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Figure S1. Comparison of gene expression profiles between eGFP* and eGFP- subsets. Related to Figures 1 and 2. Antigen-induced
arthritis (AIA) was induced in IL-10eGFP reporter (Vert-X) mice. (A) Bar chart showing the frequencies of IL-10*CD19* B cells in the joint,
draining LN and spleens of Vert-X mice (n=3). B-E, Representative flow cytometry plots showing respectively the frequencies of (B)
CD138*Lag3" plasmablasts, (C) IL-10* CD138*Lag3", (D) CD138"CD44" plasmablasts and (E) IL-10*CD138*CD44" B plasmablasts in the
spleen. (F) Bar chart showing the percentages of CD19°CD138*, CD19"CD138"Lag3* and CD19*CD138"CD44" plasmablasts in the spleens
of in Vert-X mice, as shown gated in B+D (#»=5). (G) Representative flow cytometry plots showing respectively the frequencies of (left)
CD138*Lag3" and (right) CD138"CD44" plasmablasts in the DLNs of Vert-X mice. (H) Bar chart showing the percentages of
CD19"CD138*, CD19*CD138"Lag3" and CD19"CD138"CD44" plasmablasts in the DLNs of in Vert-X mice, as shown gated in G (n=5). (I)
Representative flow cytometry plots showing purity of CD19°CD21%CD24%eGFP* and CD19*CD214CD24%¢GFP- B cells. (J) Total number
of differentially expressed genes between CD19*CD21%CD24%GFP* and IL-10eGFP- subsets (>1.5 fold change, adjusted p value <0.05). (K)
Scatter plot showing fold changes of differentially expressed genes from the two comparisons (#=660). Concordant changes for both compar-
isons are shown in red, and discordant in grey. (L) Volcano plot analysis showing log, fold changes (FC) between CD19*CD21"CD24"¢GFP*
B cells versus CD19*CD21"CD24"¢GFP- B cells, plotted against -log  adjusted p value. AAr is highlighted in red (adjusted p value of
3.4E-05). All experiments were carried out at day 7 post IA-injection. For figures A-H, data representative of 2 independent experiments.
Figures A, F and H, data are expressed as meantsem. *p<0.05, **p<0.01, one-way ANOVA.
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Figure S2. AhR is upregulated in IL-10*CD19*CD21"CD24"B cells after stimulation with LPS+anti-IgM. Related to Figure 2 and
Figure 3. (A) Representative histogram and (B) bar chart showing the MFI of AhR expression in IL-10"CD19*CD21¥CD24%,
IL-100CD19°CD214CD24% and IL-10'FO B cells after 48h stimulation with LPS+anti-IgM (n=4). C-J, Increased levels of Ahr and down-
stream pathway in ex vivo CD19*CD21%CD24" compared to FO B cells. CD19"CD21%CD24" and FO B cells were isolated from WT
mice and the mRNA levels of (C) 4hr, (D) 1110, (E) Cyplal, (F) Ahrr and (G) Arnt were analysed ex-vivo (n=3). (H) Representative histo-
gram and (I) bar chart showing the median fluorescent intensity (MFI) of AhR expression in CD19"CD21%CD24" and FO B cells ex vivo
(n=4). (J) Western blot showing the expression of AhR in CD19*CD21%CD24" and FO B cells isolated from arthritic WT mice. B-actin was
used as a loading control. The numbers indicate the size of the protein bands in kDA. K-L, AhR agonists increase IL-10 concentration in
LPS+anti-IgM stimulated CD19"CD21:CD24*B cells. (K) CD19"CD21%CD24%B cells were cultured in RPMI media for 48h with
LPS+anti-IgM+FICZ and IL-10 was measured in the supernantant (n=4). (L) CD19"CD21%CD24"%B cells were cultured in LPS+anti-IgM for
48h in RPMI or IMDM media and IL-10 was measured in the supernatants (#=5). For qPCR, gene expression was calculated normalizing to
B-Actin. All experiments were carried out at day 7 post [A-injection. Data representative of at least 2 independent experiments with biological
replicates. Figures B-G, I and K-L data are expressed as meantsem. *p<0.05, **p<0.01, ***p<0.001, one and two-way ANOVA and
unpaired t test.
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Figure S3. Validation of B cell AhR deficient (477" Mb1°**) mice. Related to Figures 4-6. (A) Ah""Mb1®* mice lack
Ahr in Mbl-expressing cells and report Cre activity via FP635 expression. Representative flow cytometry plots of FP635
expression in the parental Ah#""R26R FP635" strain, Mb1<¢* control mice and Ah#"-Mb1¢* mice. (B) Splenocytes from
Ah"Mb 1 mice and MbI?* controls were sorted into CD19*B220* and CD19'B220" fractions and the levels of 4Ar
mRNA were analysed ex-vivo (n=3). For qPCR, gene expression was calculated normalizing to f-Actin. All experiments
were carried out at day 7 post [A-injection. Data representative of at least 2 independent experiments with biological

replicates. Figure B, data are expressed as meantsem. **p<0.01, unpaired t test.
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Figure S4. AhR contributes to the chromatin and transcriptional landscape of CD19"CD21"CD24"B cells after Breg prim-
ing conditions. Related to Figure 4. (A) Normalised counts (CPM) of A/ expression in Mb 17" mice ex vivo and after activation
for 6h with LPS+anti-IgM. (B) Representative track of the A4 locus before and after stimulation with LPS+anti-IgM in Mb <+
CD19"CD21"CD24" B cells. Red box indicates one significantly differentially accessable region. (C) Log, FC for core GFP* and
GFP- gene signatures (identified from Figure 1G) comparing 6h LPS+anti-IgM vs ex vivo MbI1¢* CD19"CD214CD24%B cells. (D)
CD19"CD21%CD24%B cells were isolated from WT mice and stimulated for 24h with LPS+anti-IgM in the presence of the AhR
antagonist (CH-223191) or a vehicle control and /110, Ccl22, 116 and Tnf mRNA levels were analyzed (»=5). (E) Log, FC for
NF-«B pathway genes (taken from KEGG) comparing 6h LPS+anti-IgM stimulated CD19*CD21%CD244B cells from Mb1¢* and
Ahr"Mb 1 mice. (F) WT or IL-10R” CD19°CD21%CD24"%B cells were cultured with LPS+anti-IgM+CH-223191 and /6 and
Tnf mRNA levels were analyzed (n=5). For qPCR, gene expression was calculated normalizing to 3-Actin. All experiments were
carried out at day 7 post IA-injection. For RNA-seq data, n=3 per condition and genotype. For ATAC-seq data, n=3 for Mbi<**
mice and n=2 for Ah#""MbI** mice. Figures A, D and F, data expressed as meantsem. *p<0.05, **p<0.01, Mann-whitney test
and two-way ANOVA. Figures D and F, representative of two independent experiments with biological replicates.
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Figure S5. A-H, AhR plays a redundant role in early B cell development in the bone marrow. Related to Figure 6. (A) Representative flow
cytometry plots showing MbI<¢* and Ah#"Mb 1" B cell subsets in the bone marrow. B-H, Bar charts showing the frequencies of (B) pro, (C) pro-pre,
(D) pre, (E) immature, (F) transitional (G) early mature and (H) late mature B cells, as a percentage of total CD19* B cells in the bone marrow for
MbIe* and Ahr"MbI1e* mice (n=3 per genotype). I-K, AhR represses plasma cell differentiation. (I) Representative flow cytometry plots
and (J) bar chart showing the percentage of splenic Blimp-1* B cells from Mb1¢* and Ah#"-Mb1°¢* mice (n=3). (K) Total splenic B cells were
isolated from MbI<* and Ah¥"Mb1<** mice and PrdmI mRNA levels were analysed ex-vivo (n=3). (L) Serum concentrations of total IgG,
IgM and IgA from Mbi<¢* and Ahr"-Mb 1" mice were measured by ELISA. For qPCR, gene expression was calculated normalizing to 3-Ac-
tin. All experiments were carried out at day 7 post [A-injection. Data representative of at least 2 independent experiments with biological
replicates. Figures B-H, and J-L data are expressed as meantsem. *p<0.05, **p<0.01, unpaired t test.
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Figure S6. A-C, AhR is required for IL-10 production by Breg in vitro. Related to Figure 6. Representative flow cytometry plots (A) and
bar chart (B) showing the percentage of IL-10-expressing CD19'B cells from Mbi1¢* and Ahr"-MbI " mice, after 48h stimulation with
CpGb (n=3). (C) IL-10 production, as measured by ELISA (»=3). D-E, AhR does not control IL-35 production by B cells. Splenic B cells
were isolated from Mb1v¢* and Ahr"-Mb1 " mice and stimulated with LPS for the indicated times and (D) E£bi3 and (E) p35 mRNA levels
were analysed (n=3). F-J, AhR does not affect the proliferation of CD19*CD21"CD24"B cells in arthritic mice. (F) Representative flow
cytometry plots and (G) bar graphs summarising Ki-67 expression in CD19*CD21%CD24%B cells from Mb1¢* and Ah¥"-MbI1<** mice ex
vivo after day 7 AIA and (H-I) after 48h stimulation with LPS+anti-IgM (n=3). (J) Volcano plot (RNA-seq analysis) showing log, fold
changes (FC) between 6h LPS+anti-IgM stimulated CD19*CD21%CD24%B cells from Ah#"Mbi1¢* versus MbI1¢* mice, plotted against
average log counts per million (CPM; across all samples) for cell cyle related genes (n=259). K-M, a4p7 is not differentially expressed
between Mb1=* and Ahr”Mb1-* CD19*CD21"CD24"B cells. (K) Representative flow cytometry plots of splenic a4f7 expression in
CD19°CD214CD24"B cells from MbIe* and Ahr”MbI"®* mice. L-M, Bar charts showing the frequencies of a4p7-expressing
CD19*CD21%CD24%B cells in the (L) spleen and (M) MLNs of MbIe¢* and Ah#"-Mb1e* mice (n=6). All experiments were carried out at
day 7 post IA-injection. For qPCR gene expression was calculated normalising to 3-Actin. All data representative of at least 2 independent
experiments, with biological replicates. Figures B-E, G, I and L-M, data expressed as meantsem. **p<0.01, two-way ANOVA.
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Figure S7 (Related to Figure 6): A-D, No difference in monocyte IL-13 and IL-6 expression is observed
between MbI1** and Ahr¥""Mb1** mice. Total splenocytes or MLN cells were cultured for 6h with LPS. A-D, Rep-
resentative flow cytometry plots and bar charts showing respectively the percentage of (A,C) splenic and (B,D) MLN
IL-1p and IL-6-expressing monocytes (n=5). All data representative of at least 2 independent experiments with
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Symbol Name Function FC adj.P.Val FC adj.P.Val
(cp21"cp24™  (Ccp21"CD24™  (CD21"CD24™  (CD21MCD24"™
pos vs PoOS vs pos vs FO) pos vs FO)
cp21"cp24®  CD21"CD24"
neg) neg)
Ahr Aryl-hydrocarbon receptor DNA binding 1.869114565 5.05135E-05 5.183739908 1.73543E-08
E2f8 E2F transcription factor 8 Core promoter binding 3.524122031 8.24144E-05 9.937468163 1.16556E-07
Bhlhedl1 Basic helix-loop-helix RNA polymerase II core 3.151182551 5.20865E-05 5.070827978 2.34121E-07
family, member e41 promoter proximal region
sequence-specific DNA
binding
Piml Proviral integration site 1 Nucleotide binding 1.43710652 0.000803313 1.536952061 5.28079E-05
Tacc3 Transforming, acidic coiled- Protein binding 1.754219566 0.000237504 2.612848846 1.13543E-06
coil containing protein 3
E2f7 E2F transcription factor 7 Core promoter binding 1.569164933 0.000491558 2.089170639 3.35506E-06
Dnmtl DNA methyltransferase DNA binding 1.525927763 0.001016079 1.542642041 0.000192334
(cytosine-5) 1
Zbth32 Zinc finger and BTB domain Nucleic acid binding 1.564102074 0.00060818 1.599906949 8.54549E-05
containing 32
Zfpml Zinc finger protein, RNA polymerase II core 1.635156815 0.000956596 2.073406035 1.36055E-05
multitype 1 promoter binding
transcription factor
activity
Pmf] Polyamine-modulated factor ~ Transcription coactivator 1.613117282 0.000743998 2.03500123 9.61821E-06
1 activity
Clgbp Clq binding protein Complement component 1.49365815 0.002166338 1.796509212 4.16981E-05
Clq binding
Foxml Forkhead box M1 DNA binding 1.457277204 0.00190059 2.20317842 3.01442E-06




Cenpf

Pdlim1
Setd8
E2f1
Hes6

Smarca4

Dip2c

Skil
Hhex
Rbpms

Histlh4k

Centromere protein F

PDZ and LIM domain 1
(elfin)
SET domain containing
(lysine methyltransferase) 8
E2F transcription factor 1

Hairy and enhancer of split 6

SWI/SNF related, matrix
associated, actin dependent
regulator of chromatin
DIP2 disco-interacting
protein 2 homolog C
(Drosophila)
SKI-like
Hematopoietically expressed
homeobox
RNA binding protein gene
with multiple splicing
Histone Cluster 1 H4 Family
Member K

Protein C-terminus
binding
Transcription coactivator
activity
P53 binding
Core promoter binding

DNA binding

Nucleotide binding

Unknown

Chromatin binding
DNA binding
Nucleotide binding

Unknown

1.922637351

1.538439454

1.481768428

1.27720107

1.26830407

1.335143927

1.258003811

-1.201268078
-1.235422164
-1.326003662

1.274

0.008852351

0.001738439

0.005872492

0.005234129

0.004558499

0.011950492

0.02122796

0.022180352
0.026407274
0.040745097

0.019929

3.81234672

1.372627344

1.58624982

1.799717751

1.367381679

1.398775214

1.734098658

-1.54986752
-1.511651527
-1.992794467

1.5213

2.613E-05

0.00277832

0.000660724

4.40902E-06

0.000227666

0.00168523

2.86597E-05

3.18895E-05
0.000170022
7.70317E-05

0.00027

Table S1 (Related to Figure 2): List of 23 candidate genes differentially expressed between CD21"CD24"IL-10eGFP" and GFP populations.
Abbreviations: FC — fold change, FO — Follicular.



Resource Source Identifier
qPCR primers

Actb ThermoFisher Scientific; This | N/A

Fwd 5-AGATGACCCAGATCATGTTTGAG paper

Rev 5-AGGTCCAGACGCAGGATG

Ahr ThermoFisher Scientific; This | N/A

Fwd 5~-AGGATCGGGGTACCAGTTCA-3’ paper

Rev 5’-CTCCAGCGACTGTGTTTTGC-3’

Ahrr Qiagen Cat#QT00161693
N/A

Arnt Qiagen Cat#QT00151718
N/A

Ccl22 ThermoFisher Scientific; Hao | N/A

Fwd 5-CAGGCAGGTCTGGGTGAA-3' etal., 2016

Rev 5-TAAAGGTGGCGTCGTTGG-3'

Cyplal Qiagen Cat#QT00105756
N/A

Ebi3 ThermoFisher Scientific; N/A
CGGTGCCCTACATGCTAAAT Shen et al., 2014
GCGGAGTCGGTACTTGAGAG

12 ThermoFisher Scientific; N/A
5-AGCAGCTGTTGATGGACCTA-3' Martins., 2008
5'-CGCAGAGGTCCAAGTTCAT-3'

1l5ra ThermoFisher Scientific; This | N/A

Fwd 5'-GGTCCCGGTATGCAGTTCTA-3' paper

Rev 5'-AGCCGAATGCTGGAAAAGTG-3'

116 ThermoFisher Scientific; This | N/A

Fwd 5’-GCCTTCTTGGGACTGATGCT-3’ paper

Rev 5’-TGCCATTGCACAACTCTTTTC-3’

110 ThermoFisher Scientific; N/A

Fwd 5-GGTTGCCAAGCCTTATCGGA-3' Yanaba et al., 2009

Rev 5'-ACCTGCTCCACTGCCTTGCT-3'

p35 ThermoFisher Scientific; N/A

Fwd 5-CATCGATGAGCTGATGCAGT-3' Shen ctal., 2014

Rev 5'-CAGATAGCCCATCACCCTGT-3'

Tnf ThermoFisher Scientific; N/A

Fwd 5'-AATGGCCTCCCTCTCATCAGTT-3'

Rev 5'-CCACTTGGTGGTTTGCTACGA-3'

Denaes et al., 2016

ChIP qPCR primers




1110 -3.5kb ThermoFisher Scientific; This | N/A

Fwd 5’-AGGGCTTGATAACGTGTGAGT-3’ paper

Rev 5’-TGAACTTCACACCCAGCTTGAG-3’

1110 -2kb ThermoFisher Scientific; This | N/A
Fwd 5-TAAGAGGTGCTGCTTCTCCTG-3’ paper

Rev 5’-TGGCACTGGACAGTTCTATGA-3’

1110 -0.5kb ThermoFisher Scientific; This | N/A
Fwd 5’~-AGGGAGGAGGAGCCTGAATAA-3’ paper

Rev 5’-CCTGTTCTTGGTCCCCCTTTT-3’

1110 +2kb ThermoFisher Scientific; This | N/A
Fwd 5’-GCCACATGCATCCAGAGACAC-3’ paper

Rev 5’-GTGCCTCAAAGTCACTCCCAC-3’

Cyplal -3.6kb ThermoFisher Scientific; This | N/A
Fwd 5’-GCTCTTTCTCTGCCAGGTTG-3’ paper

Rev 5’-GGCTAAGGGTCACAATGGAA-3’

Cyplal promoter ThermoFisher Scientific; This | N/A
Fwd 5’-AAGCATCACCCTTTGTAGCC-3’ paper

Rev 5’-CAGGCAACACAGAGAAGTCG-3’

Gapdh promoter ThermoFisher Scientific; This | N/A

Fwd 5’-GCGCGAAAGTAAAGAAAGAAGCCC-3’ | Paper
Rev 5°-~AGCGGCCCGGAGTCTTAAGTATTAG-3’

Table S2. PCR and ChIP qPCR primers used in this study. Related to the Key Resources Table in STAR
methods. N/A — not applicable.
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