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Supplementary Figure 1. Amounts of THg (panel a) and MeHg (panel b) generated 

in rice plant in 2016 in different countries and regions. 
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Supplementary Figure 2. Amount of THg export (panel a), import (panel b), stock 
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variation (panel c), supplied as food (panel d), processing (panel e), losses during 

transportation (panel f), supplied as feed (panel g), seed (panel h), other uses (panel i), 

and human THg intake (panel j) through rice in 2013. 
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Supplementary Figure 3. Amount of MeHg supplied as feed (panel a), seed (panel b) 

and other used (panel c) through rice in 2013. 
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Supplementary Figure 4. Temporal trends of THg export (panel a), import (panel b), 
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stock variation (panel c), supplied as food (panel d), processing (panel e), losses during 

transportation (panel f), supplied as feed (panel g), seed (panel h), other uses (panel i), 

and human THg intake (panel j) through rice.  
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Supplementary Figure 5. Temporal trends of MeHg supplied as feed (panel a), seed 

(panel b) and other used (panel c) through rice in 2013. 
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Supplementary Figure 6. Per-foetus intelligence quotient decrements (panel a) and 

deaths from fatal heart attacks (panel b) related to the intake of MeHg through rice 

consumption in 2013. 
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Supplementary Figure 7. Changes of per-foetus intelligence quotient decrements 

(panel a) and deaths from fatal heart attacks (panel b) related to the intake of MeHg 

through international rice trade in 2013. 
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Supplementary Figure 8. Uncertainties of per-foetus intelligence quotient decrements 

(panel a) and deaths from fatal heart attacks (panel b) related to the intake of MeHg 

through rice consumption among different countries and regions. 
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Supplementary Figure 9. Percentage of rice residue burning (panel a) in 2016 and 

temporal trends (panel b). 
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Supplementary Figure 10. Fates of THg in rice residues in India (panel a), China 

(panel b), Thailand (panel c) and Philippines (panel d) in recent years, respectively. 
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Supplementary Figure 11. Uncertainties of biotransports of THg and MeHg from 

production to consumption of rice grain, and generated in rice residues. 
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Supplementary Figure 12. Uncertainties of THg (panels a and c) and MeHg (panels 

b and d) in rice grain (panels a and b) and residues (panels c and d) in different countries 

and regions. 
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Supplementary Figure 13. Relationship of THg and MeHg in rice grain in non-

contaminated sites (panel a) and Hg-contaminated sites (panel b). Sample size (n) for 

panels a and b are 100 and 54, respectively. 
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Supplementary Figure 14. Relationship of modeled results and observed data of THg 

(panel a) and MeHg (panel b) concentrations in rice grain, respectively. Error bars in 

figures represent standard deviations of different observed data in the same 

country/region. Sample size (n) = 100. 
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Supplementary Figure 15. Relationship of THg and MeHg concentrations in different 

part of rice plants. Panels a (sample size n = 48) and e (n = 19): grain and stem; panels 

b (n = 48) and f (n = 19): grain and leaf; panels c (n = 48) and g (n = 19): stem and leaf; 

and panels d (n = 96) and h (n = 30): grain and straw. 
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Supplementary Figure 16. Comparison of enrichment factors of THg different 

periods. Panel a: enrichment factors of THg in rice grain relative to 2000s calculated 

from measurement; and panel b: enrichment factors of THg in soil relative to 2008 

generated from a global Hg model (see Methods). 
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Supplementary Figure 17. Comparison of Hg biotransports between global rice 

cultivation and fishery (panel a) and inhabitant Hg exposures through 

consumption of rice and fish (panel b). Data of Hg biotransport through global fishery 

and inhabitant Hg exposure through fish consumption were referred to published 

literature1,2. 
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Supplementary Figure 18. Comparison of inhabitant Hg exposures through consumption of rice and fish in different countries and Hg-

contaminated regions. Panel a: Hg exposures through consumption of rice and fish in different countries; and panel b: Hg exposures through 

consumption of rice and fish in different Hg-contaminated regions. Data of inhabitant Hg exposure through fish consumption in different countries 

and Hg-contaminated regions were referred to published literature (see Supplementary Table 9).  
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Supplementary Note 1 

Comparison of mercury exposure via the consumption of rice and fish in different 

countries and contaminated regions 

Globally, 180 (interquartile range of 93 to 410 from the Monte Carlo simulation) Mg 

of total mercury (THg) and 3.5 (1.8 to 7.0) Mg of methylmercury (MeHg) were 

generated in rice plants (including rice grains and residues) from terrestrial ecosystems 

in 2016. In contrast, 13 Mg of THg (including the edible and inedible fractions in 

seafood) and 7.6 Mg of MeHg were exported from the global ocean via marine fisheries 

in 2014 (Supplementary Figure 17a)1. Moreover, the average human THg and MeHg 

intake rates contributed by rice consumption were 0.17 (0.11 to 0.28) and 0.057 (0.053 

to 0.080) μg kg-1 week-1 (per capita weekly intake) in 2013, equal to 50% and 21% of 

that contributed by fish consumption, respectively (Supplementary Figure 17b)2. Thus, 

agricultural cultivation induces a substantial amount of Hg that is generated in rice 

plants, and rice could be a significant global dietary source of human Hg exposure. 

We further compared MeHg exposure between fish and rice in different countries, 

as well as in different Hg-contaminated and rice-consumed regions, based on published 

literature (Supplementary Figure 18 and Table 9). According to the existing literature, 

we found that the inhabitants of Japan potentially faced the highest exposure to Hg via 

fish consumption in the world (including marine and freshwater fish, 2.1 μg kg-1 week-

1 of THg), followed by the inhabitants of Malaysia and Spain (0.90 and 0.70 μg kg-1 

week-1 of THg, respectively)3-5. This situation occurred mainly due to the relatively 

high fish consumption rates in those countries6. Inhabitant Hg exposure via fish 

consumption was not low in Bangladesh or China, with levels of 0.36 and 0.27 μg 

MeHg kg-1 week-1, respectively (Supplementary Figure 18a)7-9. Moreover, most of the 

inhabitants in Bangladesh, China and Malaysia select rice as a staple food. Thus, 

inhabitant Hg exposure via rice consumption in those three countries was relatively 

high, with levels of 0.61, 0.19 and 0.17 μg kg-1 week-1 of THg in 2013, respectively; 

the values for MeHg were 0.21, 0.066 and 0.066 μg kg-1 week-1, respectively 

(Supplementary Figure 18a). This finding means that inhabitant MeHg exposure via the 
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joint consumption of fish and rice in Malaysia, Bangladesh and China could reach 

approximately 1.1, 0.57 and 0.34 μg kg-1 week-1, respectively, 4.1-, 2.1- and 1.3-folds 

greater than the globe average global value, which only considers the contribution of 

fish consumption (Supplementary Figure 17b). Previous Hg exposure research has 

mainly focused on the U.S. and China and countries in Europe and the Amazon region, 

and fish consumption was considered the single significant dietary source of Hg5,8,10-14. 

Among different regions, Hg exposure via fish consumption is generally high in 

countries in Europe, America and Asia4,5,7,9. In addition to East Asia, exposure via rice 

consumption is also high in many countries in South and Southeast Asia 

(Supplementary Figure 18a), and this result has not been found before. Thus, we 

suggest that future research should consider the joint ingestion of rice and fish in Hg 

exposure assessments, especially for countries in Southeast and South Asia. 

Here, we show that rice consumption could be a substantial dietary Hg exposure 

source in special areas where rice is a staple food and is cultivated in Hg-contaminated 

soil. The inhabitants in a gold mining area on Lombox Island (Indonesia) potentially 

face the highest THg exposure risk via rice consumption, where the THg intake rate via 

rice consumption could reach 22 μg kg-1 week-1, followed by a chloralkili facility in 

Ganjam, India, and a gold mining area in Phichit, Thailand (9.9 and 6.7, respectively, 

Supplementary Figure 18b). These values are greater than the global general population 

value by factors of 130, 58 and 40, respectively. As we showed in the main text, MeHg 

exposure via rice consumption was also high in these Hg-contaminated regions. 

Additionally, the inhabitant THg exposure via fish consumption was highest in a gold 

mining area in Cisitu, Indonesia, reaching 17 μg kg-1 week-1, greater than the global 

average value by a factor of 50 (Supplementary Figure 18b)15. Moreover, high levels of 

THg exposure via fish consumption were also previously identified in gold mining 

areas in North Sulawesi and Central Kalimantan, Indonesia, where the intake rates of 

THg could reach 4.0 and 2.1 μg kg-1 week-1, higher than the global average value by 

factors of 12 and 6.2, respectively (Supplementary Figure 18b)16. The situations in some 

Hg-contaminated regions in Cambodia and the Philippines were similar to that in 
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Indonesia (Supplementary Figure 18b)17,18, primarily due to the heavy Hg 

contamination in those regions and the high consumption rates of rice and fish in 

Southeast Asia6. Thus, Hg exposure via the joint consumption of fish and rice is an 

emerging health issue in Hg-contaminated areas in Southeast Asia. 

Overall, inhabitant Hg exposure via fish consumption in Hg-contaminated regions 

was high in the Amazon region, for instance, in gold mining areas in the Tartarugalzinho 

River Basin (Brazil) and Madre de Dios (Peru), and in many artisanal gold mining 

communities in Colombia (Supplementary Figure 18b). The THg intake rates via fish 

consumption in these contaminated regions were previously found to be 11, 11 and 9.8 

μg kg-1 week-1, respectively14,19,20, 33, 33 and 28 times greater than the global average 

value (Supplementary Figure 17b). Many other gold mining areas with high THg intake 

rates by local inhabitants via fish consumption were also previously identified, such as 

gold mining areas in São Chico, Pará state, and Creporizinho, Brazil (Supplementary 

Figure 18b)21,22. Although outside the scope of the present study, we suggest that Hg 

exposure via fish consumption in gold mining areas is a great health challenge in the 

Amazon. In contrast, Hg exposure via rice consumption in countries in the Amazon 

region was not high.  

Although many Hg-contaminated regions have been identified in China, inhabitant 

Hg exposure via fish consumption was not high, such as the Hg mining area in Guizhou, 

China (0.042 and 0.0088 μg kg-1 week-1 of THg and MeHg, respectively, 

Supplementary Figure 18b)23. This situation probably occurred due to the high fraction 

of farm-raised fish that are consumed in China, as these fish have a relatively low MeHg 

concentration8. Thus, as suggested by previous studies, rice, but not fish, might be the 

primary dietary MeHg exposure source in many Hg-contaminated regions in inland 

China (Supplementary Figure 18b)23-25. 
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