Sex-dependent VEGF expression underlies variations in human pluripotent stem cell to endothelial progenitor differentiation

Lauren N. Randolph^{1,2}, Xiaoping Bao⁴, Michael Oddo¹, Xiaojun Lance Lian^{1,2,3,*}

¹Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA,

²Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA,

³Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA,

⁴Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA

^{*} Correspondence should be addressed to: Xiaojun Lance Lian (Lian@psu.edu)

Supplementary Table 1: Antibodies used in immunostaining analysis.

Antibody	Source	Application
CD144-FITC	Miltenyi Biotec, recombinant human IgG1, Clone: REA199, Cat#: 130-100-742	1:25 (FC)
VE-cadherin	Santa Cruz, mouse igG1, Clone: F-8, Cat#: sc-9989	1:1000 (WB)
β-actin-HRP	Cell Signaling Technology, rabbit, Clone: 13E5, Cat#: 5125S	1:20000 (WB)
Secondary Antibody	Alexa 488 Goat anti Mouse IgG1, Cat#: A-21121	1:1000 (IF)
Secondary Antibody	Anti-mouse IgG HRP-linked, Cell Signaling Technology, Cat#: 7076S	1:1000 (WB)

Supplementary Table 2: Primers used in qPCR experiments.

Primer	Sequence	Size (bp) / T_m (°C) / No. of Cycles	
GAPDH_FWD	5'-GTGGACCTGACCTGCCGTCT-3'	152 / 55 / 40	
GAPDH_REV	5'-GGAGGAGTGGGTGTCGCTGT-3'	152 / 55 / 40	
VEGF_FWD	5'-GGCAAAGTGAGTGACCTGCT-3'	106 / 55 / 40	
VEGF_REV	5'-CTGTCTGTCCGTCAGC-3'		
SOX2_FWD	5'-CAAGATGCACAACTCGGAGA-3'	000 / 55 / 40	
SOX2_REV	5'-GTTCATGTGCGCGTAACTGT-3'	300 / 55 / 40	
CD34_FWD	5'-CCTAAGTGACATCAAGGCAGAA-3'	201 / 55 / 40	
CD34_REV	5'-GCAAGGAGCAGGGAGCATA-3'		

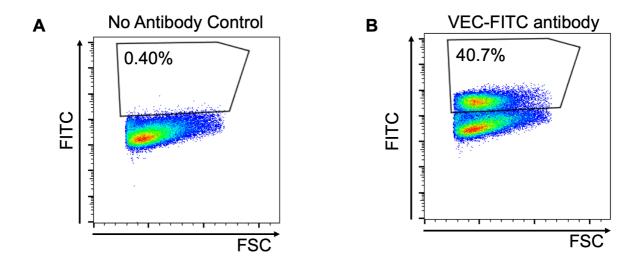
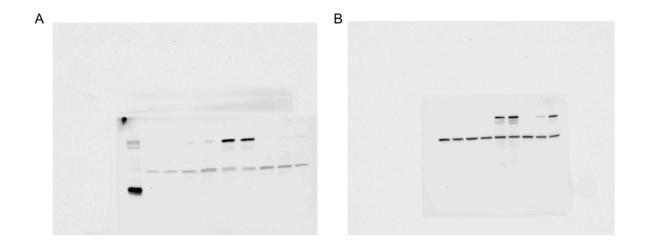



Figure S1: Flow cytometry analysis for D5 endothelial progenitor cells derived from WT H9 cells. H9 cells were differentiated using a GSK3 inhibitor based endothelial progenitor differentiation protocol (Gi protocol). On day 5 of differentiation, cells were analyzed for VEC expression by flow cytometry. (A) No antibody control (B) VEC-FITC antibody.

<u>Figure S2:</u> Gating for all flow plots included in data set. H9 and H13 VEC-GFP KI cell lines were differentiated using Gi protocol. On day 5 of differentiation, GFP expression was analyzed via flow cytometry.

<u>Figure S3:</u> Full blots for Western blot data. A) H9 cells B) H13 cells were differentiated with Gi protocol. VEC and beta-actin expression was analyzed via western blot.

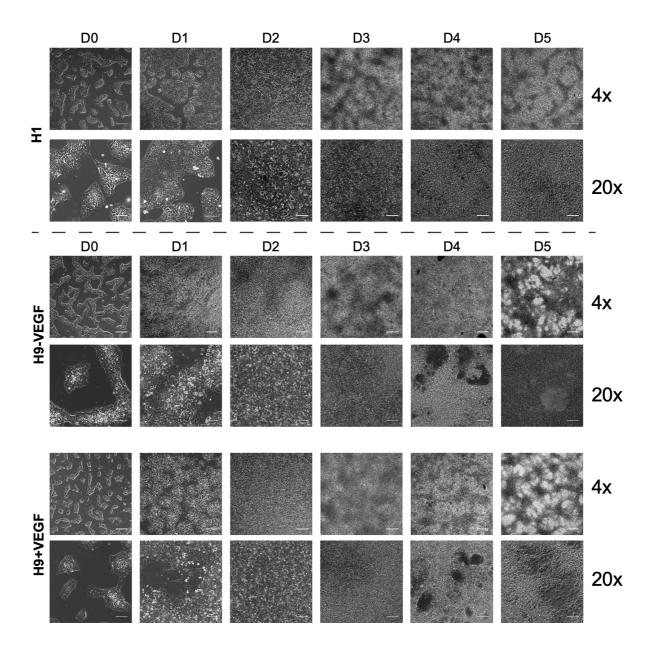


Figure S4: Representative bright field images of differentiation. H1 and H9 cells were differentiated with Gi protocol. Bright field images were taken daily during differentiation. Scale bars for 4x images are 500 μ m. Scale bars for 20x images are 100 μ M.