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Supplementary Note 1: Limitation of the multiplicative strategy in differential weighting of 

reward information.  

In a model based on the multiplicative strategy, the information about reward probability and 

magnitudes is combined to construct subjective reward value. Although normative, this strategy 

for combination of reward information limits independent adjustments of the influence of reward 

probability and magnitude on reward value and the ensuing choice. This is because based on this 

strategy, the only way that the relative weighting of reward probability and magnitude can be 

adjusted is through changing the utility and/or probability weighting functions, both which are 

commonly assumed to be fixed for a given set of options.  

Nevertheless, an exponential transformation can turn multiplication into summation 

(exp(𝑎) × exp(𝑏) = exp(𝑎 + 𝑏)). Therefore, if one assumes an exponential form for the 

representations of reward attributes (i.e., if objective reward attributes can be encoded 

exponentially by neural activity and such signals can be easily multiplied), a multiplicative 

model becomes an additive one. Consequently, even in a model based on a multiplicative 

strategy, reward probability and magnitude can differentially influence subjective value and 

subsequent choice if their exponential transformations are adjusted.  

Although this scenario seems plausible, the combination of reward information for evaluation 

cannot be considered separately from the subsequent decision-making processes [1]. Importantly, 

an additive strategy implies decision making based on direct comparisons of reward attributes 

(probability and magnitude). In contrast, if one assumes evaluation based on a multiplicative 

strategy, subsequent decision making would not be based on direct comparisons of reward 

attributes of alternative options. Therefore, the fundamental difference between the additive and 

multiplicative strategies is whether different reward attributes of each option are fused before the 

onset of decision-making processes. A multiplicative model inherently requires such fusion 

whereas an additive model can also accommodate decision making based on direct comparisons 

of attributes in each dimension separately [2]. 

[1] Stewart, N. Information integration in risky choice: Identification and stability. Front. Psychol. 2, 

301 (2011). 

[2] Tversky, A. Intransitivity of preferences. Psychol. Rev. 76, 31 (1969).
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Supplementary Note 2: Direct behavioral evidence for adjustments of learning and 

valuation strategy to volatility.  

To measure behavioral adjustments to volatility of the environment directly (and not based on 

the fit of choice data), we calculated the log odds of choosing the better (option with the higher 

probability of reward) vs. the worse option. Assuming that the subjective value of each gamble is 

an additive function of its estimated reward probability and reward magnitude, and that the 

probability of selection between the two options is a sigmoid function of the difference in their 

subjective values, this log odds is equal to: 

log 𝑜𝑑𝑑𝑠 1𝑝3(45,47)8 = 	𝑙𝑜𝑔(
<5(=5,=7)

>?<5(=5,=7)
) 	= 	𝛽4(𝑚3 −𝑚C) +	𝛽<(𝑝3 − 𝑝C) (Eq. S1) 

where 𝛽< and 𝛽4 indicate the relative weights of reward probability and magnitude on subjective 

value, 𝑝3(45,47) denotes the probability of choosing the better option, and 𝑚3 and 𝑚C are the 

reward magnitudes for the better and worse options, respectively,. The better option could be 

assigned with the smaller or larger reward magnitude, but reward magnitudes could also be equal 

for the two options. This results in three types of trials for which log 𝑜𝑑𝑑𝑠 1𝑝3(45,47)8 can be 

computed: log 𝑜𝑑𝑑𝑠 (𝑝3(4,D)), log 𝑜𝑑𝑑𝑠 (𝑝3(D,4)), and log 𝑜𝑑𝑑𝑠 (𝑝3(4E,4E)), where M, m, and 

m’ denote the larger, smaller, and the same reward outcomes of the two options. These three 

quantities can be used to estimate the overall impact of reward probability, 𝑏F<, and the weight of 

reward magnitude on choice, 𝑏4, as follows: 

𝑏F< 	= 	
1

𝑛I + 𝑛J
K L M

log 𝑜𝑑𝑑𝑠 1𝑝3(4,D)8 + log 𝑜𝑑𝑑𝑠 1𝑝3(D,4)8
2 O

{QR4STJ	∈	VI}

+ L log 𝑜𝑑𝑑𝑠 X𝑝314Y,4Y8Z
{QR4STJ	∈	VJ}

[ 

= 𝛽<(𝑝3 − 𝑝C)	    (Eq. S2) 

   𝑏4 	= 	
>
\]
X∑ Xlog 𝑜𝑑𝑑𝑠 1𝑝3(4,D)8 − log	𝑜𝑑𝑑𝑠1𝑝3(D,4)8Z{QR4STJ	∈	VI} Z /	(2(𝑚 −𝑀)) 	= 𝛽4	 (Eq. S3) 

where 𝑆𝑢 denotes a subset of option pairs with unequal reward magnitudes (𝑆𝑢 =

{(1,2), (1,4), (2,4), (1,8)}), 𝑆𝑒 denotes a subset of pairs with equal reward magnitudes (𝑆𝑒 =

{(1,1), (4,4)}), and 𝑛I and 𝑛J are the total number of pairs in 𝑆𝑢 and 𝑆𝑒, resepively. To obtain 

smoother estimates for 𝑏F<	and 𝑏4, we calculated the probabilities of choosing the better option 

by combining data from all sessions and using a running average over time with the size of 4 

trials. 
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Importantly, the ratio of the overall impact of reward probability to the weight of reward 

magnitude, S
Ff
S=

 (=	gf(<5?<7)
g=

= 	 (<5?<7)g=
gfh

), reflects both learning of reward probabilities (𝑝3 −

𝑝C) and the relative weighting of reward information (𝛽4 𝛽<h ), which we refer to as magnitude-

to-probability weighting. Fitting choice behavior using a time-dependent additive model (see 

below for details) did not provide any evidence that 𝛽4 𝛽<h  changed over time during each 

reversal (Supplementary Fig. 6b). Therefore, temporal dynamics of S
Ff
S=

 could capture the 

dynamics of learning whereas the difference between the steady state and initial value could 

assess the relative weighting of reward magnitude to probability.  

Therefore, we next fit the overall impact of reward probability to the weight of reward magnitude 

(S
Ff
S=
) using a rising exponential function as follows: 

𝑦 = 	𝑦j + (𝑦k − 𝑦j)𝑒
?l mn   (Eq. S4) 

where 𝑦j is the steady state, 𝑦k is the initial value and 𝜏 is the time constant. We found that S
Ff
S=

 

reaches 95% of its steady state value at 10 (= 3𝜏)	trials in the more volatile environment in 

comparison with 15 (= 3𝜏) trials in the less volatile environment (Supplementary Fig. 6c). 

These results demonstrate that learning was slow and depended on volatility of the environment. 

Moreover, we found that the difference between the steady state and initial value was smaller for 

the more volatile compared to the less volatile environment (𝑦j − 𝑦k = 5.9 and 5.6 in the less 

and more volatile environments, respectively), dovetailing our results on the changes in relative 

in magnitude-to-probability weighting. Together, these results provide direct evidence for 

adjustments of learning and choice behavior to volatility of the environment.  

Fitting with time-dependent additive model. To test whether the relative weighting of reward 

information (𝛽4 𝛽<h ) changes over time, we fit choice behavior using a time-dependent additive 

model (t-additive). In this model, we allowed different weights for reward probability in the first 

and second half of trials in each reversal as follows: 
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𝑆𝑉r = s
𝛽4𝑢(𝑚r) +	𝛽<(tuvwl)𝑤(𝑝r),				𝑖𝑓	𝑡 < 𝐿/2
𝛽4𝑢(𝑚r) +	𝛽<(wJ~�\�)𝑤(𝑝r),						𝑖𝑓	𝑡 > 𝐿/2   (Eq. S5) 

where 𝑡 represents the trial number within a session and L is the block length. We then compared 

the results of fitting choice behavior using the time-dependent vs. simple additive models. 

Overall, we found that time-dependent weighting did not improve the fit as the simple additive 

model provided a better fit in both environments (Supplementary Fig. 6b). This suggests that the 

relative weighting of reward information did not change over time and thus, can be assumed 

constant during each reversal.  
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Supplementary Figure 1. Fitting procedure can correctly estimate model parameters used 
to generate data based on the hybrid model. (a-d) Plotted are the estimated relative weight of 
the multiplicative component (𝛽4ITl) as a function of actual 𝛽4ITl and magnitude-to-probability 
weighting (𝛽4 𝛽<⁄ ) used to generate the data, separately for gambling task (a) and three 
environments of the PRL task (b-d; stable: L = 200; less volatile: L = 80; more volatile: L = 20). 
The solid black curve indicates parameter values for which 𝛽�� is equal to 0.5. Horizontal 
contours indicate that 𝛽4ITl can be retrieved accurately and independently of magnitude-to-
probability weighting. (e-h) Plotted are the estimated log1𝛽4 𝛽<⁄ 8 as a function of the relative 
weight of the multiplicative component (𝛽4ITl) and magnitude-to-probability weighting (𝛽4 𝛽<⁄ ) 
used to generate the data. Except for 𝛽4ITl close to 1, corresponding to a predominantly 
multiplicative model, magnitude-to-probability weighting can be retrieved accurately. 
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Supplementary Figure 2. Our method can identify the strategy most compatible with data 
generated using a hybrid model. (a-d) Likelihood of the hybrid model to be the identified 
model as a function of the relative weight of the multiplicative component (𝛽4ITl) and 
magnitude-to-probability weighting (𝛽4 𝛽<⁄ ) used to generate the data, separately for the 
gambling task (a) and three environments of the PRL task (b-d; stable: L = 200; less volatile: L = 
80; more volatile: L = 20). (e-l) The same as in a-d but showing the likelihood of the additive (e-
h) or the multiplicative model (i-l) to be the identified model. (m-p) Plots show the differences 
between the likelihood of the additive and multiplicative models as a function of the parameters 
of the hybrid model used to generate the data (the same convention as in a-d). Positive (negative) 
values correspond to higher likelihood for the additive (multiplicative) model to be assigned as 
the correct model. The solid black curve indicates parameter values for which ∆	likelihood is 
equal to 0, and the dashed horizontal line indicates 𝛽4ITl = 0.5 above which ∆	likelihood should 
be negative. Overall, our fitting method identifies the hybrid model as the most likely model 
followed by the additive and multiplicative when 𝛽4ITl is close to 0 and 1, respectively. 
Moreover, we found some bias in identifying the more dominant component (additive vs. 
multiplicative) only in the PRL task for 𝛽4ITl around 0.5, but this bias depended on magnitude-
to-probability weighting. For very small 𝛽4 𝛽<⁄  values, the model identification was biased 
toward the multiplicative strategy whereas there was a bias toward the additive strategy as 
𝛽4 𝛽<⁄  increased. 
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Supplementary Figure 3. Identification of different strategies for combination of reward 
information under risk and uncertainty using AIC. (a) Plotted are the average goodness-of-fit 
using AIC (across sessions) for monkeys during the gambling task (choice under risk, N = 146). 
Different colors indicate different models: expected value (EV), EV with probability weighting 
(EV+PW), expected utility (EU), and subjective utility (SU), used for the estimation of 
subjective value. (b-c) Same as in panel a but for monkeys in the stable (b) and volatile (c) 
environments of the mL task (N = 316). (d-e) Same as in panel b-c but for monkeys in the less 
volatile (d) and more volatile (e) environments of the PRL task (N = 316). (f-j) The same as in 
panel a-e but plotted are the average goodness-of-fit (AIC) across human participants during the 
three tasks (gambling: N = 64, mixed learning: N = 46, PRL: N = 38). Under risk, multiplicative 
models can explain choice behavior better for both monkeys and human participants, whereas 
additive models provide better fits to choice under uncertainty.  
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Supplementary Figure 4. Analysis of choice behavior of the included and excluded human 
participants in the PRL task (a-b) Plotted is probability of selecting the option with the higher 
probability of reward during each block of the PRL task, separately for the included (N = 38) and 
excluded human participants (N = 12) in the more volatile (a) and less volatile environments (b). 
The dashed and solid lines show chance level and the average probability of selecting the option 
with the higher probability of reward, respectively. Overall, excluded participants failed to learn 
reward probabilities associated with the two options. (c-d) Left panel: Likelihood of model 
adoption based on the BMS for the excluded participants. Right panel: Distribution of estimated 
values of 𝛽4ITl using the hybrid models for the excluded participants. Conventions are the same 
as in Figure 2 and 3 of the main text. The medians of the distributions (dashed line) were 
significantly different from 0.5 (solid line) (two-sided Wilcoxon rank-sum test; more volatile 
environment: median±IQR: 0.15±0.09, p = 7.8×10-3, d = 4.1, N = 12, 95% CI = [0.27 0.42]; less 
volatile environment: median±IQR: 0.23±0.11, p = 0.035, d = 1.8, N = 12, 95% CI = [0.15 0.4]). 
There was no evidence that the excluded participants adopted strategies qualitatively differently 
than the participants included in our study.  
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Supplementary Figure 5. Behavioral adjustments in response to changes in volatility of the 
environment in the PRL task. (a-d) Plotted is the histogram of the difference in the estimated 
parameters of the simple additive model between the more and less volatile environments of the 
PRL task in monkeys (N = 118): learning rate on rewarded trials (a), learning rate on unrewarded 
trials (b), the tendency to select the target selected on the preceding trial (c), and the overall bias 
toward the green or red target (d). The solid and dashed lines show 0 and median, respectively. 
These results are based on session-by-session fit of the data. There was no significant change in 
any of the model parameters. (e-h) The same as in panels a-d but for human data (N = 38). 
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Supplementary Figure 6. Behavioral effects of volatility on learning and choice in the PRL 
task in monkeys. (a) Plotted are the average estimated effective learning rates over time on trials 
in which reward was assigned to the better (𝐾3�) and worse options (𝐾3?), separately for the less 
and more volatile environments. These estimates are obtained using the session-by-session fit of 
choice data assuming effective learning rates change over time according to an exponential 
function (N = 118). The shaded areas represent ±s.e.m. (b) Likelihood of different additive 
strategies (simple additive and time-dependent additive models) adopted by monkeys using the 
Bayesian model selection method. The bracket points to the best model in each strategy and  the 
dashed line indicates the likelihood for the best overall model in each environment. SU models 
are the best simple additive and time-dependent additive (t-additive) models, and simple additive 
SU model is the better model in both environments. Overall, the simple additive models captured 
choice behavior better than the time-dependent ones. (c) Plotted are the ratio of the overall 
impact of reward probability to the weight of reward magnitude (𝑏F< 𝑏4⁄ ) in the less and more 
volatile environments. The dashed lines show the fit using an exponential function with the 
corresponding time constant reported in each panel.  
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Supplementary Figure 7. Other variables that are encoded in the response of dlPFC 
neurons but do not contribute to behavioral adjustments. (a-c) Plotted is the percentage of 
neurons that significantly encode the position of colors (a), the previous chosen color (b), and 
interaction of the position of colors and previous chosen color (c) (N = 118). (d-f) Plotted is the 
median of the relative neural modulation due to volatility (using estimated regression 
coefficients) across time for neurons that significantly encode the position of colors (d), the 
previous chosen color (e), and interaction of the position of colors and previous chosen color (f). 
Error bars show s.e.m. Gray background shows the period between 0.75s and 1.25s after target 
onset. These visualizations of the results of the regression were obtained with a sliding window 
of length 500ms. (g-i) Plotted is the change in dlPFC encoding of a given variable indicated in 
the top panels (relative neural modulation due to volatility) vs. relative behavioral modulation. 
Black dots indicate neurons that significantly encode the position of colors (g), the previous 
chosen color (h), and interaction of the position of colors and previous chosen color (i), and the 
grey dots indicate the rest of the neurons. 
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