Less is more: Coarse-grained integrative modeling of large biomolecular assemblies with HADDOCK

Jorge Roel-Touris¹, Charleen G. Don², Rodrigo V. Honorato¹, João P.G.L.M Rodrigues³, Alexandre M.J.J. Bonvin^{1*}

¹Bijvoet Center for Biomolecular Research, Faculty of Science – Chemistry, Utrecht University. The Netherlands.

²Department of Pharmaceutical Sciences, University of Basel. Switzerland.

³Department of Structural Biology, Stanford University School of Medicine, CA. USA.

*To whom correspondence should be addressed. Email: a.m.j.j.bonvin@uu.nl

TABLE OF CONTENTS

Table SI-1. Backbone particle type.
Table SI-2. Backbone-backbone relations.
Table SI-3. Side chains amino acid dependent and corresponding parameters.
Table SI-4. Polar and charged amino acid and corresponding parameters.

SI-2. Detailed overview of the selected cases from the Protein Docking Benchmark7

Table SI-5. Selected complexes for the CG protein-protein benchmark.

Table SI-6. List of residues used as "active" to drive the docking.

Table SI-7. Paired i-RMSD after cross-superimposition of the two 6 fold rings in KaiC. **Table SI-8.** Cluster based statistics for the CI and CII docking runs based on the fraction of common contacts.

Table SI-9. Structural similarity assessment of the top 4 models of coarse-grained

 HADDOCK with respect to the cryo-EM model.

SI-4. Reduction of the energy landscape 10

Table SI-10. Number of acceptable or higher quality models generated at the rigid-body (it0) stage of coarse-grained and standard all-atom HADDOCK (*ab-initio* mode)
Table SI-11. Number of acceptable or higher quality models generated at the rigid-body (it0) stage of coarse-grained and standard all-atom HADDOCK (*information-driven* mode)

SI-1. IMPLEMENTATION OF THE MARTINI FORCE FIELD FOR PROTEINS IN HADDOCK

Converted force field parameters from the original work of *de Jong*. *et al* into CNS compatible format.

 Table SI-1. Backbone Particle Types.

Amino Acid	Coil	Helix	Extended	Turn
ALA	F4	HPa/HP0/HP5/Hda	B0	TO
All others	F5	H0/H5/Hd/Ha	Bda	Tda

Table SI-2. Backbone-Backbone Relations. D: Bond Length (Å). ϕ : Bond Angle (°). Ψ : Bond Dihedral (°). K: Force Constant (kcal.mol⁻¹).

Backbone SS	\mathbf{D}_{BB}	\mathbf{K}_{BB}	ф ввв	$\mathbf{K}_{\mathrm{BBB}}$	Ψ_{BBBB}	$\mathbf{K}_{ ext{BBB}}$
Coil	3.5	12.5	127	5.971	-	-
Helix	3.1	12.5	96*	167.184	-120	95.524
Extended	3.5	12.5	134	5.971	0	0.57
Turn	3.5	12.5	100	5.971	-	-

 $\phi_{BBB} = 98^{\circ}$ and $K_{BBB} = 23.883$ Kcal.mol⁻¹ for PRO in Helix conformation.

Amino Acid	SC Bead Name	$D_{BS}, D_{SS}, D_{SS}, D_{SS}$	K _{BS} ,K _{SS} ,K _{SS} , K _{SS}	фвѕѕ,фвѕѕ,фѕѕѕ,фѕѕѕ	K _{BSS} , K _{BSS} , K _{SSS} , K _{SSS}	$\Psi_{\text{BSSS}}, \Psi_{\text{SSSS}}$	K _{BSSS} , K _{SSSS}
TRP	WC4-SNd-SC5-SC5	3.00,2.70,2.70,2.70	50,500,500,500	210,90,50,50	11.942, 5.971,11.942,11.942	0, 0, 0	11.942,11.942,47.767
TYR	YC4-SC4-SP1	3.20,2.70, -	50,500,500, -	150,150, -	11.942,11.942, -	0, -	11.942, -
PHE	FC5-SC5-SC5	3.10,2.70, -	75,500,500, -	150,150, -	11.942,11.942, -	0, -	11.942, -
HIS	HC4-SP1-SP1	3.20,2.70, -	75,500,500, -	150,150, -	11.942,11.942, -	0, -	11.942, -
CYS	C5	3.10, -	75, -	-	-	-	-
ILE	AC1	3.10, -	12.5, -	-	-	-	-
LEU	LC1	3.30, -	75, -	-	-	-	-
MET	MC5	4.00, -	25, -	-	-	-	-
PRO	PC3	3.00, -	75, -	-	-	-	-
VAL	AC2	2.65, -	12.5, -	-	-	-	-
ALA	-	-	-	-	-	-	-
GLY	-	-	-	-	-	-	-

Table SI-3. Side-chains amino acid dependent and corresponding parameters. BB denotes Backbone-Backbone while BS Backbone-Side-chain.

D: Bond Length (Å). $\phi :$ Bond Angle (°). $\Psi :$ Bond Dihedrals and Improper (°). **Table SI-4.** Polar and charged amino acid and corresponding parameters beads including "fake-beads" for a better description of electrostatics. BB denotes Backbone-Backbone while BS Backbone-Side-chain. Q: Charge (electron charge units). D: Bond Length (Å). ϕ : Bond Angle (°).

Amino Acid	SC Bead Name	Q (SCd)	D _{BS} ,D _{SS} ,D _{SS}	K _{BS} ,K _{SS} ,K _{SS}	ф BSS	K BSS
ARG	RN0-AQd-SCd	+1.00	3.30,3.4,1.10	50,50,500	180	5.971
LYS	KC3-KQd-SCd	+1.00	3.30,2.80,1.10	50,50,500	180	5.971
ASN	Nda-SCd-SCd	±0.46	3.20,1.10,2.80	50,500,500	-	-
GLN	QNda-SCd-SCd	±0.46	4.00,1.10,2.80	50,500,500	-	-
SER	SN0-SCd-SCd	±0.40	2.50,1.10,2.80	75,500,500	-	-
THR	TNda-SCd-SCd	±0.31	2.50,1.10,2.80	75,500,500	-	-
GLU	Qa-SCd	-1.00	4.00,1.10	50,500	-	-
ASP	DQa-SCd	-1.00	3.20,1.10	75,500	-	-

SI-2. DETAILED OVERVIEW OF THE SELECTED CASES FROM THE PROTEIN DOCKING BENCHMARK 5, N = 27

Table SI-5. Selected complexes (27) for the CG protein-protein benchmark. Classified in the Protein-Protein Benchmark version 5.0 as: enzyme-inhibitor, enzyme-substrate, enzyme complex or others.

Complex	# Atoms	# Residues	MW	Resolution	Receptor	Resolution	Ligand	Resolution
1AZS Adenylyl cyclase – GTPgammaS	5740	718	77020	2,3	1AB8	2,2	1AZT	2,3
1DE4 HFE – Transferrin R	13107	1641	172501	2,8	1A6Z	2,6	1CX8	3,2
1EXB T1 β – K ⁺ channel	13256	1668	177850	2,1	1QRQ	2,8	1QDV	1,6
1GP2 Protein G trimer	5781	737	77145	2,3	1GIA	2	1TBG	2,5
1GXD proMMP2 – TIMP2	6466	816	85521	3,1	1CK7	2,8	1BR9	2,1
1H1V Actin – Gelsolin	5414	695	71583	2,99	1IJJ	2,85	1D0N	2,5
1HE8 Ras – PI3 γ kinase	7396	915	98167	3	821P	1,5	1E8Z	2,4
1IB1 14-3-3 protein – N-acetylase	5046	632	70414	2,7	1QJB	2	1KUY	2,4
1KXP Actin – Vitamin D	6167	787	82409	2,1	1IJJ	2,85	1KW2	2,15
1N2C Nitrogenase	20058	2548	265698	3	3MIN	2,03	2NIP	2,2
1RLB Transthyretin – Retinol	5171	660	68709	3,1	2PAB	1,8	1HBP	1,9
1T6B Anthrax – Anthrax receptor	6695	846	88168	2,5	1ACC	2,1	1SHU	1,5
1WDW Tryptophan synthase	7848	1011	103279	3	1V8Z	2,21	1GEQ	2
1Y64 Actin – BNI1	6119	767	81284	3	2FXU	1,35	1UX5	2,5
2AJF ACE2 – SARS	6273	771	82831	2,9	1R42	2,2	2GHV	2,2
2FJU Phospolipase $\beta 2 - Rac$	6993	873	92947	2,2	2ZKM	1,62	1MH1	1,38
2GAF VP55 – VP39	5929	723	79736	2,4	30WG	2,86	1VPT	1,8
200R NAD(P) α – NAD(P) β	6755	915	90178	2,32	1L7E	1,9	1E3T	NMR
3AAA Actin – Myotrophin	5033	634	66478	2,2	3AA7	1,9	1MYO	NMR
3BIW Neuroglin	5545	710	72968	3,5	3BIX	2,61	2R1D	2,6
3L89 Ad21 – CD46	5252	677	69446	3,5	3L88	2,5	1CKL	3,1
3LVK IscS – tusA	6641	850	88578	2,442	3LVM	2,33	1DCJ	NMR
3R9A Alanine-glyoxilate AT – PEX5P	8199	1063	108889	2,35	1H0C	2,5	2C0M	2,5
4GAM Methane monooxygenase	18499	2262	243436	2,902	1XVB	1,8	1CKV	NMR
4H03 IA – Actin α	6152	770	82388	1,75	1GIQ	1,8	1IJJ	2,85
4JCV RecR – RecO	7529	993	99383	3,34	1VDD	2,5	1W3S	2,4
4LW4 CsdA – CsdE	7095	935	93969	2,01	4LW2	1,8	1NI7	NMR

SI-3. COARSE-GRAINED INTEGRATIVE MODELING of KaiC-KaiB WITH HADDOCK

Table SI-6. Detailed list of residues, identified by mutagenesis experiments in combination with hydrogen-deuterium exchange and mass spectroscopy (HDX-MS), used as "active" in HADDOCK-CG to drive the simulations (CI/CII).

Protein	Domain	Residues		
		Gly101, Leu103, lle105, Leu106, Asp107, Ala108, Pro110, Asp111, Pro112, Glu113, Gly114,		
	CI	Gln115, Glu116, Val117, Val118, Gly119, Asp122, Leu123, Ser124, Ala125, Leu126, lle130,		
KaiC		Ala133, Ile134		
		Met449, Ser450, Arg451, Ala452, Ile453, Asn454, Val455, Phe456, Lys457, Met458, Arg459,		
		Gly460, His463, Asp464, Lys465, Ala466, Ile467, Arg468, Glu469, Phe470		
KaiP	Thr7, Asn17, Thr18	, Pro19, Glu33, Glu35, Gly38, Lys43, Leu48, Lys49, Pro51, Gln52, Glu55, Glu56, Lys58, Leu60,		
NdID	Pro70, Pro71, Pro7	., Val73, Arg74, Ile77, Ser81, Asn82, Glu84, Lys85, Ile88		

Table SI-7. Paired i-RMSD values (Å) calculated after cross-superimposition of the two 6 fold rings in KaiC.

KaiC	A - 1	A - 2	A - 3	A - 4	A - 5	A - 6
A - 1		0.96	1.29	1.9	0.8	0.89
A - 2	0.96		1.23	1.89	0.91	1.01
A - 3	1.29	1.23		1.28	0.89	1.25
A - 4	1.9	1.89	1.28	-	1.4	1.39
A - 5	0.8	0.91	0.89	1.4	-	0.92
A - 6	0.89	1.01	1.25	1.39	0.92	-

Table SI-8. Cluster based statistics for the CI and CII docking runs based on the fraction of common contacts (0.5 cutoff). HADDOCK score single terms averaged over the top 4 members of each cluster are reported and clusters are ordered according to the averaged HADDOCK score (a.u.). E_{vdw} : Lennard-Jones potential. E_{elec} : Coulomb potential. E_{AIR} : Ambiguous interaction restraints energy. E_{desolv} : Empirical desolvation score. BSA: Buried surface area. $E_{symmetry}$: Symmetry restraints energy.

Cluster	Population	E _{vdw}	Eelec	E _{AIR}	Edesolv	BSA	Esymmetry	HADDOCK score	l-RMSD [Å]	
	CI domain									
1	15	$\textbf{-366.3} \pm \textbf{28.4}$	$\textbf{-809.3} \pm \textbf{153}$	$\textbf{2899.2} \pm \textbf{126.6}$	$\textbf{12.3} \pm \textbf{12.3}$	11598.3 ± 799.5	$\textbf{91.5} \pm \textbf{36.8}$	-216.7 ± 13.2	5.9 ± 1.3	
3	9	$\textbf{-343.6} \pm \textbf{18.1}$	-917.3 ± 178.2	2946 ± 103.3	$\textbf{29} \pm \textbf{19.1}$	10805.3 ± 611	114.2 ± 53.7	-191.9 ± 30.5	21.1 ± 6.6	
9	4	$\textbf{-327.8} \pm \textbf{18.7}$	$\textbf{-1038.3} \pm \textbf{145}$	$\textbf{3076.3} \pm \textbf{350.6}$	$\textbf{27.6} \pm \textbf{32.8}$	10905.4 ± 391.4	88.2 ± 19.6	-191.3 ± 43	18.3 ± 6.5	
2	10	$\textbf{-329.3} \pm \textbf{16.8}$	-1033.3 ± 122.7	3303.7 ± 231	36.3 ± 20	10669.7 ± 890.1	134.9 ± 63.5	-160.3 ± 16.9	19 ± 5.3	
6	4	$\textbf{-304.9} \pm \textbf{39.4}$	-897.2 ± 116.6	$\textbf{3154.9} \pm \textbf{250.8}$	$\textbf{6.9} \pm \textbf{18.2}$	10432.8 ± 996.9	78.2 ± 5.5	-154.1 ± 52.6	16.8 ± 2.9	
	CII domain									
2	4	2206.6 ± 214.5	-265 ± 27.4	21375.2 ± 5169.3	-28.3 ± 77.8	14969.5 ± 5869.1	156.3 ± 45.48	+44.5 ± 19	-	

Table SI-9. Structural similarity assessment of the top 4 models of coarse-grained HADDOCK (from the best cluster) with respect to the cryo-EM (backbone only) model (PDB ID: 5N8Y). B/C/D/E/F/G correspond to the 6 KaiB monomers, respectively, docked onto KaiC. i-RMSD, l-RMSD and FNAT are calculated according to CAPRI criteria.

KaiB Subunits	i-RMSD [Å]	l-RMSD [Å]	FNAT	
Overall	10.1 ± 2.8	5.9 ± 1.3	0.09 ± 0.05	
В	$\textbf{8.4}\pm\textbf{2.2}$	3.3 ± 0.4	0.07 ± 0.07	
С	8.3 ± 2.4	$\textbf{3.4}\pm\textbf{0.4}$	0.05 ± 0.06	
D	8.8 ± 2.1	3.5 ± 0.4	0.05 ± 0.07	
E	8.3 ± 2.2	3.4 ± 0.4	0.11 ± 0.08	
F	8.4 ± 2.0	3.3 ± 0.4	0.05 ± 0.05	
G	6.7 ± 2.8	3.3 ± 0.4	0.12 ± 0.06	

SI-4. REDUCTION OF THE ENERGY LANDSCAPE COMPLEXITY

Table SI-10. Number of acceptable or higher quality models, for each of the protein docking benchmark complexes, generated at the rigid-body (it0) stage of coarse-grained and standard all-atom HADDOCK docking runs in the absence of information to drive the docking (*ab-initio* mode). 10000 models were generated in the case of *ab-initio* docking.

Complex	Protocol	Тор 200	Тор 400	Total
1 4 7 6	Coarse-grained	0	0	4
1425	All-atom	0	0	1
1054	Coarse-grained	0	0	4
1004	All-atom	0	0	0
1570	Coarse-grained	0	0	0
IEAD	All-atom	0	0	0
1602	Coarse-grained	0	1	4
1072	All-atom	2	3	3
1670	Coarse-grained	1	1	2
1070	All-atom	1	1	1
1111	Coarse-grained	0	0	0
	All-atom	0	0	0
1468	Coarse-grained	4	4	4
	All-atom	0	0	6
1IB1	Coarse-grained	0	0	0
	All-atom	0	0	0
1620	Coarse-grained	2	2	2
	All-atom	0	0	2
1N2C	Coarse-grained	0	0	0
11120	All-atom	0	0	0
1RI B	Coarse-grained	0	0	3
	All-atom	0	0	0
1T6B	Coarse-grained	2	2	17
	All-atom	0	0	19
1WDW	Coarse-grained	0	0	4
	All-atom	3	3	3
	Coarse-grained	0	0	0
	All-atom	0	0	0
2AJF	Coarse-grained	0	0	1
	All-atom	0	0	0
2FIU	Coarse-grained	0	0	4
	All-atom	0	0	1
2GAF	Coarse-grained	0	0	0
	All-atom	0	0	2
200R	Coarse-grained	0	0	0
	All-atom	0	0	0
3AAA	Coarse-grained	0	0	1
	All-atom	0	0	0
3BIW	Coarse-grained	0	0	5
	All-atom	0	0	5
3L89	Coarse-grained	1	1	1
	All-atom	0	0	2
3LVK	Coarse-grained	2	2	5
	All-atom	1		2
3R9A		0	0	0
	All-atom	0	0	0
4GAM		0	0	0
	All-atom		0	
4H03		2		
	All-dtUlli	3	4	4 2
4JCV				1
	All-dt0III	0	0	<u> </u>
4LW4		1	1	4
	All-atom	15	16	74
TOTAL	Alleston	15	10	74 52
	AU-3LOM	1 11	15	35

Table SI-11. Number of acceptable or higher quality models, for each of the protein docking benchmark complexes, generated at the rigid-body (it0) stage of the coarse-grained and standard all-atom HADDOCK docking runs using true interface information to drive the docking. 1000 models were generated in the case of *information-driven* docking.

Complex	Protocol	Тор 200	Тор 400	Total
1475	Coarse-grained	170	270	332
	All-atom	65	117	213
1DF4	Coarse-grained	2	6	120
	All-atom	137	264	353
1EXB	Coarse-grained	36	73	143
	All-atom	33	69	185
1GP2	Coarse-grained	111	148	155
	All-atom	152	206	215
1GXD	Coarse-grained	102	148	184
	All-atom	66	118	146
1H1V	Coarse-grained	0	0	0
	All-atom	8	26	48
1HE8	Coarse-grained	157	285	491
	All-atom	53	63	212
1IB1	Coarse-grained	0	0	0
	All-atom	1	1	9
1KXP	Coarse-grained	199	395	563
	All-atom	188	337	511
1N2C	Coarse-grained	0	1	4
	All-atom	34	70	183
1RLB	Coarse-grained	160	320	618
	All-atom	190	357	734
1T6B	Coarse-grained	184	367	803
	All-atom	143	324	667
1WDW	Coarse-grained	200	397	680
	All-atom	200	399	620
1Y64	Coarse-grained	0	0	0
	All-atom	0	0	0
2AJF	Coarse-grained	00	156	412
	All-dtoffi	111	257	422
2FJU		120	235	703
		105	250	572
2GAF	All-atom	151	250	570
	Coarse-grained	137	18	25
200R	All-atom	38	43	46
	Coarse-grained	52	132	289
3AAA	All-atom	128	230	369
	Coarse-grained	107	235	627
3BIW	All-atom	3	213	218
	Coarse-grained	109	230	488
3L89	All-atom	132	253	430
	Coarse-grained	199	386	708
3LVK	All-atom	188	301	411
	Coarse-grained	152	327	790
3R9A	All-atom	113	260	725
	Coarse-grained	0	0	0
4GAM	All-atom	0	0	0
41100	Coarse-grained	186	376	606
4H03	All-atom	90	215	454
4101	Coarse-grained	173	250	289
4JCV	All-atom	198	252	266
413474	Coarse-grained	27	33	95
4LW4	All-atom	109	144	186
тота	Coarse-grained	2666	5066	9689
TOTAL	All-atom	2702	4940	8896