SUPPLEMENTARY INFORMATION

Transplanted interneurons improve memory precision after traumatic brain injury

Authors

Bingyao Zhu¹, Jisu Eom¹, Robert F Hunt^{1,2,3}

Affiliations

- ¹ Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
- ² Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, 92697, USA
- ³ Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA

Correspondence to robert.hunt@uci.edu

Contents

Supplementary Figures 1-4

Supplementary Tables 1 and 2

Supplementary Figure 1. Distribution of transplanted MGE cells 30 DAT into adult brain injured hippocampus. a–j. Serial sections (300 μ m apart) through the entire hippocampus of a recipient mouse labeled for transplanted MGE cells (green) and DAPI (blue). Scale bars, 500 μ m (a–d), 500 μ m (e-g) and 500 μ m (h–j).

Supplementary Figure 2. MGE transplantation did not alter the lesion. a-c. Nissl stained coronal sections taken 125 DAT from the injury epicenter of an uninjured control (a), brain injured animal injected with media (b) and brain injured animal implanted with MGE cells (c). d. Quantification of the percent tissue remaining ipsilateral to the injury. **P = 0.000004, control vs TBI; **P = 0.00001, control vs TBI-MGE; one-way ANOVA with Bonferroni *post hoc* test. n = 5 control mice, n = 4 TBI mice, n = 3 TBI-MGE mice. Scale bar, 1,000 µm; error bars, s.e.m. Source data are provided as a Source Data file.

Supplementary Figure 3. Behavior tests after brain injury and MGE transplantation. a. Representative tracking plots for a mouse in each group of the open field test (OFT). b. Distance traveled in the open field. *P = 0.03, control vs TBI-MGE; one-way ANOVA with Bonferroni *post hoc* test. n = 16 control mice, n = 19 TBI mice, n = 11 TBI-MGE mice. c. Time spent in the outer and center portions of the open field. d. Representative tracking plots for a mouse in each group of the y-maze test. e. Spontaneous alternations during the test phase of the y-maze. f. Time spent in each arm during the test phase of the y-maze. *P = 0.03, other vs novel, one-way ANOVA with Bonferroni *post hoc* test. g. Representative tracking plots for a mouse in each group of the social approach assay. M, mouse; O, object. h. Quantification of time spent in each chamber. i. Representative tracking plots for a mouse in each group of the social approach assay. M, mouse; O, object. h. Quantification of time spent in each chamber. i. Representative tracking plots for a mouse in each group of the social approach assay. M, mouse; O, object. h. Quantification of time spent in each chamber. i. Representative tracking plots for a mouse in each group of the social approach assay. I, mouse; I, and the EPM. k. Number of entries made into open or closed arms of the EPM. I. Time spent immobile during the forced swim test (FST). Error bars, s.e.m. See Supplementary Data 1 for statistical analyses. Source data are provided as a Source Data file.

Supplementary Figure 4. Co-localization of mCitrine and HA-tag in MGE-grafted cells. a. Representative confocal images of recipient hippocampus labeled for mCitrine-labeled transplanted MGE cells (green) and HA-tag (magenta). Scale bar, 10 µm. b, c. Voltage responses of a host neuron that did not express hM4Di (b) and a transplanted MGE cell expressing hM4Di (MGE-hM4Di) (c) to bath application of 10 µM Compound 21 (C21). d. Quantification of holding potential (V_m) for each cell before and after C21 application. P = 0.53, host neurons, P = 0.03, MGE-hM4Di neurons; two-tailed paired *t*-test. n = 3 cells from 2 animals per group. Source data are provided as a Source Data file.

						Post-hoc	
No. of cells	Property	Group	Mean ± SEM	Test	Statistics	test	Post-hoc P-value
Control = 11 TBI = 12 TBI-MGE = 13	Frequency (Hz)	Control	4.43 ± 0.41	One-way ANOVA	F(2, 33) = 10.24 P = 0.0003; η2 = 0.38	Bonferroni	Control vs TBI, P=0.0039
		TBI	1.44 ± 0.24				Control vs TBI-MGE, P=0.99
		TBI-MGE	4.88 ± 0.84				TBI vs TBI-MGE, P= 0.0005
	Amplitude (pA)	Control	37.72 ± 4.93	One-way ANOVA	F(2, 33) = 0.18 P = 0.84; η2 = 0.01	-	
		TBI	39.46 ± 4.65				-
		TBI-MGE	36.01 ± 2.92				
	10-90% RT (ms)	Control	1.06 ± 0.03	One-way ANOVA	F(2, 33) = 10.23 P = 0.0003; η2 = 0.38	Bonferroni	Control vs TBI, P=0.0034
		TBI	1.41 ± 0.10				Control vs TBI-MGE, P=0.99
		TBI-MGE	1.01 ± 0.06				TBI vs TBI-MGE, P= 0.0006
	Decay tau (ms)	Control	5.64 ± 0.59	One-way ANOVA	F(2, 33) = 4.45 P = 0.0195; η2 = 0.21	Bonferroni	Control vs TBI, P=0.04
		TBI	8.82 ± 1.37				Control vs TBI-MGE, P=0.99
		TBI-MGE	5.70 ± 0.25				TBI vs TBI-MGE, P= 0.04

Supplementary Table 1: EPSC properties of dentate granule cells

Supplementary Table 2: List of primary antibodies

Antigen	Host	Clonality	Dilution	Supplier	Cat No.
CR	rabbit	polyclonal	1:1000	Millipore	AB5054
GAD67	mouse	monoclonal	1:1000	Millipore	MAB5406
GFAP	mouse	monoclonal	1:500	Millipore	MAB3402
GFP	chicken	polyclonal	1:1000	Aves Labs	GFP-1020
HA-Tag	rabbit	monoclonal	1:500	Cell Signaling Technology	3724S
IBA1	rabbit	polyclonal	1:1000	FUJIFILM Wako Pure Chemical Corporation	019-19741
NeuN	mouse	monoclonal	1:500	Millipore	MAB377
nNOS	rabbit	polyclonal	1:1000	Millipore	AB5380
PV	mouse	monoclonal	1:500	Sigma-Aldrich	P3088
Reelin	mouse	monoclonal	1:1000	Millipore	MAB5364
SST	goat	polyclonal	1:200	Santa Cruz Biotechnology	SC-7819
VIP	rabbit	polyclonal	1:1000	ImmunoStar	20077