
Supplementary Material 
 
1.1) Comparison of major neural cell types 
 
Methods 

First, we wanted to establish the viability of cross-species comparisons at the major cell type level for 
neurons and glia. We used the MusNG and HumN datasets. We identified a 439 gene feature set using 
maximum relevance minimum redundancy (Ding and Peng, 2005) in mouse to differentiate the major cell 
types located in the brain (interneuron, S1 pyramidal, CA1 pyramidal, oligodendrocyte, microglia, 
endothelial, astrocyte, ependymal, mural, as identified by the Linnarson group (Zeisel, et al., 2015)). 
ependymal and mural cell types were not identified in the HumN dataset and therefore were used as a 
negative control.  

Before the data was submitted to mRMR, we performed feature selection (Zeisel, et al., 2015) 
consisting of i) removing low expression genes, ii) removing genes that do not coexpress with other genes 
and iii) retaining the top 5000 high variance genes using a noise model fit to the data (Zeisel, et al., 2015). 
The samples were separated into the 9 major cell types with the 5000 highest variance genes. This labeled 
dataset was submitted to the mRMR algorithm resulting in 500 optimally orthogonal and high variance 
genes. After filtering genes that matched between the MusNG and HumNG datasets, the 500 mRMR-
selected genes were further reduced to 439. 

These genes were then used to train a NN classifier on the MusNG data separated into 3 groups, train 
(60%), validation (20%) and test (20%). The model was trained using 10 L2 regularization values (Lambda: 
0.0, 0.001, 0.01, 0.05, 0.2, 0.5, 1, 2, 5 10, Fig 4) on the training set, and the final lambda value was chosen 
by selecting the lambda value with the highest overall accuracy on the validation set. The resulting highest 
accuracy NN model was used to predict cell types in the MusNG test set and in the entire HumNG dataset 
(Darmanis, et al., 2015). 
As a comparison, a regularized logistic regression (LR) classifier was trained on each of the cell types 
using the same 439 gene feature set. The training set consisted of the same samples as the NN classifier. 
The validation set and test set were also the same NN samples. LR was conducted using the same lambda 
values as the NN classifier resulting 90 models, 9 for each cell type for 10 different lambda values. The 
best performing lambda (across all cell types) selected by overall accuracy on the test set was used for all 9 
models and evaluated on the MusNG validation set and the entire HumNG dataset. We evaluated the 
accuracy of these models using overall accuracy !"
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!!!  across each cell type (𝑖 𝜖 𝑚𝑎𝑗𝑜𝑟 𝑐𝑒𝑙𝑙 𝑡𝑦𝑝𝑒𝑠). 

 
Results 

We observed that the regularized neural network (NN) model performed better than the regularized 
logistic regression (LR) model in the mouse dataset (overall accuracy: LR = 0.87 and NN = 0.91 
respectively, Supplementary Fig. S1). Moreover, the overall accuracy increased greatly when comparing 
across species (overall accuracy: LR = 0.4 and NN = 0.55, Supplementary Fig. S1). We also see the 
negative controls (ependymal and mural, I.e., no correspondence in the human dataset) have few cells 
assigned to them when using the NN (Supplementary Fig. S1D). 

Aside from the overall accuracy, which was biased by the number of cells in each cell type, we wanted 
to view the weighted accuracy to get a representation of the performance across cell types. We found that 
the NN classifier performed better in the mouse validation set (weighted accuracy: LR = 0.69 and NN = 
0.74, Supplementary Fig. S1). More intriguingly, the human dataset weighted accuracy was even more 
improved (weighted accuracy: LR = 0.46 and NN = 0.61, Supplementary Fig. S1).  

These results showed that the gene feature set was useful between species but could be improved to 
provide more accurate classification. There are clear advantages of using a priori feature sets to identify 
cell type similarity (Crow, et al., 2018) but we also aim to explore how feature reduction through a neural 
network could identify corresponding neural subtypes. 
 
1.2) Comparison of neural subtypes 
 



Methods 
Next, we wanted to explore the more granular interneuron and pyramidal subtypes available to us in 

HumN and MusNG datasets. The mouse dataset constituted both neural and glial cell types while the 
human dataset constituted only neural cell types. This lack of cell types in human provided us with a 
negative control. We needed to retain more features due to the increased granularity of the subtypes 
(Supplementary Material Sec 1.2) vs. major cell types (Supplementary Material Sec 1.1). First, we 
identified the overlapping gene feature set between both datasets (13355 genes). Next, we converted the 
cell subtypes into numeric form so that a model could be trained. Because the NN model performed better 
than a logistic regression classifier in our previous experiment, we only trained NN classifiers. We 
performed 50 iterations random cross validation on mouse NN classifiers (80% training and 20% testing) 
using all 48 cell type labels. This process was repeated for multiple lambda regularization values (0.0, 
0.001, 0.01, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5). These multiple classifiers corresponded to the multiple 
lambda regularization values that we wanted to test. This model then was used classify MusNG test set and 
entire HumN dataset. 
Because the major cell types are known in human and mouse, we recorded the accuracy in identifying the 
major cell types. The same process was repeated for the human dataset in which a model was trained on 
80% of the human dataset and tested on 20% 50 times. Because the human dataset only contained neural 
cell types, only mouse neuron subtypes were used in the human-trained NN classifier. For both datasets, the 
major type accuracy was recorded for both mouse and human test sets. The subtype level accuracy was 
recorded for the within species test set. 
 
Results 

We observed that the major divisions of interneurons and pyramidal cells were conserved across 
species. The mouse trained model achieved mouse subtype accuracy of 67% and mouse major cell type 
accuracy of 93% (Supplementary Fig. S2A,C). The mouse trained model was also able to accurately 
identify major cell types in human cells (Supplementary Fig. S2A,C): i) human interneurons were 
classified interneuron (anova p-value=8.17×10-9), ii) human pyramidal cells were classified pyramidal 
(anova p-value=4.87×10-6), iii) human cells classified interneuron were interneuron (anova p-
value=1.06×10-6), and iv) human cells classified pyramidal were pyramidal cells (anova p-value=1.14×10-

2). We saw similarly high levels of accuracy in human. 
The human trained model achieved human subtype accuracy of 94% and human major cell type 

accuracy of 99% (Supplementary Fig. S2B,D, note: the human dataset contained fewer subtypes and 
major cell types increasing the accuracy). The human trained model was also able to accurately identify 
major cell types in mouse cells (Supplementary Fig. S2B,D): i) mouse interneurons were classified 
interneuron (anova p-value=6.00×10-11), ii) mouse pyramidal cells were classified pyramidal (anova p-
value=1.55×10-2), iii) mouse cells classified interneuron were interneuron (anova p-value=3.75×10-4), and 
iv) mouse cells classified pyramidal were pyramidal cells (anova p-value=3.38×10-3). 

In human, the cell types were rarely associated with a single mouse cell type but rather related to 
combinations of mouse subtypes. For example, human cell type: In6(6) was related to mouse cell type: 
Int2(2) and Int14(14) in both mouse and human trained models. Human cell type: In1(1) was related to 
mouse cell type: Int12(12) (Fig. 3). Aside from the interneuron cells, we saw relationships in the pyramidal 
cell types as well. Human cell type: Ex1(9) was related to mouse cell type: S1PyrL23(17) in both human 
and mouse trained models. Human cell type: Ex3(11) was related to mouse cell type: S1PyrL4(18) in both 
human and mouse trained models. These relationships advance the idea that these tissue specific subtype 
profiles are conserved across species and can be leveraged to identify conserved neural subtypes 
(Supplementary Fig. S2). 
Also, we found that the cortical layer specific subtypes were mirrored in the classification between species. 
This can most prominently be seen in Supplementary Fig. S2C where human and mouse cells from the 
same cortical layers correspond to one another (i.e., Ex1(9)!S1PyrL23(17), Ex2(10)!S1PyrL4(18), 
Ex3(11)!S1PyrL4(18), Ex4(12)!S1PyrL4(18), Ex5(13)!S1PyrL5(19), 
Ex6!S1PyrL5(19)/S1PyrL6(20)). 
 
2.1) Detailed Implementation 
 
Data Preprocessing 



To follow the algorithms above, we convert the general framework above into a concrete 
implementation.  The possible label mappings of the original subtypes to the conserved subtypes are 
established from the literature (Darmanis, et al., 2015; Lake, et al., 2016; Zeisel, et al., 2015). We 
determine the known relationships between 𝐿 and 𝐿 and represent them using the label mask (G in Eq S1). 
A subtype 𝐿!  can be exactly the same subtype as 𝐿!  (e.g., 
𝑀𝑢𝑠𝑁𝐺 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 5 ≡ 𝑀𝑢𝑠𝑁𝐺 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 5 ), potentially the same subtype as 𝐿!  (e.g., 
𝑀𝑢𝑠𝑁𝐺 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 5 ≅ 𝐻𝑢𝑚𝑁 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 2 ), or not the same subtype as 𝐿!  (e.g., 
𝑀𝑢𝑠𝑁𝐺 𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑢𝑟𝑜𝑛 5 ≠ 𝐻𝑢𝑚𝑁𝐺 𝑂𝑙𝑖𝑔𝑜𝑑𝑒𝑛𝑑𝑟𝑜𝑐𝑦𝑡𝑒).  

𝑮 ∈ ℤ!×! 

 𝑮𝒊,𝒋 =
1, 𝐿! ≡ 𝐿!
1, 𝐿! ≅ 𝐿!
0, 𝐿! ≠ 𝐿!

 Eq S1 

 
Once the proper label mask (𝑮) is generated (Eq S1) all of the necessary data is available to run 

LAmbDA. These data must now be processed before performing Algorithm 1 or 2. Firstly, only genes with 
variance in the top 20th percentile and with fewer than 50% zeros are selected. The entire matrix is divided 
by 10 and log2 transformed (𝑙𝑜𝑔2(𝑿 10 + 1)). Next, sample imbalances are addressed by over-sampling 
under-represented cell subtypes and under-sampling the over-represented cell subtypes. Note that our 
testing set during cross-validation is removed at this point. A cutoff (𝑐, Eq S2) is selected based on a 
percentile of the label distribution for over and under sampling. The quartile is selected using the optunity 
(Claesen, et al., 2014) hyperparameter search tool. Optunity searches distributions of hyperparameters 
based on a cost function provided by the user and returns the set of hyperparameters that minimize the cost 
function. The resampling is also weighted by the ambiguity of the subtypes (i.e., number of possible labels 
for a subtype) using a constant (𝛾). Note that if 𝛾 is set to 0 then there will be no weighting based on the 
label ambiguity. 

𝑐 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑐𝑜𝑙𝑆𝑢𝑚𝑠(𝒀), 𝑝!"#) 

 𝑜 = 𝑐 log!
!"# (!"#$%&' 𝑮 )

!"#$%&' 𝑮
+ 1

!

 Eq S2 

Variable 𝐴 is the set of each individual row in 𝒀. The combined over/under-sampling t cutoff point (𝑜) 
results in a new set of indices 𝐴. The new set of sample indices (𝐴) were then used to index our original 
data matrix (𝑿) and label matrix (𝒀) to produce our final data matrix (𝑿) and our final label matrix (𝒀, Eq 
S3). 
 𝑿 = 𝑿 : ,! ,     𝒀 = 𝒀 : ,!, 𝑛 = 𝐴  Eq S3 

 
Assigning labels to ambiguously labeled cells 

Due to systematic bias in the datasets, we introduce a dispersion constant (𝜏) to prevent subtypes from 
being selected in early iterations and reinforced at a local minima. The dispersion constant is selected using 
the optunity (Claesen, et al., 2014). To prevent any weighting, the dispersion constant can be set to 0. The 
dispersion-weighted (𝑑) matrix is denoted 𝑓(𝑿)(!) (Eq S4). The constant of ε (=0.1) is added to prevent 
artificial masking of desired labels. 

 𝑓 𝑿
! ,!,:
!

= 𝑓 𝑿(𝒊) + 𝜀
! ,!,:

!"#$ ! 𝑿 𝒊 !!

!"#$%&'( ! 𝑿 𝒊 !!

!
 Eq S4 

| 𝑖, 𝑗 ∈ ℤ, 1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 𝑛 
Then, the label mask (𝑮) is used to set all incorrect labels to 0 so that they will not be selected as the 

correct label. Note that “∘” denotes element-wise multiplication (e.g., Hadamard product). The masked (𝑚) 
dispersion-weighted (𝑑) matrix is denoted 𝑓 𝑿

(!)(!)
 (Eq S5). 

 𝑓 𝑿
(!)(!)

= 𝒀𝑮 ∘ 𝑓 𝑿
(!)

 Eq S5 
Each of the original subtype labels in matrix 𝐿 should be grouped with similar subtypes 𝐿. To enforce 

this, a subtype weight is added, resulting in the subtype weight matrix (𝑓 𝑿
(!)

) (Eq S6). 

 𝑓 𝑿
(!)
= 𝒀𝒀𝚻𝑓 𝑿

(!)(!)
 Eq S6 



The subtype label weights then are combined with the masked dispersion weighted matrix at a proportion 
specified by Δ. To prevent any correction to the original subtype weights, Δ can be set to 0 (Eq S7). 

 𝑓 𝑿
(!)(!)(!)

= Δ𝑓 𝑿
(!)
+ (1 − Δ)𝑓 𝑿

(!)(!)
 Eq S7 

The subtype-weighted masked dispersion weighted output (𝑓 𝑿
(!)(!)(!)

) now can be converted into 
labels using one-hot encoding shown below. It is important to note the labels 𝐿  that have a direct 
correspondence in 𝐿 can only be assigned to one member of 𝐿. These labels with only one possible 
mapping are called unambiguous and used in later analyses to determine algorithm performance. 

 𝒀 = 𝑜𝑛𝑒ℎ𝑜𝑡 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 𝑿
(!)(!)(!)

 Eq S8 

Once Eq S8 is calculated, only function definitions (𝑓 𝑿 ) and the loss functions are needed to perform 
Algorithm 1 for LR and RF. For the NN-based models, the batch effects are removed in the final hidden 
layer before the subtype predictions are made. 

 

Calculating Batch Effect Error 
To remove the batch effects introduced by using multiple datasets we use Euclidean distance between 

subtypes to reduce inter-dataset distances. In this section, a one hidden layer example is used but can be 
changed to fit other NN architectures by adding additional layers (Θ(!)). The hidden layer (Θ) is a 
regularized dropout layer with sigmoid activation function and 𝑛!!""#$  hidden nodes. The drop out 
percentage (𝑝!"#$) is optimized using sobol search from the optunity package (Claesen, et al., 2014). 
Dropout is used in the hidden layer(s) because it has been shown to be more robust in high random noise 
datasets (Rodner, et al., 2016) like scRNA-seq data. To reduce the dataset biases, we add the loss term 
masks 𝑴𝟏 (Eq S11), and to increase differences within datasets between labels we add 𝑴𝟐 (Eq S12). 
These new constraints are added to the hidden layer outputs using ambiguous label centroid (𝑪 in Eq S9) 
squared Euclidean distances (𝑬 in Eq S10) inspired by computer vision research (Wen, et al., 2016). Note 
that “tril” denotes the lower triangle of a matrix, ∘ denotes element-wise multiplication (e.g., Hadamard 
product) and ⊘ denotes element-wise division (e.g., Hadamard division). With the processing steps (i.e., 
ambiguous label assignment and batch effects removal) defined, the function (𝑓 𝑥 ) for each model type 
can be defined. 

 𝒀𝒄𝒐𝒍𝒔𝒖𝒎 =
𝑐𝑜𝑙𝑆𝑢𝑚𝑠(𝒀)!

⋮
𝑐𝑜𝑙𝑆𝑢𝑚𝑠(𝒀)!

 

 𝑪 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑿𝚯)𝒀⊘ 𝒀𝒄𝒐𝒍𝒔𝒖𝒎 Eq S9 

 𝑬 = 𝑟𝑜𝑤𝑆𝑢𝑚𝑠 𝑪𝟐 1!×! + 1!×!𝑟𝑜𝑤𝑆𝑢𝑚𝑠 𝑪𝟐 ! − 2𝑪𝑪𝑻 Eq S10 

 𝑴𝟏 =  (𝑮𝑮𝑻!!)∘(!!×!!(𝑫𝑫𝑻!!))
!"#$ !"#$%&' 𝑮 !!×! !!"#$(!"#$%&'(𝑮)!!×!)!

 Eq S11 

 𝑴𝟐 =
(𝑫𝑫𝑻!!)

!"#$ !"#$%&' 𝑫𝑫𝑻!! !!!"# !"#$%&' 𝑫𝑫𝑻!!
! Eq S12 

Defining Functions for Each Model Type 
We study five different machine learning models (𝑓 𝑥 ) on the processed scRNA-seq data (𝑿). 

Specifically, 𝑓 𝑿  is calculated for LR (Eq S13), FF1 (Eq S14), FF3 (Eq S15), RNN1 (Eq S16), and RF 
(Eq S17). The output layer (𝑶) is regularized with a softmax activation function. The resulting label matrix 
𝒀 is used to train an individual iteration of our model (𝑓(𝑿)). The process allows for ambiguous labels to 
change iteratively to another possible label (Fig 2B). The resulting process assigns these ambiguously 
labeled cells to refined subtypes. For FF3 Eq S15 instead has three different Θ variables nested in the 
equation symbolizing the three layers (Eq S16). Similarly, the recurrent NN implementation has a recurrent 
layer (𝑹) instead of a single Θ layer (Eq S17). The RF method uses aggregate probabilities from trees 
(𝑡(𝑥)) with the same scRNA-seq data (𝑿).  With the models defined, the loss terms to be optimized can be 
described in detail. 



 𝑓 𝑿 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑿𝑶) Eq S13 
 𝑓 𝑿 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑿𝚯 𝑶) Eq S14 
 𝑓 𝑿 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑿𝚯𝟏 𝚯𝟐 𝚯𝟑 𝑶) Eq S15 
 𝑓 𝑿 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑿𝑹 𝑶) Eq S16 

 𝑓 𝑿 =  !
!!"##$

𝑡(𝑿)!!"##$
!!!  Eq S17 

 
Defining Cost Function for Each Model Type 

The cost functions for different model types were slightly different based on the model characteristics 
most specifically the presence of hidden layer(s). Note the sum of Θ(!) denotes the sum of all weights on all 
layers. The RF model used the cost function in Eq S18 due to the lack of an L2 regularization term. The LR 
model used the cost function in Eq S19 since there was no hidden layer but still an L2 regularization term. 
The four types of NN implementations of LAmbDA (FF1, FF1bag, FF3, and RNN1) (Aymeric, 2018) use 
the cost function in Eq S20. Once the cost functions are defined the model can be trained using most 
machine learning frameworks like TensorFlow. For the bagging method 5 LAmbDA-FF1 models were run 
in parallel and the output labels averaged across each model. 

 𝑚in 𝑚𝑒𝑎𝑛 𝒀 − 𝑓 𝑿
!

 Eq S18 

 𝑚in 𝑚𝑒𝑎𝑛 𝒀 − 𝑓 𝑿
!
+ 𝜆! (𝚯(𝒊)

𝟐)  Eq S19 

 𝑚in 𝑚𝑒𝑎𝑛 𝒀 − 𝑓 𝑿
!
+ 𝜆! (𝚯 𝒊

𝟐) + 𝜆!𝑚𝑒𝑎𝑛 𝑬 ∘𝑴𝟏 − 𝜆!𝑚𝑒𝑎𝑛(𝑬 ∘𝑴𝟐)  Eq S20 

 
Additional Information for Running the Algorithms 

To train the LAmbDA models, we use the AdamOptimizer (Kingma and Ba, 2014) with step size of 0.01 
and random mini-batches of size 𝑝!"#$! (a percentage of 𝑛) that were changed every 50 iterations to prevent 
overfitting the unambiguous labels. We ran each model for 2000 iterations except for the Random Forest 
model, which was run for 100 iterations. The code is written for GPU-enabled TensorFlow Python3 
package. There were some other considerations that needed to be accounted for during training relating to 
specific models. 

Because recurrent NNs use data order in training, the graph structure within the RNA co-expression data 
is used to sort the genes data matrix (𝑿). Using the top 5000 genes with highest variance, the principle 
components (PCs) are calculated and then the genes are sorted by the first PC. Next, the expression of the 
top 5000 gene values are sorted into an 100 by 50 matrix before training, where the sorted genes are 
separated into 100 rows with 50 genes in each row. This procedure allows for a part of the co-expression 
network structure to be utilized by the RNN.  
There are two non-NN based models tested which do not contain hidden layers: LR and RF. LAmbDA-LR 
uses the same hyperparameters as the NN models except that 𝑛!!""#$, 𝜆!, and 𝜆! are not needed due to a 
lack of a hidden layer. LAmbDA-RF does not contain 𝑛!!""#$ ,  𝜆! , 𝜆! , and 𝜆!  but requires other 
hyperparameters related to the trees in the random forest. These features are number of trees in the forest 
(𝑛!"##$) and maximum number of nodes in the trees (𝑛!"#). In both of these circumstances the necessary 
hyperparameters are tuned using the sobol solver in the optunity package (Claesen, et al., 2014). 
 
2.2) LAmbDA model output 
 
Figures 3 and 4 in the main text were also generated for the other LAmbDA variants and methods from 
other groups to compare and contrast the results. The best overall results for LAmbDA were using the 
LAmbDA-FF1 and LAmbDA-FF1bag variants so those figures are included in the main text. The other 
variants in general had good unambiguous accuracy but were not as high accuracy as LAmbDA-FF1bag. 
One important feature of note is that the LAmbDA-RNN1 model does have good characteristics in 
integrating datasets evenly (Supplementary Fig. S3-6) despite the accuracy drawbacks (Supplementary 
Fig. S7-10). The LAmbDA-RF variant has high unambiguous accuracy (Table 2) but does not transfer the 
knowledge well between datasets (Supplementary Fig. S7-10). When AUC is used to map labels between 



datasets LAmbDA-RF more successfully is able to map ambiguous labels between datasets 
(Supplementary Table S4). 
 
2.3) LAmbDA Hyperparameter Optimization 
 
Methods 
Multiple types of models were trained using the LAmbDA method, which required the tuning of multiple 
hyperparameters. We tuned these parameters using a sobol solver in the optunity package (Claesen, et al., 
2014). During the training, we output these parameters into a file so that the parameters could be studied 
afterwards. Each algorithm was trained 50 times (10 times for LAmbDA-RNN1) using the sobol-
distributed hyperparameters for each iteration of cross validation. The result is that for each of those 500 
trained models (100 trained models for LAmbDA-RNN1) we have the error and all of the hyperparameter 
settings. With these we plot the hyperparameters against the error to better understand how they affect 
model training. 
 
Results 

Some of the hyperparameters were more associated with the training error than others. For instance, 
increased 𝜏 tended to increase the error during training (Supplementary Fig. S11). However if 𝜏 is set too 
low then many of the subtypes may not be able to disperse properly. Also, higher dropout rate also tended 
to be associated with higher error. The higher the percentage cutoff also tended to be associated with lower 
error. Higher 𝛾 also tended to be associated with lower error. Though this is seen more drastically in the 
brain dataset. Another feature of note is that the brain and pancreas dataset though in general mirroring 
each other’s patterns were not identical. This could be due to the higher granularity of the brain dataset.  



Supplementary Figures 

	
Supplementary Fig. S1. Logit corresponds to the logistic regression model. NN corresponds to the neural network model. For each 
confusion matrix the rows correspond to predicted major cell types (MusNG) and the columns correspond to true cell types (either 
MusNG or HumNG). A) The Logit classification confusion matrix (log2) on the MusNG test set (rows: MusNG preds, cols: MusNG 
labels). B) The NN classification confusion matrix (log2) on the MusNG test set (rows: MusNG preds, cols: MusNG labels). C) The 
Logit classification confusion matrix  (log2) on the HumNG dataset (rows: MusNG preds, cols: HumNG labels). D) The NN 
classification confusion matrix (log2) on the HumNG dataset (rows: MusNG preds, cols: HumNG labels). Row/Col labels: Neu 
(neuron), Olig (oligodendrocyte), Mic (microglia), End (endothelial), Ast (astrocyte), Epe (ependymal), and Mur (mural). 
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Supplementary Fig. S2. Red boxes indicate major cell types. The two largest red boxes in each panel indicate either interneurons or 
pyramidal cells. A) The confusion matrix (log2) of the MusNG trained model on the MusNG test set over 50 fold cross valdation at 
lambda of 3.5. B) The confusion matrix (log2) of the HumN trained model on the HumN test set over 50 fold cross validation at 
lambda of 3.5. C) The confusion matrix (log2) of the MusNG trained model on the HumN dataset over 50 fold cross validation. D) 
The confusion matrix (log2) of the HumN trained model on the MusNG dataset over 50 fold cross validation. The bottom panel shows 
the change in major cell type and subtype accuracy with change in lambda. 
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Supplementary Fig. S3. This figure contains all of the confusion matrices for each of the cell classification methods in the two 
datasets, A (4 labels) and B (3 labels), from simulated 1. A) The AUC confusion matrix for the MetaNeighbor algorithm. Note that all 
dataset labels are included in the output such that every label is compared against every label. The associated label mask (i.e., correct 
label mapping) is shown below in D. B) The scmap confusion matrix based on label counts. Note that only one dataset is present in 
each axis. The associated label mask (i.e., correct label mapping) is shown below in E. C,F) The CaSTLe confusion matrix based on 
label count and AUC respectively. Note that only one dataset is present on each axis. The associated label mask is shown in E. G) The 
Label mask used by LAmbDA where the input label mask are all cells in green or yellow. The yellow indicate the true mapping that 
should be learned. H-S) The LAmbDA confusion matrices for each LAmbDA algorithm type where the label count matrix is on the 
left and the AUC matrix is on the right. Note that all of the datasets are contained on the y-axis and a smaller set of consistent subtypes 
are contained on the x-axis. The associated label mask is shown in G. 
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Supplementary Fig. S4. This figure contains all of the confusion matrices for each of the cell classification methods in the two 
datasets, A (3 labels) and B (3 labels), from simulated 2. A) The AUC confusion matrix for the MetaNeighbor algorithm. Note that all 
dataset labels are included in the output such that every label is compared against every label. The associated label mask (i.e., correct 
label mapping) is shown below in D. B) The scmap confusion matrix based on label counts. Note that only one dataset is present in 
each axis. The associated label mask (i.e., correct label mapping) is shown below in E. C,F) The CaSTLe confusion matrix based on 
label count and AUC respectively. Note that only one dataset is present on each axis. The associated label mask is shown in E. G) The 
Label mask used by LAmbDA where the input label mask are all cells in green or yellow. The yellow indicate the true mapping that 
should be learned. H-S) The LAmbDA confusion matrices for each LAmbDA algorithm type where the label count matrix is on the 
left and the AUC matrix is on the right. Note that all of the datasets are contained on the y-axis and a smaller set of consistent subtypes 
are contained on the x-axis. The associated label mask is shown in G. 
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Supplementary Fig. S5. This figure contains all of the confusion matrices for each of the cell classification methods in the three 
pancreas datasets, Segerstolpe (Seger), Muraro (Mur), and Baron (Bar). A) The AUC confusion matrix for the MetaNeighbor 
algorithm. Note that all dataset labels are included in the output such that every label is compared against every label. The associated 
label mask (i.e., correct label mapping) is shown below in D. B) The scmap confusion matrix based on label counts. Note that only 
one dataset is present in each axis. The associated label mask (i.e., correct label mapping) is shown below in E. C,F) The CaSTLe 
confusion matrix based on label count and AUC respectively. Note that only one dataset is present on each axis. The associated label 
mask is shown in E. G) The Label mask used by LAmbDA where the input label mask are all cells in green or yellow. The yellow 
indicate the true mapping that should be learned. H-S) The LAmbDA confusion matrices for each LAmbDA algorithm type where the 
label count matrix is on the left and the AUC matrix is on the right. Note that all of the datasets are contained on the y-axis and a 
smaller set of consistent subtypes are contained on the x-axis. The associated label mask is shown in G. 
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Supplementary Fig. S6. This figure contains all of the confusion matrices for each of the cell classification methods in the three 
pancreas datasets, Zeisel (MusNG), Lake (HumN), and Darmanis (HumNG). A) The AUC confusion matrix for the MetaNeighbor 
algorithm. Note that all dataset labels are included in the output such that every label is compared against every label. The associated 
label mask (i.e., correct label mapping) is shown below in D. B) The scmap confusion matrix based on label counts. Note that only 
one dataset is present in each axis. The associated label mask (i.e., correct label mapping) is shown below in E. C,F) The CaSTLe 
confusion matrix based on label count and AUC respectively. Note that only one dataset is present on each axis. The associated label 
mask is shown in E. G) The Label mask used by LAmbDA where the input label mask are all cells in green or yellow. The yellow 
indicate the true mapping that should be learned. H-S) The LAmbDA confusion matrices for each LAmbDA algorithm type where the 
label count matrix is on the left and the AUC matrix is on the right. Note that all of the datasets are contained on the y-axis and a 
smaller set of consistent subtypes are contained on the x-axis. The associated label mask is shown in G. 
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Supplementary Fig. S7. tSNE plots for the simulated 1 datasets (A and B) corrected by each method, Uncorrected, 
Seurat-CCA, mnnCorrect, and LAmbDA. A,C) These are the uncorrected tSNE plots colored by the dataset (A or B). 
B,D) These are the uncorrected tSNE plots colored by the cell type (1-4). E,F) The tSNE plots from the output of 
mnnCorrect colored by dataset in E and cell type in F. G,H) The tSNE plots from the output of Seurat-CCA colored by 
dataset in G and by cell type in H. I-P) The tSNE plots from the LAmbDA final hidden layer on the validation set of 
samples colored by dataset in I,K,M,O and by cell type in J,L,N,P. The numbers on the plots specify the distance ratio 
measure of batch effect correction in each of the representations. Note that for Uncorrected, mnnCorrect, and Seurat-
CCA only 20% of the samples were used so that the plots were comparable against the 20% validation set in LAmbDA. 
The letters i,ii, and iii, indicate the distance metrics for that specific set of cells across all dimensions (not only the 
tSNE dimensions). The first distance ratio (i), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-
dataset-same-subtype centroid distance to the median same-dataset-different-subtype centroid distance. The second 
distance ratio (ii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-dataset-same-subtype centroid 
distance to the median different-dataset-different-subtype centroid distance. The third distance ratio (iii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/
𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median same-dataset-different-subtype centroid distance to the median 
different-dataset-different-subtype centroid distance. 
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Supplementary Fig. S8. tSNE plots for the simulated 2 datasets (A and B) corrected by each method, Uncorrected, 
Seurat-CCA, mnnCorrect, and LAmbDA. A,C) These are the uncorrected tSNE plots colored by the dataset (A or B). 
B,D) These are the uncorrected tSNE plots colored by the cell type (1-4). E,F) The tSNE plots from the output of 
mnnCorrect colored by dataset in E and cell type in F. G,H) The tSNE plots from the output of Seurat-CCA colored by 
dataset in G and by cell type in H. I-P) The tSNE plots from the LAmbDA final hidden layer on the validation set of 
samples colored by dataset in I,K,M,O and by cell type in J,L,N,P. The numbers on the plots specify the distance ratio 
measure of batch effect correction in each of the representations. Note that for Uncorrected, mnnCorrect, and Seurat-
CCA only 20% of the samples were used so that the plots were comparable against the 20% validation set in LAmbDA. 
The letters i,ii, and iii, indicate the distance metrics for that specific set of cells across all dimensions (not only the 
tSNE dimensions). The first distance ratio (i), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-
dataset-same-subtype centroid distance to the median same-dataset-different-subtype centroid distance. The second 
distance ratio (ii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-dataset-same-subtype centroid 
distance to the median different-dataset-different-subtype centroid distance. The third distance ratio (iii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/
𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median same-dataset-different-subtype centroid distance to the median 
different-dataset-different-subtype centroid distance. 
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Supplementary Fig. S9. tSNE plots for the pancreas datasets (Segerstolpe (Seger), Muraro (Mur), and Baron (Bar)) 
corrected by each method, Uncorrected, Seurat-CCA, mnnCorrect, and LAmbDA. A,C) These are the uncorrected 
tSNE plots colored by the dataset (Seger, Mur, or Bar). B,D) These are the uncorrected tSNE plots colored by the cell 
type (alpha, beta, gamma, delta, epsilon, stellate, acinar, ductal, immune, and other). E,F) The tSNE plots from the 
output of mnnCorrect colored by dataset in E and cell type in F. G,H) The tSNE plots from the output of Seurat-CCA 
colored by dataset in G and by cell type in H. I-P) The tSNE plots from the LAmbDA final hidden layer on the 
validation set of samples colored by dataset in I,K,M,O and by cell type in J,L,N,P. The numbers on the plots specify 
the distance ratio measure of batch effect correction in each of the representations. Note that for Uncorrected, 
mnnCorrect, and Seurat-CCA only 20% of the samples were used so that the plots were comparable against the 20% 
validation set in LAmbDA. The letters i,ii, and iii, indicate the distance metrics for that specific set of cells across all 
dimensions (not only the tSNE dimensions). The first distance ratio (i), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of 
the median different-dataset-same-subtype centroid distance to the median same-dataset-different-subtype centroid 
distance. The second distance ratio (ii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-dataset-
same-subtype centroid distance to the median different-dataset-different-subtype centroid distance. The third distance 
ratio (iii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median same-dataset-different-subtype centroid distance 
to the median different-dataset-different-subtype centroid distance. 
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Supplementary Fig. S10. tSNE plots for the pancreas datasets (Segerstolpe (Seger), Muraro (Mur), and Baron 
(Bar)) corrected  by each method, Uncorrected, Seurat-CCA, mnnCorrect, and LAmbDA. Gaussian mixture models 
were also fit to the tSNE plots to show the stratification of cell types and not dataset as a representative example. A,C) 
These are the uncorrected tSNE plots colored by the dataset (Seger, Mur, or Bar). B,D) These are the uncorrected tSNE 
plots colored by the cell type (alpha, beta, gamma, delta, epsilon, stellate, acinar, ductal, immune, and other). E,F) The 
tSNE plots from the output of mnnCorrect colored by dataset in E and cell type in F. G,H) The tSNE plots from the 
output of Seurat-CCA colored by dataset in G and by cell type in H. I-P) The tSNE plots from the LAmbDA final 
hidden layer on the validation set of samples colored by dataset in I,K,M,O and by cell type in J,L,N,P. The numbers on 
the plots specify the distance ratio measure of batch effect correction in each of the representations. Note that for 
Uncorrected, mnnCorrect, and Seurat-CCA only 20% of the samples were used so that the plots were comparable 
against the 20% validation set in LAmbDA. The letters i,ii, and iii, indicate the distance metrics for that specific set of 
cells across all dimensions (not only the tSNE dimensions). The first distance ratio (i), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, 
represents the ratio of the median different-dataset-same-subtype centroid distance to the median same-dataset-
different-subtype centroid distance. The second distance ratio (ii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the 
median different-dataset-same-subtype centroid distance to the median different-dataset-different-subtype centroid 
distance. The third distance ratio (iii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median same-dataset-
different-subtype centroid distance to the median different-dataset-different-subtype centroid distance. 
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Supplementary Fig. S11. tSNE plots for the brain datasets (Zeisel (MusNG), Lake (HumN), and Darmanis 
(HumNG)) corrected by each method, Uncorrected, Seurat-CCA, mnnCorrect, and LAmbDA. Gaussian mixture 
models were also fit to the tSNE plots to show the stratification of cell types and not dataset. A,C) These are the 
uncorrected tSNE plots colored by the dataset (MusNG, HumN, or HumNG). B,D) These are the uncorrected tSNE 
plots colored by the cell type (interneuron, pyramidal, neuron, oligodendrocyte, microglia, endothelial,  astrocyte, 
ependymal, mural, and other). E,F) The tSNE plots from the output of mnnCorrect colored by dataset in E and cell type 
in F. G,H) The tSNE plots from the output of Seurat-CCA colored by dataset in G and by cell type in H. I-P) The tSNE 
plots from the LAmbDA final hidden layer on the validation set of samples colored by dataset in I,K,M,O and by cell 
type in J,L,N,P. The numbers on the plots specify the distance ratio measure of batch effect correction in each of the 
representations. Note that for Uncorrected, mnnCorrect, and Seurat-CCA only 20% of the samples were used so that 
the plots were comparable against the 20% validation set in LAmbDA. The letters i,ii, and iii, indicate the distance 
metrics for that specific set of cells across all dimensions (not only the tSNE dimensions). The first distance ratio (i), 
𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the median different-dataset-same-subtype centroid distance to the 
median same-dataset-different-subtype centroid distance. The second distance ratio (ii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, 
represents the ratio of the median different-dataset-same-subtype centroid distance to the median different-dataset-
different-subtype centroid distance. The third distance ratio (iii), 𝑫𝒂𝒕!𝑺𝒖𝒃!/𝑫𝒂𝒕!𝑺𝒖𝒃!, represents the ratio of the 
median same-dataset-different-subtype centroid distance to the median different-dataset-different-subtype centroid 
distance. 
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Uncorrected	 Uncorrected	 Uncorrected	 Uncorrected	

i)	1.11	ii)	1.27	iii)	1.14	

i)	0.55	ii)	0.48	iii)	0.88	 i)	0.54	ii)	0.53	iii)	0.97	

i)	0.98	ii)	0.85	iii)	0.87	

i)	0.98	ii)	0.59	iii)	0.60	



 

Supplementary Fig. S12. This figure visualizes the Pearson correlation coefficient between each hyperparameter 
and error during training. These correlations were determined using the 10 rounds of cross validation with 50 rounds 
for hyperparameter tuning per round of cross validation resulting in 500 data points for each model and dataset. For 
LAmbDA-RNN1 only 10 hyperparameter tuning rounds were used resulting in 100 data points. Each row is a 
hyperparameter and each column corresponds to a model and dataset. Boxes with white stripes indicate 
hyperparameter-model combinations that did not exist such as tree depth (Nmax) for models other than random forest.  
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Supplementary Tables 
 
Supplementary Table S1. Complete Cross Dataset Mapping: This table contains the significance tests used to determine the 
accuracies of labels assigned across datasets. Cell Label indicates the cell counts in a confusion matrix across the two datasets used in 
the experiment. AUC indicates the AUC that was calculated for the same confusion matrix cell based on the label probability output. 
Note that AUC is based on binary labels so AUC does not give information about the algorithm’s ability to correctly select a single 
label from multiple labels. Alternatively, the Cell Label column measures the ability to select the correct label and no other labels for a 
cell. The significance tests (Wilcoxon rank-sum) were used to test whether cell-counts/AUCs were higher in the confusion matrix for 
correct mappings (i.e., dataset A cell type 1 mapped to dataset B cell type 1) opposed to the incorrect mapping (i.e., dataset A cell type 
1 mapped to dataset B cell type 2). Italicized values indicate significant test statistics. Bold values indicate the best metric in that 
particular test across all of the methods. Grey boxes indicate areas that are not available from an algorithm. 

Cross-dataset mapping  
Significance tests 

Simulated 1 (7 to 4) Simulated 2 (6 to 4) Pancreas (39 to 17) Brain (70 to 43) 
Cell label AUC Cell label AUC Cell label AUC Cell label AUC 

LAmbDA-LR t-test 0.4240 0.4738 0.2458 0.8789 0.9853 0.0061 0.9807 0.9686 
Wilcoxon <0.0001 0.0351 0.0002 0.0937 0.9470 0.0056 1.0000 0.4007 

LAmbDA-RF t-test 0.6720 0.0001 0.4539 0.2973 0.5111 0.0002 0.3201 0.2395 
Wilcoxon 0.7611 0.0351 0.7128 0.0937 0.5150 0.0015 0.2386 0.4983 

LAmbDA-
FF1 

t-test 0.0097 0.0008 0.0620 0.0062 0.0148 <0.0001 0.0146 0.0020 
Wilcoxon <0.0001 0.0351 0.0002 0.0937 0.0478 0.0001 0.0130 0.0014 

LAmbDA-
FF3 

t-test 0.1089 0.0058 0.2169 0.1046 0.0062 <0.0001 0.1982 0.1492 
Wilcoxon <0.0001 0.0351 0.0002 0.0937 0.0346 0.0003 0.2173 0.1101 

LAmbDA-
RNN1 

t-test 0.3653 0.0735 0.8359 0.9073 0.6277 0.2144 0.3016 0.6701 
Wilcoxon <0.0001 0.0351 0.0002 0.0937 0.7642 0.2018 0.3305 0.4646 

LAmbDA-
FF1bag 

t-test <0.0001 <0.0001 0.0063 0.0047 0.0006 <0.0001 0.0050 0.0012 
Wilcoxon 0.0006 0.0351 0.0005 0.0937 0.0181 0.0002 0.0175 0.0018 

scmap t-test <0.0001  0.0103  <0.0001  0.5560  
Wilcoxon 0.0090  0.1333  <0.0001  0.3671  

CaSTLe t-test <0.0001 0.0007 0.0053 0.0043 0.0007 <0.0001 0.5628 0.0019 
Wilcoxon 0.0160 0.0091 0.1333 0.1333 0.0008 <0.0001 0.4688 0.0049 

MetaNeighbor t-test  0.0002  0.2026  0.0002  0.5642 
Wilcoxon  0.0091  0.2727  0.0005  0.4813 

 
 
Supplementary Table S2. Mouse and Human Interneuron consistent subtype mapping with overlapping biomarkers from the original 
publications(Lake, et al., 2016; Zeisel, et al., 2015). The relationships listed in the first two columns can be seen in Fig. 3G box 1. 
In1-8 are the interneuron subtypes from the HumN dataset and Int1-16 are the interneuron subtypes from the MusNG dataset. 

HumN MusNG Biomarkers 
In1 Int6-8,12 CCK,CXCL14 
In2 Int5,6,10 CXCL14,VIP 
In3 Int9,10,13 CALB2 
In4 Int12,14-16 CXCL14,RELN 
In5 Int4,14  
In6 Int1-4,13 LHX6,PVALB 
In7 Int1,14,15 NPY 
In8 Int1,2,4 LHX6,SST,CALB1 
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