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ABSTRACT

The analysis of complex mechanisms underlying ventricular fibrillation (VF) and atrial fibrillation (AF) requires sophisticated
tools for studying spatio-temporal action potential (AP) propagation dynamics. However, fibrillation analysis tools are often
custom-made or proprietary, and vary between research groups. With no optimal standardised framework for analysis, results
from different studies have led to disparate findings. Given the technical gap, here we present a comprehensive framework and
set of principles for quantifying properties of wavefront dynamics in phase-processed data recorded during myocardial fibrillation
with potentiometric dyes. Phase transformation of the fibrillatory data is particularly useful for identifying self-perpetuating spiral
waves or rotational drivers (RDs) rotating around a phase singularity (PS). RDs have been implicated in sustaining fibrillation,
and thus accurate localisation and quantification of RDs is crucial for understanding specific fibrillatory mechanisms. In this
work, we assess how variation of analysis parameters and thresholds in the tracking of PSs and quantification of RDs could
result in different interpretations of the underlying fibrillation mechanism. These techniques have been described and applied
to experimental AF and VF data, and AF simulations, and examples are provided from each of these data sets to demonstrate
the range of fibrillatory behaviours and adaptability of these tools. The presented methodologies are available as an open
source software and offer an off-the-shelf research toolkit for quantifying and analysing fibrillatory mechanisms.

Supplement
Pre-processing of Optical Fluorescence Data
To eliminate the effects of noise present in the raw optical mapping data, spatial and temporal filters were applied. The filter
type and parameter settings were selected based on our previous studies1, 2. Specifically, data from the optical mapping set-up
were imported into MATLAB using an equipment specific import function. We provide a library of import functions to bring
fluorescence data from several different systems into MATLAB.

The imported data were processed using a sequence of steps as follows. First of all, fluorescence data were thresholded
using a binary mask constructed from a still image taken at the beginning of the experiment to distinguish tissue from noisy
pixels. Pixels were included in the analysis if they were above a threshold fluorescence using a mask constructed as a continuous
domain by using imfill in MATLAB to fill any holes. The masked data were then spatially smoothed using a convolution
operator (conv2 in MATLAB) to replace the value of each pixel with an average over neighbouring tissue pixels. We used
a linear convolution kernel of size 3×3 pixels. For the next step, the signal from each pixel was temporally filtered using
a finite impulse response filter in Matlab (Parks-McClellan algorithm; firpm), with zero-phase filtering (filtfilt) to minimise
any temporal shifts caused by the filter. We used a band-pass filter with a low-band of 2Hz, and a high-band of 125% of the
dominant frequency of the recording. These parameters were chosen as part of a parameter sensitivity testing study1, 2. Baseline
drift was then removed from each pixel, following3, by subtracting a fourth order polynomial fit of the signal. Finally, the
signals were normalised to the range (0, 1).

Phase Mapping
Filtered optical mapping signals were processed using a sequence of steps to calculate a zero-mean sinusoidal signal suitable for
phase analysis. This was achieved using a variation of a pseudo-empirical mean decomposition technique for phase analysis4,
which we previously published2, 5. In brief, maxima and minima of the signal were tagged using a sliding window approach.
Pairs of detected maxima and minima that were below an amplitude threshold were then removed. Cubic spline fits were



performed on the maxima and minima of the signal, and the average of the maxima and minima splines was used as a moving
mean signal, which was subtracted to obtain a signal of zero mean. The effects of the window length and amplitude thresholds
used were investigated, and suitable values chosen to assign activation points appropriately to candidate deflections, as part of
sensitivity testing of the algorithm5. We estimated the cycle length (CL) as the inverse of the dominant frequency of the signal.
We used a window length of 90% of the estimated CL and an amplitude deletion threshold of 15% of the estimated median
amplitude. Finally, the real and imaginary parts of the Hilbert transform of this zero-mean signal were plotted in the phase
plane, and the angle around this trajectory gave the phase angle.

Phase maps were post-processed to identify candidate PS locations using the topological charge technique of Bray and
Wikswo6, with a contour size of 3-by-3. To increase robustness to noise, and decrease false detections, candidate PS were
defined as pixels within 3 of ±2π . Candidate PS were only identified as true PS if they lay on a neighbourhood of three of
more candidates and were the closest of their neighbours to ±2π . This technique was found to be more robust to noise than
using a larger phase contour1.

Statistics of Rotational Activities
To characterize the behaviour of a given rotational driver, both the spatial and temporal stability of a PS was determined. For
each PS, the key statistics calculated based on PS tracking are given in Supplementary Table 1. p̄(x,y) and pstd(x,y) are the
average and standard deviation of the position of a given PS, respectively, and pD(x,y) measures the displacement between
the beginning and end of the position of the PS. pstd(x,y) and pD(x,y) quantify different features of the spatial stability of a
PS. For a very stable PS that stays at one site all of the time, both pstd(x,y) and pD(x,y) will be small. A PS moving within a
confined area will yield relatively high pstd(x,y) and low pD(x,y), while a PS meandering from one location to another will
yield both high pstd(x,y) and high pD(x,y). Tr and Nr are the duration and number of full rotations of a given PS, respectively,
which indicate the temporal stability of the PS. The rotation frequency of the PS ( fr) was calculated from Tr and Nr.

The Group Statistic section in Supplementary Table 1 shows key statistics calculated to characterise the arrhythmia
behaviour. nps and nps2 are the number of all PS and PS over 2 full rotations respectively. lps and lps2 are the number of
locations occupied by all PS and PS over 2 full rotations, respectively. PSs with the longest duration and largest number of full
rotations may represent rotational drivers that have the most dominant effect on fibrillation dynamics. As such, T max

r and Nmax
r ,

the maximum duration and number of full rotations of all PS respectively, are calculated. These properties are also important
for global quantification of the global fibrillatory organisation. Both the PS and group statistics can be calculated and exported
as .csv files by our MATLAB-based analysis toolbox.

Table 1. Key statistics of PS

Single PS Statistics
p̄(x,y) The average spatial position of the PS (in pixels)

pstd(x,y) The standard deviation of the displacement of the PS (in pixels)
pD(x,y) The average displacement from the beginning to end of the PS (in pixels)

Tr The duration of a given PS (in ms)
Nr The number of full rotations of a given PS
fr The frequency of rotation of a given PS

Group Statistics
nps total number of PSs
nps2 total number of PSs with 2 or more rotations
lps total number of locations occupied by all PSs (in pixels)
lps2 total number of locations occupied by all PSs with 2 or more rotations (in pixels)

T max
r maximum duration for a single PS (in ms)

Nmax
r maximum number for a single PS

Sensitivity Analysis of Parameters in Response to Resolution
As discussed, the parameters dgap, tgap and L need to be adjusted for different experimental and simulation setups chosen
for fibrillation studies. PS/RD detection may differ significantly with low spatial resolution data. To further investigate the
performance of the proposed methodology under different parameter setting and spatial resolutions, sensitivity analysis was
performed. To generate data of different spatial resolutions, a representative full resolution rat VF optical mapping data was
downsampled by factors of 2 and 4, yielding data of 50% and 25% of the full spatial resolution.

In Supplementary Figure 1 and Supplementary Table 2, key PS/RD statistics obtained for different dgap and tgap with 100%,
50% and 25% of full spatial resolution are summarised. In Supplementary Figure 1, sub-panel A shows that the four statistics,
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i.e., nps, nps2, T max
r and Nmax

r , do not differ much with tgap ranging from 1ms to 5ms for any spatial resolution. As shown by
sub-panel B, these statistics are more sensitive to changes in dgap. When dgap is small, PSs spatial meander within a single
RD trajectory is constrained to a smaller area. Thus, a decrease in dgap yields more PSs (i.e.nps and nps2 increase) but shorter
maximum duration and a smaller number of maximum rotations T max

r and Nmax
r . This is because trajectories are broken up into

smaller trajectories that last for much fewer rotations as PSs meander between frames. The effect of dgap on localisation of RDs
is further illustrated in the heat maps showing RDs localisation in Supplementary Figure 2. These maps show that dgap = 2
or 5 does not have a large effect on the resulting heat maps, but dgap = 1 resulted in missed RD detection. There is always a
certain degree of meander of RD. Thus, with dgap = 1, the criteria of spatial stability for RD is too stringent, and the algorithm
fails to detect any long-lived RDs for any resolutions. Figure 2 also shows that relative localisation of RD harbouring areas is
preserved at 50% spatial resolution, but poor at resolutions lower than this.

Table 2. Comparing phase singularity statistics as dgap and tgap are varied for different spatial resolutions for a representative
rat VF heart.

Resolution (%) dgap tgap nps nps2 lps lps2 T max
r Nmax

r
100 5 (0.65mm) 5 (5ms) 1256 26 2723 585 2627 63
100 2 (0.26mm) 5 (5ms) 2761 33 2723 339 419 10
100 1 (0.13mm) 5 (5ms) 8079 0 2723 0 80 1
100 5 (0.65mm) 2 (2ms) 1337 27 2723 558 2627 63
100 5 (0.65mm) 1 (1ms) 1541 27 2723 527 2627 63
50 5 (1.3mm) 5 (5ms) 366 17 753 294 1690 41
50 2 (0.52mm) 5 (5ms) 776 20 753 199 1434 34
50 1 (0.26mm) 5 (5ms) 2780 1 753 1 88 2
50 5 (1.3mm) 2 (2ms) 387 18 753 275 1690 41
50 5 (1.3mm) 1 (1ms) 438 20 753 268 1690 41
25 5 (2.6mm) 5 (5ms) 114 16 203 62 542 4
25 2 (1.04mm) 5 (5ms) 225 11 203 33 377 4
25 1 (0.52mm) 5 (5ms) 1069 0 203 0 100 1
25 5 (2.6mm) 2 (2ms) 130 16 203 57 514 4
25 5 (2.6mm) 1 (1ms) 147 14 203 57 385 4

The sensitivity of quantification to the parameter L is directly related to the cycle counting of edge distance with different L
values, which is shown in Supplementary Figure 4 in the main text. In this supplementary section, more tests with different
L values are shown in Supplementary Figure 3. With L ranging from 7 to 31, the minimum detection and resultant count of
rotations are almost the same. When L is larger than 31, there are too many time frames when no edges are detected, resulting
in an incorrect estimation of cycles.

In the main text, we have shown that the parameter settings we recommend also work for the canine experimental model,
where the inter-pixel distance is around 0.29 mm, equating to about half of the full resolution of the rat model. However,
reliable detection of rotational drivers is challenging with progressively lower spatial resolution data and prone to false positive
detections7. This makes it difficult to extrapolate optimised dgap and L values for resolutions beyond those investigated here.
As shown in Supplementary Table 2 and Supplementary Figure 1, PS/RD were poorly detected and quantified with 25% of the
full spatial resolution for all values of dgap and tgap. Based on our sensitivity analysis above, the spatial resolution required
for reliable PS/RD quantification in optical mapping data of rat VF is an inter-pixel distance of approximately 0.26 mm. For
spatial resolutions corresponding to an inter-pixel distance of around 0.26mm, we recommend using dgap in the range of 2 to 5
pixels, tgap between 1 and 5ms, and L of 15 pixels. It should be noted that at lower spatial resolutions, with a greater inter-pixel
distance, the physical area subtended by a given dgap will also be greater and adjustments will need to be made for this to
optimise accuracy of the outputs.

We recommend a level of qualitative visual assessment of traces produced at differing edge detection lengths to ensure
accurate detection of wavefronts as demonstrated in Supplementary Figure 3 before full data analysis is performed. Our
recommended values of dgap and L may be extrapolated to differing resolutions based on the inter-pixel distance provided,
for instance by increasing dgap and L by a factor of 10 (in pixels) for data acquired with a camera with 10 times the spatial
resolution of ours (to correspond to the same physical distance). Similar adjustments should be made for the size of the
experimental model being used to study fibrillation relative to the models studied in this paper.

Edge Distance Metrics
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B

Figure 1. Comparing RD quantification for different dgap and tgap values and different data resolution. RD parameters nps,
nps2, T max

r and Nmax
r are shown as tgap is varied in (A), and as dgap is varied in (B).

In this work, the largest singular value is used for edge distance calculation, which represents the l2 norm of the edge distance
matrix. We have also implemented maximum and mean Euclidean distance for comparison. As shown by Supplementary
Figure 4, the cycles detected are the same with all three distance measurements with only the scale of the distances being
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Figure 2. Representative RD heat maps of a rat VF heart comparing RD localisation for different dgap and different spatial
resolutions. At 50% of full spatial resolution (inter-pixel distance of 0.26mm) regions harbouring RD could be accurately
localised. However, at 25% spatial resolution (inter-pixel distance of 0.52mm) the localisation is poor and inaccurate.
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Figure 3. Edge distance traces for rotation counts for a given RD at differing L values (expressed in pixels) over time in a
representative rat VF heart.

(a) Max Euclidean distance (b) Mean Euclidean distance (c) Largest singular value

Figure 4. Comparison of cycle detection using maximum and mean Euclidean distance and largest singular value. There is no
differences in cycle detection between the 3 metrics.

different.

Related Methods
In addition, we have included three other commonly used mapping metrics, dominant frequency (DF), Shannon entropy (SE)
and organisation index (OI), as part our open source toolbox. These are shown in Supplementary Figure 5. The methodology
for calculating these metrics is well defined in the literature and previously they have been used as surrogates for localising
areas harboring RDs8. Briefly, DF is defined as the highest peak of the frequency spectrum for each signal measured at a single
site, and previous studies have measured higher DF at pivot points of rotational activities9. In10, the DF frequency measure is
extended to a measure of the degree of organization, termed the organizational index (OI), which is defined as the area in the
power frequency spectrum under the DF peak and its harmonics divided by the total area. Entropy - for example the Shannon
entropy (SE) - measures the predictability of the signal and has also been used for rotational activity mapping11. Note that DF
and OI maps are affected by the parameter setting, such as the frequency window used to calculate the area under peaks. In this
example, the frequency range to calculate DF is 20-50 Hz and a 0.75 Hz window is used to calculate the area under the DF peak
and its harmonics in OI.
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(a) DF (b) SE (c) OI

Figure 5. Application of dominant frequency (DF), Shannon entropy(SE) and organisational index (OI) analysis to rat VF
data. The corresponding RD heat map generated from phase analysis is Figure 6 (a) in the manuscript. DF, SE and OI are not
able to reliably locate regions harbouring RDs in this example.
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