Cell Host & Microbe, Volume 26

Supplemental Information

Structural Basis for Broad HIV-1 Neutralization

by the MPER-Specific Human Broadly

Neutralizing Antibody LN01

Dora Pinto, Craig Fenwick, Christophe Caillat, Chiara Silacci, Serafima Guseva, François Dehez, Christophe Chipot, Sonia Barbieri, Andrea Minola, David Jarrossay, Georgia D. Tomaras, Xiaoying Shen, Agostino Riva, Maciej Tarkowski, Olivier Schwartz, Timothée Bruel, Jérémy Dufloo, Michael S. Seaman, David C. Montefiori, Antonio Lanzavecchia, Davide Corti, Giuseppe Pantaleo, and Winfried Weissenhorn

Supplemental Information

Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01

Dora Pinto, Craig Fenwick, Christophe Caillat, Chiara Silacci, Serafima Guseva, François Dehez, Christophe Chipot, Sonia Barbieri, Andrea Minola, David Jarrossay, Georgia D. Tomaras, Xiaoying Shen, Agostino Riva, Maciej Tarkowski, Olivier Schwartz, Timothée Bruel, Jérémy Dufloo, Michael S. Seaman, David C. Montefiori, Antonio Lanzavecchia, Davide Corti, Giuseppe Pantaleo, Winfried Weissenhorn

Figure S1 related to Figure 1. Selection of HIV-1 patients for the presence of broad neutralizing activity in the serum and identification of the LN01 mAb.

(A) A cohort (n=70) of patients chronically infected with HIV-1 clade B or clade C were screened for the presence of high titers of antibodies able to neutralize a panel of nine HIV-1 PVs from the Global Panel of HIV-1 reference strains. The sera were tested in neutralization assay using TZM-bl cells and the ID50s (y-axes) were determined.

(B) Identification of LN01 mAb. IgG GC and IgG memory B cells isolated from LNMC of an HIV-1 infected donor were seeded on MSC at 3 c/well in 384-well plates in the presence of IL-2, IL-6, IL-21, BCR-trigger and EBV. After 14 days of culture, supernatants were collected and tested for their ability to neutralize HIV-1 strains CE1176 and BJOX PV using a TZMbl-base micro-neutralization assay.

Figure S2 related to Figures 1C and 3A, B. Neutralizing activity of LN01 IgG1, IgG3 and Fab Ig formats.

Percentage of neutralization of LN01 IgG1 compared to LN01 IgG3 (top panel) and LN01 Fab fragment (bottom panel) against seven HIV-1 PVs of the Global Panel. Serial dilutions of the recombinant mAbs were incubated with HIV-1 PVs and then added to the TZM-bl target cells.

Figure S3 related to Figures 1C and 3A, B. $Fc\gamma RI$ expression on target cells greatly enhances HIV-1 neutralization by anti-MPER broadly neutralizing mAbs.

LN01 mAb and the two other anti-MPER mAbs 10E8 and 4E10 were tested for their neutralizing activity against nine HIV-1 PVs of the Global Panel using either parental TZM-bl cells or TZM-bl cells expressing human $Fc\gamma RI$. The IC50 values expressed in $\mu g/ml$ are shown.

(A) Binding of LN01 and 7B2 mAbs to an array of 1423 15-mer peptides, overlapping by 12 amino acids, that cover the full length of the consensus HIV-1 Env gp160 sequences for clades A, B, C, D, group M, CRF01_AE and CRF02_AG. Signals below 2.0E+4 are scored as negative. As expected 7B2 reacts with the gp41 immuno-dominant region.

(B) LN01, 10E8 and HK20 (HR1 specific) mAbs were tested in ELISA for binding to a 28 amino acids long peptide encompassing the entire gp41 MPER. Shown are the OD values at 405 nm.

Α

Figure S5 related to Figures 5 and 6. Sequence conservation of MPER and interaction of LN01 with gp41 peptides.

(A) Sequences of gp41 peptides, MPER-TM1 and MPER-TM-2 used in this study. Two forms of MPER-TM2 were expressed, gp41 residues 630 to 711, which was used for experiments

shown in D and MPER-TM2 residues 650 to 711 used for all other MPER-TM2 experiments. MPER-TM2 650 to 711 was generated by an engineered TEV site in the original 630 to 711 construct. The MPER sequence present in the structures is drawn in purple and the transmembrane region in beige.

(B) MPER-TM2 forms trimers in a buffer containing β -OG as determined by SEC-MALLS. The sample was applied to size-exclusion chromatography on a Superdex 200 column. The chromatogram shows detector readings of the light scattering detector (Rayleigh ratio), the UV₂₈₀ detector, and the refractive index detector (dRI). The horizontal lines indicate the calculated mass of MPER-TM2 (24 kDa), detergent micelle in the complex (65 kDa), MPER-TM2-detergent complex (89 kDa) and free detergent micelle (38 kDa). The molecular weight of the MPER-TM2 (residues 650 to 711) monomer is 7.2 kDa.

(C) SEC analysis of MPER-TM2 alone and in complex with LN01 demonstrates complex formation in a buffer containing Fos-Choline-12. MPER-TM2 is monomeric in this buffer. The SDS-PAGE of a central fraction of the LN01-MPER-TM2 peak reveals the presence of MPER-TM2 and the Fab.

(D) SPR analyses of 10E8 and LN01 interaction with MPER-TM1 and MPER-TM2 in buffers containing β -OG and Fos-Choline-12. Injections were performed in the range of 1 to 2048 nM. The raw data is shown in full lines and the fits are drawn as dashed lines. The χ^2 of the fits and the calculated K_d are shown as insets.

(E) Sequence Conservation of gp41 MPER and the transmembrane domain (TM). Upper panel, comparison of 5448 sequences of HIV-1, M group (A-K plus recombinants) from <u>http://www.hiv.lanl.gov.</u> Middle panel, main residues interacting with bNAbs 4E10, 10E8, DH511.1 and LN01. Lower panel, consensus amino acid sequences of the TM region of HIV-1, HIV-2 and SIV showing the positions of the conserved glycine residues.

Figure S6 related to Figures 5B, 6 and 7. Molecular details of Fos-Choline-12 and 06:0 PS interaction and of transmembrane residues with lipid head groups. (A) Fos-Choline-12 and (B) 06:0 PS binding. The 2Fo-Fc composite omit map (1 σ level) is represented as a blue mesh around the ligands Fos-Choline-12 (A) and 06:0 PS (B). The 2Fo-Fc map (1 σ level) calculated after refinement is represented as a blue mesh around the ligands Fos-Choline-12 (A) and 06:0 PS (B). The 2Fo-Fc map (1 σ level) (A lower panel) and 06:0 PS (B lower panel). All residues potentially interacting (within 3.5 Å) with the lipids are represented in sticks.

(C) Close-up of the LN01 Fab in complex with MPER-TM2 positioned in a lipid bilayer by MD simulation. The lipid bilayer is composed of POPC (turquoise), POPE (yellow-green), POPS (red), SSM (pink) and cholesterol (mauve). The lipid head groups are represented as van der

Waals spheres of the corresponding color. The light chain of the LN01 Fab is shown in yellow and the heavy chain in orange (left panel). Conserved basic residues positioned to contact lipid head groups on the Ab binding side of the bilayer are shown on the left panel and those present on the on the opposite side of the bilayer are shown on the right panel.

Figure S7 related to Figures 1D and E: Binding of LN01 variants to gp41 MPER-TM2 as measured by Bio-layer interferometry (BLI). Colored lines represent the response curves (blue is the lowest concentration and purple the highest). For LN01 sH/sL, LN01 gH/sL and LN01 sH/gL-FR the red line represents the best fit (1:1 model, see STAR*METHODS).

Table S1 related to Figures 2A, B. Breadth, and potency of LN01 mAb against 118 HIV-1 PVs. LN01 and 10E8 were tested in micro-neutralization assay on TZM-bl target cells against the extended panel of 118 HIV-1 PVs. Shown are the IC50 and IC80 values. Color code: red < 1 μ g/ml; orange 1-10 μ g/ml; yellow > 10 μ g/ml.

		Titer in TZM-bl cells (ug/ml)				
		IC	IC50		IC80	
Virus ID	Clade*	LN01	10E8	LN01	10E8	
6535.3	8	1.031	0.081	6.072	1.32	
QH0692.42	В	0.515	0.442	4.028	4.046	
50422001.8	B	0.292	0.445	1.440	2./15	
TPO 11	B	0.403	0.747	3.793	>10	
AC10.0.29	0	1.004	0.034	7.035	1.524	
RHPA4259 7	8	10 306	0.732	1.320	5.275	
THRO4156 18	B	9.831	0.156	>25	0.884	
REJ04541.67	B	0.291	0.203	2 261	1 686	
TRJ04551.58	8	8.416	0.475	>25	4 783	
WIT04160.33	B	0.224	0.094	1.599	1.226	
CAAN5342.A2	B	2.242	1,284	18,329	9,281	
WEAU_d15_410_5017	B (T/F)	2.471	>10	>25	>10	
1006_11_C3_1601	B (T/F)	0.548	0.172	3.885	2.999	
1054_07_TC4_1499	B (T/F)	0.092	0.046	0.551	0.305	
1056_10_TA11_1826	B (T/F)	0.060	0.134	0.562	1.028	
1012_11_TC21_3257	B (T/F)	0.641	0.244	8.756	4.211	
6240_08_TA5_4622	B (T/F)	1.978	0.756	14.746	5.591	
6244_13_B5_4576	B (T/F)	0.088	0.086	0.445	0.809	
62357_14_D3_4589	B (T/F)	5.043	0.119	20.028	1.060	
SC05_8C11_2344	B (T/F)	0.710	0.665	4.945	2.736	
D. 150.10						
Du156.12	C	0.146	0.034	0.473	0.144	
Du1/2.1/	C	0.059	0.109	0.285	0.837	
DU422.1	C	0.929	0.351	6.282	1.883	
ZM19/M.PB/		0.127	0,148	7.766	0.802	
ZM214M.PL15 7M233M PB6	C	0.640	1.902	2,060	2 303	
7M240M PI 1	C C	0.073	1 511	3.000	6 204	
7M53M PR12	C C	11.114	3.985	>25	>10	
ZM109E PB4	C C	0.618	0.295	4 857	1 888	
ZM135M PL10a	C C	0.710	0.171	3.469	1 186	
CAP45 2 00 G3	C C	1.878	1 817	10 787	>10	
CAP210.2.00.E8	c	>25	0.798	>25	3,892	
HIV-001428-2.42	C C	24 689	0.809	>25	7 298	
HIV-0013095-2.11	C C	0.028	0.031	0.136	0.213	
HIV-16055-2.3	c	0.174	0.722	1,181	6.495	
HIV-16845-2.22	č	0.040	0.068	0.326	0.495	
	-					
Ce1086_B2	C (T/F)	0.328	1.162	2.851	6.934	
Ce0393_C3	C (T/F)	>25	1.179	>25	7.423	
Ce1176_A3	C (T/F)	1.092	0.867	3.786	3.923	
Ce2010_F5	C (T/F)	11.611	1.844	>25	8.612	
Ce0682_E4	C (T/F)	0.626	1.215	7.500	7.709	
Ce1172_H1	C (T/F)	0.070	0.722	0.472	4.818	
Ce2060_G9	C (T/F)	4.050	3.520	12.431	>10	
Ce703010054_2A2	C (T/F)	1.703	2.299	8.142	8.579	
BF1266.431a	C (T/F)	>25	2.687	>25	>10	
246F C1G	C (T/F)	4.894	2.217	15.945	9.937	
249M B10	C (T/F)	2.769	1.271	8.389	9.050	
ZM247v1(Rev-)	C (T/F)	0.501	0.506	6.465	6.745	
7030102001E5(Rev-)	C (T/F)	4.365	6.707	16.490	>10	
1394C9G1(Rev-)	C (T/F)	5.964	0.963	23.305	5.327	
Ce704809221_1B3	C (T/F)	3.078	0.058	15.769	0.319	
CNE19	BC	1 206	0.665	6.774	6.485	
CNE20	BC	0.018	1.246	0.050	6.577	
CNE21	BC	0.053	1,900	0.317	>10	
CNE17	BC	1.112	1.114	5.618	5.255	
CNE30	BC	0.597	1.560	2.081	9.842	
CNE52	BC	>25	0.304	>25	3.056	
CNE53	BC	0.321	0.326	1.982	1.916	
CNE58	BC	0.297	1.289	0.831	8.268	

		Titer in TZM-bl cells (ug/ml)				
		IC	50	IC80		
Virus ID	Clade*	LN01	10E8	LN01	10E8	
MS208.A1	A	>25	0.609	>25	3.717	
Q23.17	A	5.513	1.637	19.114	7.040	
Q461.e2	A	2.829	2.111	11.579	>10	
Q769.d22	A	6.420	1.667	21.297	10.000	
Q259.d2.17	A	6.498	4.587	>25	>10	
0220 v4 c2	A .	7.934	4.169	>25	>10	
0330.94.03	A	0.243	2.000	>20	>10	
0200.05.030	A	>20	>10	>25	>10	
191955 A11	A (T/E)	1 668	0.680	8 709	3 532	
191084 B7-19	A (T/F)	2.614	5 156	22 185	>10	
9004SS_A3_4	A (T/F)	0.409	1.160	2.923	6.761	
T257-31	CRF02_AG	21.964	0.880	>25	5.779	
928-28	CRF02_AG	0.086	0.384	0.573	1.962	
263-8	CRF02_AG	0.355	0.196	1.982	1.728	
T250-4	CRF02_AG	2.202	1.346	9.990	8.130	
1251-18	CRF02_AG	>25	2.357	>25	>10	
T255-34	CRF02_AG	0.277	0.349	21.004	A 207	
211-9	CRF02_AG	0.592	1.001	2.084	4.207	
235-47	CRF02_AG	0.874	0.384	3.713	2.072	
620345.c01	CRF01_AE	1.547	0.455	13.141	6.002	
CNE8	CRF01_AE	0.028	NT	0.259	NT	
C1080.c03	CRF01_AE	0.124	0.061	0.653	0.731	
R2184.c04	CRF01_AE	0.890	0.272	7.371	2.455	
R1166.c01	CRF01_AE	0.603	0.274	3.454	2.614	
R3265.c06	CRF01_AE	3.139	>10	>25	>10	
C2101.c01	CRF01_AE	0.739	1.921	6.352	8.260	
C3347.C11	CRF01_AE	0.901	0.016	2.939	0.167	
C4118.009	CRF01_AE	2.022	1.622	12./52	9.004	
B 10X009000 02 4	CRE01_AE	4.345	1.400	6.676	9.037	
5507005000.02.4	CRFUT_AE	1.212	1.570	0.070	9.954	
BJOX015000.11.5	CRE01 AE (T/F)	0.529	0.051	8,603	1,909	
BJOX010000.06.2	CRE01 AE (T/E)	0.353	0.341	1.605	5 203	
BIOX025000.01.1		0.196	0.107	1 263	6 325	
BJOX028000.10.3	CRF01_AE (T/F)	1.097	0.665	18,970	7.361	
	0.000_02(0.0)					
X1193_c1	G	0.851	0.497	6.106	4.195	
P0402_c2_11	G	3.836	0.172	18.720	3.288	
X1254_c3	G	3.005	4.753	12.477	>10	
X2088_c9	G	>25	>10	>25	>10	
X2131_C1_B5	G	0.229	0.189	1.559	0.974	
P1981_C5_3	G	0.115	0.057	0.422	0.285	
X1632_S2_B10	G	1.846	1.976	7.366	9.684	
2016 - 5 045	0	0.350	0.170	1.102	4 202	
A07412M1 ure12	0	0.200	0.476	2.655	4.393	
231965 c01	D	9.503	>10	2.000	>10	
231966 c02	D	0.948	0.191	5 484	3.130	
191821_E6_1	D (T/F)	1.239	1.413	4.886	7.737	
3817 v2 c59	00	14 630	1 181	>25	5.077	
6480 v4 c25	CD	6 274	8.070	>25	>10	
6952 v1 c20	00	0.271	0.075	1 202	1 907	
6811.v7.c18	0	5.002	7 535	18 000	>10	
89-F1 2 25	00	3.043	1 112	21 607	10.000	
0011_6_60	00	0.040	1.112	21.007	10.000	
3301.v1.c24	AC	7.543	4.628	24.230	>10	
6041.v3.c23	AC	1.720	2.333	11.549	9.766	
6540.v4.c1	AC	3.885	1.899	19.733	10.000	
6545.v4.c1	AC	2.977	1.778	19.229	8.229	
0915 1/2 02	400	0.000	0.055		2.650	
3103 v3 c10	ACD	0.364	>10	5.546	2.868	
0100.10.010	AUD	-20	210	-25	210	
* (T/F): Transmitted / For	under Virus		1			

 Table S2 related to Figures 5 and 6. Crystallographic data collection and refinement statistics.

Data collection			LN01/MPER-TM1+06
	LN01/MPER-TM1*	LN01/MPER-TM2**	PS*
Space group	P 4 ₃ 2 ₁ 2	P 2 ₁ 2 ₁ 2 ₁	P 4 ₃ 2 ₁ 2
Cell dimensions			
(8)	136.76, 136.76,		137.71, 137.71,
<i>a, b, c</i> (A)	146.90	65.68, 144.61, 409.50	146.72
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	3.20) ¹	49.03-3.90 (4.09-3.90) 1	3.10) ¹
Unique reflexions	23542 (2291) ¹	35232 (3519) ¹	26213 (4662) ¹
R _{merge} ²	0.088 (1.235) ¹	0.144 (0.555) ¹	0.161 (0.968) ¹
R _{pim} ³	0.029 (0.395) ¹	0.073 (0.279) ¹	0.068 (0.415) ¹
Ι / σΙ	21.6 (1.7) ¹	7.0 (2.7) ¹	8.8 (1.9) ¹
Completeness (%)	99.69 (99.48) ¹	96.2 (97.7) ¹	99.8 (99.8) ¹
Redundancy	9.6 (9.9) ¹	4.2 (4.3) ¹	7.1 (7.1) ¹
CC (1/2)	0.999 (0.688) ¹	0.995 (0.776) ¹	0.995 (0.671)
Refinement			
Posculution(A)	47.00 - 3.20 (3.51 -	48.64 - 3.9 (4.039 -	46.21 - 3.1 (3.211 -
Resolution (A)	3.20)		
No. reflections	23526 (2285)	35206 (3518)	20131 (2005)
R_{free}^{5}	1208 (117) ¹	1726 (174) ¹	1336 (124) ¹
R_{work}^4 / R_{free}^5	0.213 / 0.253	0.218/0.260	0.238/0.267
No. atoms			
Protein	7090	14832	7118
Ligand/ion	83	166	92
Water	0	0	0
Wilson B (Ų)	85	105	77
Average B-factors (Å ²)			
Overall	96	124	69
Protein	96	124	69
Ligand/ion	137	137	81
Water			
R.m.s deviations			
Bond lengths (Å)	0.010	0.007	0.004
Bond angles (°)	1.47	1.17	1.15
Ramachandran Plot (%)			
Favoured	96.22	95.39	95.80
Outliers	0.33	0.85	0.44
PDB ID	6SNC	6SNE	6SND

*1 crystal was used for the structure; **2 crystals was used for the structure; ¹ Statistics for the highest resolution shell.

¹ Parentheses refer to outer shell statistics.

 2 R_{merge} = Σ_{hkl} Σ_i | $I_{hkl,i}$ - $<I_{hkl}>$ | / Σ_{hkl} $\Sigma_i I_{hkl,i}$, where $I_{hkl,i}$ is the scaled intensity of the ith measurement of

reflection h, k, l, and $< I_{hkl}>$ is the average intensity for that reflection.

³ $R_{pim} = \Sigma_{hkl} (1/(n-1))^{1/2} \Sigma_i | I_{hkl,i} - \langle I_{hkl} \rangle | / \Sigma_{hkl} \Sigma_i I_{hkl,i}$, where n is the number of time a given reflexion has been measured.

 4 R_{work} = Σ_{hkl} | Fo - Fc | / Σ_{hkl} | Fo | x 100, where Fo and Fc are the observed and calculated structures factors.

 5 $R_{\rm free}$ was calculated as for $R_{\rm work},$ but on a test set of 5% of the data excluded from refinement.

Table S3 related to Figure 5. Contact residues between gp41 and LN01. The contact distances (cut-off 3.5 Å) were calculated based on the LN01/MPER-TM1+06:0 PS structure.

gp41		LN01			Contact		
Residue		Residue			residue	Hydrogen	
name, number , interacting		name, number, interacting atom			distance (A)	bond	
atom							
Asn	671	ND2	Tyr	H 58	CD1	3.3	
Phe	673	CD1	Trp	H 100h	CE2	3.4	
Phe	673	CD2	Trp	L 96	CH2	3.5	
Phe	673	CE2	Thr	H 50	CG2	3.4	
Asp	674	OD1	Ser	L 93	С	3.5	
			Thr	L 94	CA	3.3	
			Thr	L 94	N	3.2	***
Asp	674	OD2	Thr	L 94	CB	3.1	
Thr	676	0	Ser	H 100f	CB	3.3	
Thr	676	OG1	Trp	H 100h	NE1	3.0	***
Asn	677	OD1	Tyr	L 32	CE2	3.2	
			Tyr	L 32	CZ	3.5	
Asn	677	ND2	His	L 92	ND1	3.2	***
			His	L 92	0	2.9	***
Trp	680	CD1	Phe	H 100e	0	3.2	
			Ser	H 100f	OG	3.3	
Lys	683	CD	Phe	H 100	0	3.3	
Lys	683	CE	Phe	H 100	0	3.1	
Lys	683	NZ	Phe	H 100	0	2.5	***
			Trp	H 100a	CA	3.4	
			Trp	H 100a	С	3.4	
			Ser	H 100b	0	3	***
Met	687	SD	Trp	H 100a	CZ3	3.4	

H, Ab heavy chain; L, Ab light chain