*; SU661, (C) Δ soj-spo0J; SU765 and (D) *dna-1* Δ soj-spo0J; SU766. Percentages shown are the frequencies of Z rings occurring at midcell in the range of 0.45 – 0.5 on the x-axis.

Figure S2: Z ring positioning when initiation of DNA replication is blocked in vegetatively grown fixed cells of individual *soj* or *spo0J* mutants. (A-F) Vegetative cells were grown in PAB to the mid-exponential phase at the permissive temperature (34°C), then shifted to the non-permissive temperature (48°C) for a further 60 min: (i) wild-type; SU5, (ii) *dna-1*; SU661, (iii) Δsoj ; SU769, (iv) *dna-1* Δsoj ; SU770, (v) $\Delta spo0J$; SU771 and, (vi) *dna-1* $\Delta spo0J$; SU772. Percentages shown are the frequencies of Z rings occurring at midcell in the range of 0.45 – 0.5 on the x-axis. Figure S3: Z ring positioning in outgrown spore cells at the permissive
temperature. Z ring positioning was examined in outgrown spores at the permissive
temperature (34°C) for 120 min in strains: (A) wild-type; SU492, (B) *dna-1;* SU746, (C) *Δsoj-spo0J*; SU767 and (D) *dna-1 Δsoj-spo0J*; SU768. Percentages shown are the
frequencies of Z rings occurring at midcell in the range of 0.45 – 0.5 on the x-axis.
Figure S4: Whole field of view of Z rings overlayed with DAPI and phase contrast

7 when initiation of DNA replication is blocked in live outgrown spores. 8 Microscopic images of an overlay of phase contrast, DAPI (red) and FtsZ-YFP (green) 9 in (A) *dna-1*; SU746, and (B) *dna-1* Δ *soj-spo0J*; SU768. Right side images show closer 10 details of selected cells with different nucleoid morphologies and varying Z ring 11 positions. Scale bar represents 2 µm.

Figure S5: Flow cytometry profiles of Δsoj -spo0J strains when initiation of DNA replication is blocked via *dna-1* mutant or addition of HPUra. Flow cytometry profiles in controls where initiation of DNA replication is progressing normally (wildtype; SU492 and Δsoj -spo0J; SU767) or blocked (controls: *dna-1*; SU746 and wildtype +HPUra; and test strains: *dna-1* Δsoj -spo0J; SU768 and Δsoj -spo0J +HPUra. n = 10,000.

Figure S6: Noc localisation in the absence of spo0J when initiation of DNA replication is blocked. Strains (A) wild type; SU831, (B) *dna-1*; SU832, (C) Δ spo0J Δ noc; SU833, and (D) *dna-1* Δ spo0J Δ noc; SU834, possessing Noc tagged with a yellow fluorescent protein (*noc-yfp*; falsely coloured cyan) were grown vegetatively supplemented with 0.3% xylose. DNA stained with DAPI (falsely coloured red). Scale bar = 2 µm.

Figure S7: Z ring positioning when initiation of DNA replication is blocked during spore outgrowth. Z ring positioning was examined in two conditions: in the temperature-sensitive *dna-1* background (A) and with the addition of the DNA polymerase III inhibitor HPUra (B), in spore outgrown spore cells. A: (i) wild-type; SU492, (ii) *dna-1;* SU746, (iii) Δnoc ; SU831, (iv) *dna-1* Δnoc ; SU832, (v) Δsoj -spo0J Δnoc ; SU835, and (vi) *dna-1* Δsoj -spo0J Δnoc ; SU836; B: (i) wild-type +HPUra and (ii) Δsoj -spo0J Δnoc +HPUra.

Figure S8: Z ring positioning in the individual mutants, *soj* or *spo0J*, in the *dna*-

1 Δ*noc* mutant at the non-permissive temperature. Scatter plots showing Z ring

positioning and average cell length of vegetatively grown, fixed cells of (A) wild-type;
 SU5, (B) *dna-1*; SU661, (C) *Δsoj Δnoc*; SU829, (D) *dna-1 Δsoj Δnoc*; SU830, (E)
 Δspo0J Δnoc; SU827, and (F) *dna-1 Δspo0J Δnoc*; SU828.

Fig S9. Complementation of spo0J in the temperature sensitive strains. (A) Z ring
positioning, and (B) nucleoid morphologies in strains (i) *dna-1 spo0J ycgo::spo0J*(SU899), (ii) *dna-1 spo0J noc ycgo::spo0J* (SU901), (iii) *dna-1 soj-spo0J ycgo::spo0J*(SU903), and (iv) *dna-1 soj-spo0J noc ycgo::spo0J* (SU905), grown vegetatively at the
non-permissive temperature and examined via IFM and ethanol fixation, respectively.
n = 200.

10 Figure S10: Z ring positioning when initiation of DNA replication is blocked during spore outgrowth in the *dna-1* temperature-sensitive SMC-depleted 11 mutant. Scatter plots showing Z ring positioning and average cell length of outgrown 12 spores grown in the presence of xylose (1% v/v) to induce SMC degradation in 13 replicating cells (left column) and non-replicating cells (dna-1 mutant; right column). Z 14 ring positioning was examined in strains (A) wild-type; SU850, (B) dna-1; SU851, (C) 15 16 Δ noc; SU874, (D) dna-1 Δ noc; SU875, (E) Δ soj-spo0J; SU876, (F) dna-1 Δ soj-spo0J; SU877, (G) Δnoc Δsoj-spo0J; SU878, and (H) dna-1 Δnoc Δsoj-spo0J; SU879. 17

Figure S11: Cell division is not inhibited in a *minCD spo0J* double mutant. Phase contrast images of mid-exponentially growing cells of strains (A) wild-type; SU492, (B) Δ *spo0J*; SU890, (C) Δ *minCD*; SU682 and (D) Δ *spo0J* Δ *minCD*; SU893 grown at 30°C and 37°C. Scale bar represents 2 µm.

A dna-1

B dna-1 Δsoj-spo0J

A Wild-type

B dna-1

C ∆spo0J

D dna-1 ∆spo0J

Z ring position

A Wild-type

37°C

D Δspo0J ΔminCD

