Highly efficient induction of non-human primate iPS cells by combining RNA transfection and chemical compounds

Table of Contents

Legends for Supplemental Figures 1-4 (p. 2)

Supplementary Figures 1-4 (pp. 3-6)

Supplementary Tables 1-4 (pp. 7-10)

Figure S1. Characteristics of iPS cells generated by RNA transfection

- A. Proportion of mRNA_iPS cells exhibiting normal karyotype. A representative karyogram of the mRNA_iPS cells is shown.
- B. Immunofluorescence analyses of ES cell marker genes. Images of immunofluorescence and DAPI staining are shown.
- C. qPCR analyses of differentiation marker genes in EBs and iPS cells. Cq values are shown. N.D. = Not detected

Figure S2. iPS cells induced in the presence of chemical compounds exhibit the pluripotent ability.

qPCR analyses of ES cell marker genes (left) and differentiation marker genes (right). The expression levels in iPS cells and EBs are shown. The number of passages of iPS cells examined are shown in parentheses. Error bars represent S.E. (N = 3).

Figure S3. iPS cells induced from six cell lines

Conditions used for induction and the number of passages are indicated on the left of the pictures.

Figure S4. qPCR analysis of ES cell marker genes. Two or more iPS cell lines were examined for each cell line. The results of the original cells and mRNA_iPS cells are also shown. The number of passages of iPS cells examined are shown in parentheses. For fetus skin-derived cells, subcloning was performed at P6. Error bars represent S.E. (N = 3).

А

Cell line	Proportion of 46, XX
mRNA iPS cell	7/7

С

		Cq value		
	GAPDH	HNF1a	PDX1	AFP
mRNA_iPS rep1	22.4	N.D.	N.D.	N.D.
mRNA_iPS rep2	22.1	37.5	N.D.	N.D.
mRNA_iPS rep3	22.6	N.D.	N.D.	N.D.
EB rep1	24.0	35.4	34.3	36.3
EB rep2	23.5	33.4	36.1	30.8
EB rep3	23.4	32.5	34.9	30.4

1. Fetus skin cell 2. Adult ear cell #1 iPS RNA (-P53DD) 1 Passage 12 iPS Thiazovivin Passage 6 3. Adult ear cell #2 3. Adult ear cell #2 iPS Boost Supplement 1 Passage 8 iPS Boost Supplement 2 Passage 7

4. Adult ear cell #3

iPS Thiazovivin 1 Passage 5

6. Newborn liver cell

iPS Thiazovivin 1 Passage 8

5. Newborn skin cell

Figure S4

SALL4

DPPA3

OCT3/4

NANOG

GAPDH

		Cq Values	
Gene name	No chemical (-P53DD)	Boost supplement (+P53DD)	Thiazovivin (+P53DD)
GAPDH	23.8	23.6	24.7
NANOG	25.2	25.5	37.6
LIN28	27.8	28.6	34.6
SALL4	27.5	27.5	37.4
OCT4	24.3	24.5	33.1
SOX2	28.2	28.9	37.1
UTF1	28.7	28.5	38
DPPA3	28.4	28.1	37.6
GDF3	25.7	24.8	37.3

Table S2. Passage No.	of iPS cells retaining	undifferentiated	state
	e e eeee		

iPS cell	Passage No.
iPS cell induced using RNAs (Figure 1)	
mRNA_iPS cells	27
iPS cell induced in the presence of chemichal compounds (Figure 2)	
Thiazovivin-1	15
Thiazovivin-2	15
Boost Supplement-1	24
Boost Supplement-2	9
3i-1	16
3i-2	10
iPS cell from six cell lines (Table S1)	
*Fetus skin-derived cell (-P53DD) 1	6+4
*Fetus skin-derived cell (-P53DD) 2	6+7
Adult ear-derived cell #1 (Thiazovivin)	6
Adult ear-derived cell #1 (Boost Supplement)	6
Adult ear-derived cell #2 (Boost Supplement) 1	8
Adult ear-derived cell #2 (Boost Supplement) 2	7
Adult ear-derived cell #3 (-P53DD) 1	7
Adult ear-derived cell #3 (-P53DD) 2	7
Adult ear-derived cell #3 (Thiazovivn) 1	5
Adult ear-derived cell #3 (Thiazovivn) 2	8
Adult ear-derived cell #3 (Boost Supplement) 1	10
Adult ear-derived cell #3 (Boost Supplement) 2	7
Adult ear-derived cell #3 (3i) 1	8
Adult ear-derived cell #3 (3i) 2	5
New born skin-derived cell (Boost Supplement) 1	6
New born skin-derived cell (Boost Supplement) 2	6
New born liver-derived cell (Boost Supplement) 1	6
New born liver-derived cell (Boost Supplement) 2	8
New born liver-derived cell (Thiazovivin) 1	8
New born liver-derived cell (Thiazovivin) 2	6
New born liver-derived cell (3i) 1	Unknown
New born liver-derived cell (3i) 2	Unknown

* Subcloning was performed at passage 6

Table S3. iPS cell stability depends on the original cells

Cell line (chemical condition)	No of undifferentiated lines*/ No. of total lines
Fetus skin-derived cell (-P53DD)	5/11
Adult ear-derived cell #1 (Thiazovivin) 1/8
Adult ear-derived cell #1 (Boost Supp	lement) 1/10
Adult ear-derived cell #2 (Boost Supp	element) 6/42
Adult ear-derived cell #3 (-P53DD)	4/4
Adult ear-derived cell #3 (Thiazovivn)	6/10
Adult ear-derived cell #3 (Boost Supp	element) 2/9
Adult ear-derived cell #3 (3i)	2/4
New born skin-derived cell (Boost Su	pplement) 7/10
New born liver-derived cell (Boost Su	pplement) 2/6
New born liver-derived cell (Thiazoviv	<i>r</i> in) 4/6
New born liver-derived cell (3i)	6/9

*No. of cell lines that retain undifferentiated state when passaging for P4 culture

Primers to cunstruct a plasmid for transcription of P53DD		
Multiple cloning site F	GGCCGCATCGGATCCGTAGGCGCGCCAACGTCGACATAAAGCTTCACG	
Multiple cloning site R	AATTCGTGAAGCTTTATGTCGACGTTGGCGCGCCTACGGATCCGATGC	
bglobinUTR F Asc1	GGTAG GGCGCGCCAGCTCGCTTTCTTGCTGTCCAATTTCT	
bglobinUTR F Sal1	CAGGTGTCGACAGCTCGCTTTCTTGCTGTCCAATTTCT	
bglobinUTR R Sal1	GCATAGTCGACGCAGCAATGAAAATAAATGTTTTTTATTAGGCA	
bglobinUTR R HindIII	GTGAAAAGCTTGCAGCAATGAAAATAAATGTTTTTTATTAGGCA	
5UTR HBA Not1	GATCGTAC GCGGCCGCTCTTCTGGTCCCCACAGACTCAGAGAGAACCCAC	
P53 F	CTCAGAGAGAACCCACCACC ATGACTGCCATGGAGGAGTC	
P53 R ASC1	TTAACGGCGCGCC GTGTCTCAGCCCTGAAGTCATAA	
Primers for qPCR		
CDH2 F	TGGAGCCTGATGCCATCAAG	
CDH2 R	TGGAGCCACTGCCTTCATAG	
SNAIL2 F	CTGAAGATGCACATTCGGAC	
SNAIL2 R	GATTCCTCATGTTTGTGCAG	
GATA4 F	GGTCACTATCTGTGCAACGC	
GATA4 R	CGTGGAGCTTCATGTAGAGG	
CXCR4 F	GAGGGCATCAGTATATACAC	
CXCR4 R	GTGTAGATGACATGGACTGC	
PDX1 F	GGATGAAGTCTACCAAAGCTCACTC	
PDX1 R	TCCTTCTCCAGCTCCAGCAG	
HNF1a F	CTCATCATGGCCTCACTTCCTG	
HNF1a R	GATGACTGGCACACTCTGTG	
AFP F	GCCAACTCAGTGAGGACGAA	
AFP R	GGCCAACACCAGGGTTTACT	
NANOG F	TGCTGAGATGCCTCACACAG	
NANOG R	TCACTGCAGGGCTACTCTCT	
VIMENTIN F	TCCCTGAACCTGAGGGAAACT	
VIMENTIN R	CGTCTTAATCAGAAGTGTCCTTTTTG	
DESMIN F	AGCTGCAGGAGCTCAACGAC	
DESMIN R	TTGGTGAGCACCTCCACCTG	
GAPDH F	TGCTGGCGCTGAGTATGTG	
GAPDH R	AGCCCCAGCCTTCTCCAT	
TUBB3 F	GGATCAGCGTCTACTACAATG	
TUBB3 R	CTCCGTGTAGTGGCCCTTG	
ACTA2 F	CGTGAGAAGATGACGCAGATCA	
ACTA2 R	CAGCCTGGATGGCCACAT	
NCAM F	ACCTGATCAAGCAGGATGA	