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1. Synthesis of malonate molecules

1.1. Diethyl 2,2-diheptylmalonate (C7DE)
The synthesis was perfromed using the same procedure described in Section 2.1. of the main
manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
23.20 g (0.15 mol) of diethyl malonate, 79.80 g (0.45 mol) of 1-bromoheptane and 18.20 g of
sodium hydride (0.46 mol, 60 wt% in mineral oil) . The crude product (72.40 g) was used
without further purification.

1.2. Diethyl 2,2-dioctylmalonate (C8DE)
The synthesis was perfromed using the same procedure described in Section 2.1. of the main
manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
16.04 g (0.10 mol) of diethyl malonate, 57.93 g (0.30 mol) of 1-bromooctane and 12.0 g of
sodium hydride (0.30 mol, 60 wt% in mineral oil. The crude product (53.42 g) was used without
further purification.

1.3. Diethyl 2,2-dinonylmalonate (C9DE)
The synthesis was perfromed using the same procedure described in Section 2.1. of the main
manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
16.88 g (0.11 mol) of diethyl malonate, 61.79 g (0.30 mol) of 1-bromononane and 12.0 g of
sodium hydride (0.30 mol, 60 wt% in mineral oil). The crude product (45.04 g) was used
without further purification.

1.4. Diethyl 2,2-didodecylmalonate (C12DE)
The synthesis was perfromed using the same procedure described in Section 2.1. of the main
manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,

12.87 g (0.08 mol) of diethyl malonate, 62.28 g (0.25 mol) of 1-bromododecane and 9.86 g of



sodium hydride (0.25 mol, 60 wt% in mineral oil). The crude product (50.4 g) was used without
further purification.

1.5. Diethyl 2,2-dioctadecylmalonate (C18DE)
The synthesis was perfromed using the same procedure described in Section 2.1. of the main
manuscript. The following materials and quantities were used: 400 mL of anhydrous THF, 9.62
g (0.06 mol) of diethyl malonate, 62.46 g (0.19 mol) of 1-bromononane and 7.42 g of sodium
hydride (0.19 mol, 60 wt% in mineral oil). The crude product (45.04 g) was used without

further purification.

2. Syntheses of diol monomers

2.1. 2,2-Dioctylpropane-1,3-diol (C7DA)
The synthesis was performed following the same procedure described in Section 2.2. of the
main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
49.50 g of crude C8DE and 16.30 g (0.26 mol) lithium aluminium hydride. Preliminary
purification was carried out by column chromatography using 450 g of silica and pure hexane.
The product final product was eluted by increasing the polarity of the eluent by mxing hexane
and ethyl acetate (hexane:ethyl acetate, 7:3(v/v)). Yield = 74%.
1H-NMR (CDCls, 400 MHz) &: 3.50 (s, 4H); 3.20-3.13 (m, 2H); 1.31-1.15 (m, 24H), 0.89-0.82 (t,
6H).13C-NMR (CDCls, 400 MHz) §: 69.06; 40.89; 31.87; 30.67; 30.53; 29.25; 22.80; 14.05.

2.2. 2,2-Dioctylpropane-1,3-diol (C8DA)
The synthesis was performed following the same procedure described in Section 2.2. of the
main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
53.13 g of crude C8DE and 9.93 g (0.26 mol) lithium aluminium hydride. Preliminary

purification was carried out by column chromatography using 450 g of silica and pure hexane.



The product final product was eluted by increasing the polarity of the eluent by mxing hexane
and ethyl acetate (hexane:ethyl acetate, 7:3(v/v)). Yield = 84%.
IH-NMR (CDCls, 400 MHz) &: 3.55 (s, 4H); 2.28 (s, 2H); 1.25 (m, 28H), 0.86 (t, 6H).13C-NMR
(CDCls, 400 MHz) 6: 69.41; 40.95; 31.86; 30.74; 30.65; 29.53; 22.82; 14.07.

2.3. 2,2-Dinonylpropane-1,3-diol (C9DA)
The synthesis was performed following the same procedure described in Section 2.2. of the
main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
39.10 g of crude C9DE and 11.96 g (0.32 mol) lithium aluminium hydride. Preliminary
purification was carried out by column chromatography using 450 g of silica and pure hexane.
The product final product was eluted by increasing the polarity of the eluent by mxing hexane
and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 75%.
IH-NMR (CDCls, 400 MHz) &: 3.55 (s, 4H); 2.25 (s, 2H); 1.25 (m, 32H), 0.87 (t, 6H).23C-NMR
(CDCls, 400 MHz) 6: 69.48; 40.98; 31.87; 29.60; 29.30; 22.83; 14.07.

2.4. 2,2-Didodecylpropane-1,3-diol (C12DA)
The synthesis was performed following the same procedure described in Section 2.2. of the
main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
43.67 g of crude C12DE and 11.84 g (0.32 mol) lithium aluminium hydride. Preliminary
purification was carried out by column chromatography using 450 g of silica and pure hexane.
The product final product was eluted by increasing the polarity of the eluent by mxing hexane
and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 77%.
IH-NMR (CDCls, 400 MHz) &: 3.53 (s, 4H); 2.70 (s, 2H); 1.24 (m, 44H), 0.86 (t, 6H).13C-NMR
(CDCls, 400 MHz) 6: 69.33; 40.93; 31.90; 29.68; 29.67; 22.82; 14.08.

2.5. 2,2-Dioctadecylpropane-1,3-diol (C18DA)



The synthesis was performed following the same procedure described in Section 2.2. of the
main manuscript. The following materials and quantities were used: 400 mL of anhydrous THF,
47.77 g of crude C18DE and 11.62 g (0.31 mol) lithium aluminium hydride. Preliminary
purification was carried out by column chromatography using 450 g of silica and pure hexane.
The product final product was eluted by increasing the polarity of the eluent by mxing hexane
and ethyl acetate (hexane:ethyl acetate, 9:1(v/v)). Yield = 91%.

'H-NMR (CDCls, 400 MHz) §: 3.56 (s, 4H); 2.08 (s, 2H); 1.24 (m, 68H), 0.87 (t, 6H).

3. Syntheses of brush polyurethanes

3.1. HDI_C7DA

The compound was synthesized following the procedure described in Section 2.3. The
following materials and quantities were used in the synthesis: C7DA (6.0 g, 22.0 mmol)
hexamethylene diisocyanate (3.70 g, 22.0 mmol), dibutyltin dilaurate (0.10 mL) and N,N-
Dimethylformamide (36 mL). The compound appears as a transparent glassy polymer (yield

=9.7 g, 62%).

1H-NMR (CDCls, 400 MHz) &: 4.83 (s, 2H); 3.86 (m, 4H); 3.11 (m, 4H); 1.47 (m, 8H); 1.23 (m,

24H); 0.86 (t, 6H).
3.2. HDI_CS8DA

The compound was synthesized following the procedure described in Section 2.3. The
following materials and quantities were used in the synthesis: C8DA (12.0 g, 40 mmol)
hexamethylene diisocyanate (6.72 g, 40 mmol), dibutyltin dilaurate (0.15 mL) and N,N-
Dimethylformamide (67 mL). The compound appears as a transparent glassy polymer (yield

=12.47 g, 65%).



1H-NMR (CDCls, 400 MHz) 8: 5.99-4.80 (s, 2H); 3.92-3.81 (m, 4H); 3.16-3.03 (m, 4H); 1.52-1.40
(m, 4H); 1.34-1.14 (m, 32H); 0.89-0.81 (t, 6H).

3.3. HDI_C12DA

The compound was synthesized following the procedure described in Section 2.3. The
following materials and quantities were used in the synthesis: C12DA (3.71 g, 9.02 mmol)
hexamethylene diisocyanate (1.51 g, 9.02 mmol), dibutyltin dilaurate (0.15 mL) and N,N-
Dimethylformamide (10.5 mL). The compound appears as a transparent glassy polymer

(yield =3.32 g, 63%).

'H-NMR (CDCls, 400 MHz) &: 4.78 (s, 2H); 3.85 (m, 4H); 3.10 (m, 4H); 1.46 (m, 4H); 1.23 (m,
32H); 0.85 (t, 6H).

3.4. HDI_C18DA

The compound was synthesized following the procedure described in Section 2.3. The
following materials and quantities were used in the synthesis: C18DA (3.0 g, 5.17 mmol)
hexamethylene diisocyanate (0.87 g, 5.17 mmol), dibutyltin dilaurate (0.12 mL) and N,N-
Dimethylformamide (10.0 mL). The compound appears as a fine white powder (yield = 3.23

g, 83%).

1H-NMR (CDCls, 400 MHz) &: 4.76 (s, 2H); 3.86 (m, 4H); 3.12 (m, 4H); 1.72 (m, 4H); 1.24 (t,

72H); 0.86 (t, 6H).



Figure S1. *H-NMR and >C-NMR spectra of synthesized diols
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Figure S2. 'H-NMR and >C-NMR of synthesized brush polyurethanes
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Figure S3. XRD spectra of HDI_BDO and HDI_C18DA

HDI_BDO and HDI_C18DA are semicrystalline polymers when cooling from the melt. XRD
spectra support the formation of high crystalline phase.

A. XRD Spectrum of HDI_BDO

B. XRD Spectrum of HDI_C18DA
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Table S-1. Young’s modulus (E), yield stress (g, ), ultimate tensile strength (oyrs) and strain at
break (€prear) Of selected brush polyurethanes

Polymer E oy Oyurs Ephreak
(MPa) (MPa) (MPa) (%)
HDI_C4DA 150 5.3 3.9 260
HDI_C7DA 60 1.5 10.5 660
HDI_C8DA 34 1.3 10.2 764
HDI_C9DA 4 0.2 0.6 862

HDI_C12DA 68 4.7 3.9 200



Figure S4. Frequency master-curves of HDI_C4DA and HDI_C7DA shifted at To= 20 °C

A. HDI_C4DA mastercurve
B. HDI_C7DA mastercurve
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Figure S5. Frequency mastercurve of low molecular weight HDI_C8DA
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Figure S6. Temperature sweep analyses of amorphous and semicrystalline brush
polyurethanes.

(A) Temperature sweep analyses of HDI_C4DA, HDI_C7DA, HDI_C8DA, HDI_C9DA. (B) Effect
of brush length on maximum damping temperature (T,,axtans) @and terminal relaxation
temperature (Tierminai)- NOte that increasing dangling chain length determines a shift to
lower temperature of Traxtans aNd Trerminai- (C) Effect of brush length on maximum
absolute value of damping (tan 8,,4,). Note that increasing brush length determines a
decrease of mechanical damping. (D) Temperature sweep analyses of HDI_C8DA, HDI_C9DA,
HDI_12DA. Note that for HDI_C9DA and HDI_C12DA no clear restriction of dynamics was
observed. For these polymers the change of slope in tan § was attributed to a competitive

crystallisation behaviour from side chain stacking.
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Figure S7. XRD spectra of HDI_C8DA at different annealing times.
The figure shows the evolution of the x-ray diffraction patterns with long-term annealing.
After 7 days at 21 °C, HDI_C8DA shows some degree of long range order.

A. XRD sprectrum immediately after high temperature processing
B. XRD spectrum recorded after annealing for 7 days at 21 °C
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