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A Supplementary Methods: Feature description13

In the following, the estimated power spectral density will be known as ’P’, and14

P (f) or P ([a, b]) will be taken to mean the estimated power at frequency f , or the15

total power in frequency band a to b Hz.16
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A.1 EEG time domain proxies17

F1 - Signal Skewness: Skewness is the 3rd order moment of the signal which18

measures the asymmetry of the signal’s probability distribution about the19

mean. Signal skewness is expected to be lower in deep sleep.20

F2 - Signal kurtosis: Signal kurtosis is a measure of the ’tailedness’ of the sig-21

nal, also known as 4rd order moment of the signal. This feature is also a22

widely used feature to discriminate between sleep stages.23

F3 - Zero crossing rate: Number of times the signal crosses the reference line.24

Zero crossing rate is known to be quite useful in detection of transient waves25

like sleep spindles.26

F4 - Hjorth mobility: The ratio between the standard deviation of the signal27

and its first derivative. This feature provides information about frequency28

content of the signal and the dominating frequency components.29

F5 - Hjorth complexity: This feature measures how similar the shape of a sig-30

nal is to a pure sine wave.31

F6 - 75th percentile: The value below which exactly 75% of the measured val-32

ues fall.33

F7 - Channel correlation: This feature measures the Pearson correlation coef-34

ficient between ear-EEG derivations. It is the only feature which requires35

multiple channels and is calculated for all pairs of derivations (in our case36

there are 3 derivations).37
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A.2 EMG proxy38

These features are calculated based on a 32-80 Hz band-pass filtered version of the39

original signal.40

F8 - EMG power: Total power in the 32-80 Hz band. This is useful in identifi-41

cation of the deeper levels of sleep where there is less high frequency activity.42

F9 - Minimal EMG power: This was calculated by dividing each epoch into43

10 segments and finding the minimum integrated EMG power among these44

segments.45

F10 - Relative EMG burst amplitude: Is calculated by dividing Maximum46

EMG signal amplitude by F9.47

A.3 EOG proxy48

F11 - Slow eye movement power:

F11 =
P ([0.5, 2])

P ([0.5, 30])

F12 - Rapid eye movement power:

F11 =
P ([2, 5])

P ([0.5, 30])

A.3.1 EEG Frequency Domain49

In the following, the α, β, θ, δ bands are defined as, 8-16 Hz, 16-32 Hz, 4-8 Hz and50

.5-4 Hz, in accordance with [1]:51
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F13-F16 - Relative power in α, β, θ, δ bands: The power in each band related52

to the total power in the 2-32 Hz frequency band.53

F17-F23 - Power ratios: δ/θ, θ/α, α/β, β/γ, (θ + δ)/(α + β): The relative power54

between the specified frequency bands.55

F24 - Spectral edge frequency: The frequency below which 95% of the spec-56

tral power in the 2-32 Hz band is located.57

F25 - Median power frequency: Is the frequency below which 50% of the spec-58

tral power in the 2-32 Hz band is located.59

F26 - Mean spectral edge frequency difference: The difference between spec-60

tral edge frequency (F24) and median power frequency (F25). This feature61

is successful in separating the REM stage. F26 = F24− F2562

F27 - Peak power frequency: The frequency with highest power in the 2-3263

Hz band.64

F28 - Spectral Entropy: Spectral Entropy measures the disorder in the power65

spectral density of the 2-32 Hz frequency band. This feature was calculated66

as:67

F28 = −
∑
i

P (fi) ln(P (fi)) ,

with fi running over all frequency bins P .68
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A.4 Sleep event proxy69

F29 - Spindle probability: This feature introduces a spectral mean frequency

measure, inspired by [2]. It is calculated as

F29 =
max (P (11− 16))

〈P (4− 10)〉+ 〈P (20− 30)〉

where P(x-y) is the set of power estimates for the [x, y] Hz frequency band.70

F30: Frequency stationarity: Each epoch was divided into 31 segments and71

the periodogram was calculated for each segment. Then, frequency station-72

arity was computed as the average Pearson correlation between these 3173

spectra.74

F31 - Lowest adj. frequency similarity: Using the same 31 spectra from F14,75

F15 was calculated as the lowest Pearson correlation between neighboring76

segments.77

F32 - Maximum B-spline transform: Maximum absolute value of a contin-78

uous wavelet transform of the EEG signal. The wavelet type is complex79

B-spline wavelet with a support of 0.5 s. This feature is successful in detect-80

ing sleep spindles and inspired by [3].81

F33 - Longest sleep spindle In order to compute this feature, a spindle detec-82

tion method inspired by [4] was employed. In this method, Teager Energy83

Operator (TEO) was applied to the 11-16 Hz band pass filtered signal. Con-84

currently, P ([12, 14])/(P ([4, 11])+P ([13, 32])) was computed by using a Short85

Time Fourier Transform (STFT) applied to the unfiltered data. Finally, a86
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wavelet transform (WT) using B-spline wavelet like F32 was performed. The87

segments of signal in which WT > 15, TEO > 0.5 and the STFT power ra-88

tio > 0.3 were detected as sleep spindles. F33 was computed as the longest89

length of the detected spindles.90

A.5 CWT based features91

All the features in this section were computed using the Continuous Wavelet Trans-92

form (CWT) with a Morse wavelet with parameters (3,60). The traditional fre-93

quency bands were defined as δ: 0.5-4 Hz, θ: 4-8 Hz, α: 8-12, β: 12-32 Hz and γ:94

32-100 Hz.95

F54-F58 - Power entropy in γ, α, β, θ, δ bands: The Shannon entropy of the96

traditional frequency bands.97

F59-F63 - Duration of the activation in γ, α, β, θ, δ bands: Duration of the98

activation feature, defined as the period where the mean power in each99

frequency band is higher than a threshold. This threshold is selected as100

1.5 · (median power in 0.5-100 Hz).101

F64-F68 - 75 percentile in γ, α, β, θ, δ bands: The frequency below which102

75% of the spectral power in each band is located.103

F69-F73 - Relative power in γ, α, β, θ, δ bands: The ratio of mean power in104

each band to mean power in 0.5-100 Hz.105

F74-F77 - Power ratios in γ, α, β, θ, δ bands: The ratio of mean power in neigh-106

bouring frequency bands.107
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A.6 Non-linear features108

F78-F82 - Multi scale entropy 1-5: Multi Scale Entropy (MSE) is based on109

sample entropy to compute the entropy over multiple time scales [5]. This110

feature has been used in several sleep staging studies before [6, 7]. MSE was111

computed for 5 scales in this study resulting in features F78-F82.112

F83 - Lempel-Ziv complexity: Lempel-ziv complexity (LZC) is a nonparamet-113

ric complexity measure that has been applied to solve many different prob-114

lems including sleep stage classification [8, 9]. It has been found to be effec-115

tive in separating N1 and REM stages [8].116
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