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1. Synthesis of malonate molecules 

1.1. Diethyl 2,2-diheptylmalonate (C7DE) 

The synthesis was perfromed using the same procedure described in Section 2.1. of the main 

manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

23.20 g (0.15 mol) of diethyl malonate, 79.80 g (0.45 mol) of 1-bromoheptane and 18.20 g of 

sodium hydride (0.46 mol, 60 wt% in mineral oil) . The crude product (72.40 g) was used 

without further purification. 

1.2. Diethyl 2,2-dioctylmalonate (C8DE) 

The synthesis was perfromed using the same procedure described in Section 2.1. of the main 

manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

16.04 g (0.10 mol) of diethyl malonate, 57.93 g (0.30 mol) of 1-bromooctane and 12.0 g of 

sodium hydride (0.30 mol, 60 wt% in mineral oil. The crude product (53.42 g) was used without 

further purification. 

1.3. Diethyl 2,2-dinonylmalonate (C9DE) 

The synthesis was perfromed using the same procedure described in Section 2.1. of the main 

manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

16.88 g (0.11 mol) of diethyl malonate, 61.79 g (0.30 mol) of 1-bromononane and 12.0 g of 

sodium hydride (0.30 mol, 60 wt% in mineral oil). The crude product (45.04 g) was used 

without further purification. 

1.4. Diethyl 2,2-didodecylmalonate (C12DE) 

The synthesis was perfromed using the same procedure described in Section 2.1. of the main 

manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

12.87 g (0.08 mol) of diethyl malonate, 62.28 g (0.25 mol) of 1-bromododecane and 9.86 g of 



sodium hydride (0.25 mol, 60 wt% in mineral oil). The crude product (50.4 g) was used without 

further purification. 

1.5. Diethyl 2,2-dioctadecylmalonate (C18DE) 

The synthesis was perfromed using the same procedure described in Section 2.1. of the main 

manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 9.62 

g (0.06 mol) of diethyl malonate, 62.46 g (0.19 mol) of 1-bromononane and 7.42 g of sodium 

hydride (0.19 mol, 60 wt% in mineral oil). The crude product (45.04 g) was used without 

further purification. 

 

2. Syntheses of diol monomers 

2.1. 2,2-Dioctylpropane-1,3-diol (C7DA) 

The synthesis was performed following the same procedure described in Section 2.2. of the 

main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

49.50 g of crude C8DE and 16.30 g (0.26 mol) lithium aluminium hydride. Preliminary 

purification was carried out by column chromatography using 450 g of silica and pure hexane. 

The product final product was eluted by increasing the polarity of the eluent by mxing hexane 

and ethyl acetate (hexane:ethyl acetate, 7:3(v/v)). Yield = 74%. 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 3.50 (s, 4H); 3.20-3.13 (m, 2H); 1.31-1.15 (m, 24H), 0.89-0.82 (t, 

6H).13C-NMR (CDCl3, 400 MHz) 𝛿𝛿: 69.06; 40.89; 31.87; 30.67; 30.53; 29.25; 22.80; 14.05. 

2.2. 2,2-Dioctylpropane-1,3-diol (C8DA) 

The synthesis was performed following the same procedure described in Section 2.2. of the 

main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

53.13 g of crude C8DE and 9.93 g (0.26 mol) lithium aluminium hydride. Preliminary 

purification was carried out by column chromatography using 450 g of silica and pure hexane. 



The product final product was eluted by increasing the polarity of the eluent by mxing hexane 

and ethyl acetate (hexane:ethyl acetate, 7:3(v/v)). Yield = 84%. 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 3.55 (s, 4H); 2.28 (s, 2H); 1.25 (m, 28H), 0.86 (t, 6H).13C-NMR 

(CDCl3, 400 MHz) 𝛿𝛿: 69.41; 40.95; 31.86; 30.74; 30.65; 29.53; 22.82; 14.07. 

2.3. 2,2-Dinonylpropane-1,3-diol (C9DA) 

The synthesis was performed following the same procedure described in Section 2.2. of the 

main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

39.10 g of crude C9DE and 11.96 g (0.32 mol) lithium aluminium hydride. Preliminary 

purification was carried out by column chromatography using 450 g of silica and pure hexane. 

The product final product was eluted by increasing the polarity of the eluent by mxing hexane 

and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 75%. 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 3.55 (s, 4H); 2.25 (s, 2H); 1.25 (m, 32H), 0.87 (t, 6H).13C-NMR 

(CDCl3, 400 MHz) 𝛿𝛿: 69.48; 40.98; 31.87; 29.60; 29.30; 22.83; 14.07. 

2.4. 2,2-Didodecylpropane-1,3-diol (C12DA) 

The synthesis was performed following the same procedure described in Section 2.2. of the 

main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

43.67 g of crude C12DE and 11.84 g (0.32 mol) lithium aluminium hydride. Preliminary 

purification was carried out by column chromatography using 450 g of silica and pure hexane. 

The product final product was eluted by increasing the polarity of the eluent by mxing hexane 

and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 77%. 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 3.53 (s, 4H); 2.70 (s, 2H); 1.24 (m, 44H), 0.86 (t, 6H).13C-NMR 

(CDCl3, 400 MHz) 𝛿𝛿: 69.33; 40.93; 31.90; 29.68; 29.67; 22.82; 14.08. 

2.5. 2,2-Dioctadecylpropane-1,3-diol (C18DA) 



The synthesis was performed following the same procedure described in Section 2.2. of the 

main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 

47.77 g of crude C18DE and 11.62 g (0.31 mol) lithium aluminium hydride. Preliminary 

purification was carried out by column chromatography using 450 g of silica and pure hexane. 

The product final product was eluted by increasing the polarity of the eluent by mxing hexane 

and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 91%. 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 3.56 (s, 4H); 2.08 (s, 2H); 1.24 (m, 68H), 0.87 (t, 6H). 

 

3. Syntheses of brush polyurethanes 

3.1. HDI_C7DA 

The compound was synthesized following the procedure described in Section 2.3. The 

following materials and quantities were used in the synthesis: C7DA (6.0 g, 22.0 mmol) 

hexamethylene diisocyanate (3.70 g, 22.0 mmol), dibutyltin dilaurate (0.10 mL) and N,N-

Dimethylformamide (36 mL). The compound appears as a transparent glassy polymer (yield 

= 9.7 g, 62%). 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 4.83 (s, 2H); 3.86 (m, 4H); 3.11 (m, 4H); 1.47 (m, 8H); 1.23 (m, 

24H); 0.86 (t, 6H). 

3.2. HDI_C8DA 

The compound was synthesized following the procedure described in Section 2.3. The 

following materials and quantities were used in the synthesis: C8DA (12.0 g, 40 mmol) 

hexamethylene diisocyanate (6.72 g, 40 mmol), dibutyltin dilaurate (0.15 mL) and N,N-

Dimethylformamide (67 mL). The compound appears as a transparent glassy polymer (yield 

= 12.47 g, 65%). 



1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 5.99-4.80 (s, 2H); 3.92-3.81 (m, 4H); 3.16-3.03 (m, 4H); 1.52-1.40 

(m, 4H); 1.34-1.14 (m, 32H); 0.89-0.81 (t, 6H). 

3.3. HDI_C12DA 

The compound was synthesized following the procedure described in Section 2.3. The 

following materials and quantities were used in the synthesis: C12DA (3.71 g, 9.02 mmol) 

hexamethylene diisocyanate (1.51 g, 9.02 mmol), dibutyltin dilaurate (0.15 mL) and N,N-

Dimethylformamide (10.5 mL). The compound appears as a transparent glassy polymer 

(yield = 3.32 g, 63%). 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 4.78 (s, 2H); 3.85 (m, 4H); 3.10 (m, 4H); 1.46 (m, 4H); 1.23 (m, 

32H); 0.85 (t, 6H). 

3.4. HDI_C18DA 

The compound was synthesized following the procedure described in Section 2.3. The 

following materials and quantities were used in the synthesis: C18DA (3.0 g, 5.17 mmol) 

hexamethylene diisocyanate (0.87 g, 5.17 mmol), dibutyltin dilaurate (0.12 mL) and N,N-

Dimethylformamide (10.0 mL). The compound appears as a fine white powder (yield = 3.23 

g, 83%). 

1H-NMR (CDCl3, 400 MHz) 𝛿𝛿: 4.76 (s, 2H); 3.86 (m, 4H); 3.12 (m, 4H); 1.72 (m, 4H); 1.24 (t, 

72H); 0.86 (t, 6H). 

  



Figure S1. 1H-NMR and 12C-NMR spectra of synthesized diols 

 



 



 



 



 



 

  



Figure S2. 1H-NMR and 12C-NMR of synthesized brush polyurethanes 

 



 

 



 



 



 



 



 



 



 



 



  



Figure S3. XRD spectra of HDI_BDO and HDI_C18DA 
HDI_BDO and HDI_C18DA are semicrystalline polymers when cooling from the melt. XRD 
spectra support the formation of high crystalline phase. 
A. XRD Spectrum of HDI_BDO 
B. XRD Spectrum of HDI_C18DA 

 

  



Table S-I. Young’s modulus (𝐸𝐸), yield stress (𝜎𝜎𝑦𝑦), ultimate tensile strength (𝜎𝜎𝑈𝑈𝑈𝑈𝑈𝑈) and strain at 
break (𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) of selected brush polyurethanes 

Polymer 𝑬𝑬 

(MPa) 

𝝈𝝈𝒚𝒚 

(MPa) 

𝝈𝝈𝑼𝑼𝑼𝑼𝑼𝑼 

(MPa) 

𝜺𝜺𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

(%) 

HDI_C4DA 150 5.3 3.9 260 

HDI_C7DA 60 1.5 10.5 660 

HDI_C8DA 34 1.3 10.2 764 

HDI_C9DA 4 0.2 0.6 862 

HDI_C12DA 68 4.7 3.9 200 

 

  



 

Figure S4. Frequency master-curves of HDI_C4DA and HDI_C7DA shifted at T0 = 20 °C 
A. HDI_C4DA mastercurve 
B. HDI_C7DA mastercurve 
 

 

Figure S5. Frequency mastercurve of low molecular weight HDI_C8DA 

  



 

Figure S6. Temperature sweep analyses of amorphous and semicrystalline brush 

polyurethanes. 

(A) Temperature sweep analyses of HDI_C4DA, HDI_C7DA, HDI_C8DA, HDI_C9DA. (B) Effect 

of brush length on maximum damping temperature (𝑇𝑇𝑚𝑚𝑏𝑏𝑚𝑚 𝑡𝑡𝑏𝑏𝑡𝑡 𝛿𝛿) and terminal relaxation 

temperature (𝑇𝑇𝑡𝑡𝑏𝑏𝑏𝑏𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡). Note that increasing dangling chain length determines a shift to 

lower temperature of 𝑇𝑇𝑚𝑚𝑏𝑏𝑚𝑚 𝑡𝑡𝑏𝑏𝑡𝑡𝛿𝛿 and 𝑇𝑇𝑡𝑡𝑏𝑏𝑏𝑏𝑚𝑚𝑡𝑡𝑡𝑡𝑏𝑏𝑡𝑡. (C) Effect of brush length on maximum 

absolute value of damping (𝑡𝑡𝑡𝑡𝑡𝑡 𝛿𝛿𝑚𝑚𝑏𝑏𝑚𝑚). Note that increasing brush length determines a 

decrease of mechanical damping. (D) Temperature sweep analyses of HDI_C8DA, HDI_C9DA, 

HDI_12DA. Note that for HDI_C9DA and HDI_C12DA no clear restriction of dynamics was 

observed. For these polymers the change of slope in 𝑡𝑡𝑡𝑡𝑡𝑡 𝛿𝛿 was attributed to a competitive 

crystallisation behaviour from side chain stacking. 

 



 

  



 

 

Figure S7. XRD spectra of HDI_C8DA at different annealing times. 

The figure shows the evolution of the x-ray diffraction patterns with long-term annealing. 

After 7 days at 21 °C, HDI_C8DA shows some degree of long range order. 

A. XRD sprectrum immediately after high temperature processing 
B. XRD spectrum recorded after annealing for 7 days at 21 °C 
 

 

  



 

 

 


