
Supplementary Text for: Bayesian Estimation of 3D
Chromosomal Structure from Single Cell Hi-C Data

1 Gradient Expressions

For each term in the energy function E defined in Eq. 10 of the main paper, we
compute the expression for the partial derivative at xi ∈ R3 for each i = 1, . . . , n. The
ith partial derivative evaluated at X is a vector in R3, and thus, the full gradient
evaluated at X is a member of Rn×3. The ith partial derivative of g is given by

∂

∂xi
g(X|C, a, b) = −a

∑
j 6=i

xi − xj
‖xi − xj‖2

(cij − b‖xi − xj‖a) . (1)

Before computing the partial derivatives of h1 and h2 it is useful to define
di = xi+1 − xi and wi = ‖di‖ for i = 1, . . . , n− 1. Also, let L =

∑n−1
i=1 wi and

S =
∑n−1

i=1 w
2
i . Now, the ith partial of h1 for i = 2, . . . , n− 1 can be written as

∂h1
∂xi

= di−1

(
2

L2
− 2S

L3wi−1

)
− di

(
2

L2
− 2S

L3wi

)
. (2)

The remaining endpoint partial derivatives for h1 are given as

∂

∂x1
h1(X) = −d1

(
2

L2
− 2S

L3w1

)
∂

∂xn
h1(X) = dn−1

(
2

L2
− 2S

L3wn−1

)
, (3)

The ith partial derivative for h2 is a bit trickier to compute than that of g and h1 since
it requires multiple applications of the chain rule, product rule, and quotient rule;
nevertheless, the resulting expressions are still manageable. For i = 3, . . . , n− 2, we
compute the ith partial as

∂

∂xi
h2(X) =

1

n− 2

[
−di−2

(
1

wi−2wi−1

)
+ di−1

(
di−2 · di−1
wi−2w3

i−1
+

1

wi−1wi
+
di−1 · di
w3

i−1wi

)
− di

(
1

wi−1wi
+
di−1 · di
wi−1w3

i

+
di · di+1

w3
iwi+1

)
+ di+1

(
1

wiwi+1

)]
. (4)

The remaining four endpoint partial derivatives are as follows:

∂

∂x1
h2(X) =

1

n− 2

[
−d1

(
d1 · d2
w3

1w2

)
+ d2

(
1

w1w2

)]
∂

∂x2
h2(X) =

1

n− 2

[
d1

(
1

w1w2
+
d1 · d2
w3

1w2

)
− d2

(
1

w1w2
+
d1 · d2
w1w3

2

+
d2 · d3
w3

2w3

)
+ d3

(
1

w2w3

)]
∂

∂xn−1
h2(X) =

1

n− 2

[
−dn−3

(
1

wn−3wn−2

)
+ dn−2

(
dn−3 · dn−2
wn−3w3

n−2
+

1

wn−2wn−1

+
dn−2 · dn−1
w3

n−2wn−1

)
− dn−1

(
1

wn−2wn−1
+
dn−2 · dn−1
wn−2w3

n−1

)]
∂

∂xn
h2(X) =

1

n− 2

[
−dn−2

(
1

wn−2wn−1

)
+ dn−1

(
dn−2 · dn−1
wn−2w3

n−1

)]
. (5)

1



Now, using Eqs. 1, 2, 3, 4, and 5, we can write the ith partial of E as

∂

∂xi
E(X|C,C ′, a, b, λ) = 1

M

∂

∂xi
g(X|C̃, a, b̃) + λ1

∂

∂xi
h1(X) + λ2

∂

∂xi
h2(X) (6)

and thus, using Eq. 6, we write the gradient of E in Eq. 11:

∇E(X|C,C ′, a, b, λ) =


∂E
∂x1

...
∂E
∂xn

 . (7)

2 Software Implementation and Optimization
Techniques

Although most scientific computing platforms provide several built-in unconstrained
optimization algorithms to solve such problems, we have selected Python as the
programming language for SIMBA3D due to its ease of use across a broad scientific
community. It is becoming widely adopted in the field because it is open source and
does not require a proprietary license to run. Also, specifically addressing the problem
at hand, Python’s “scipy” package has a wealth of mature built-in scientific computing
functions that are necessary for solving this type of optimization problem. In particular,
the “scipy.optimize” module offers several popular options for unconstrained
optimization algorithms, including Nelder-Mead, Powell’s method, BFGS, Conjugate
Gradient, etc. Python thus gives us the most flexibility and usability for the SIMBA3D
code package.

After testing Python’s built-in algorithms on various simulated and real datasets, we
found the quasi-Newton methods BFGS and L-BFGS using our analytical gradient to
yield the best performance in terms of numerical stability, computational efficiency, and
solution quality when optimizing Eq. 10. With BFGS, the inverse Hessian operation is
approximated recursively for each iteration, and for high dimensional optimizations (like
for 3D chromosomal reconstruction) this procedure can become memory intensive. With
the limited memory version L-BFGS, the approximated inverse Hessian operation
depends on values stored from a fixed number of previous iterations. For details see Liu
and Nocedal (1989), Byrd, Lu, et al. (1994), Nocedal and Wright (2006), and Gill,
Murray, and Wright (1981). In our experience with applying these quasi-Newton
methods specifically to genome architecture reconstruction, we found that BFGS more
reliably finds solutions with slightly smaller energies, i.e. better quality solutions in
terms of our objective function, than the L-BFGS. However, the reduction in
computation time and memory offered by the the limited memory version makes it a
competitive alternative.

In addition to Python’s built-in optimization routines, we also tested our own
implementation of Nesterov’s accelerated gradient method Nesterov (1983). This
method is a simple and elegant modification of the standard gradient descent that uses
an additional “momentum” term to achieve the theoretically optimal convergence rate
for a first order method. It has enjoyed a recent surge in popularity due to the
publication of a series of physics-based convergence proofs Wibisono, Wilson, and
Jordan (2016), Su, Boyd, and Candes (2015), and Wilson, Recht, and Jordan (2015)
that are more widely relatable and understandable than Nesterov’s original proofs. In
many test cases we saw a significant computational speedup over the BFGS, and we see
great promise in this optimization method in the future. Unfortunately, since the
method is not a relaxation scheme, i.e. it does not necessarily decrease the objective
function value after each iteration, we found it difficult to devise an appropriate

2



stopping criteria that would generalize to all data sets. Another difficulty that arose in
our implementation of this algorithm was an automatic step size selection routine via
backtracking, and thus achieving automated numerical stability for a general data set
proved to be a challenge. We believe we can overcome these challenges to implementing
this method, but in the interest of time and to remain within the scope of this research,
we feel that BFGS performs well enough to use for SIMBA3D, especially when
combined with the multiscale approach detailed in the main text.

3 Additional Results

Here we present a series of results that are not shown in the main text, which come
from three computational experiments. The first experiment is carried out on simulated
data and shows how the computation time increases as the number of nodes n increases.
In the second experiment we execute an exhaustive parameter search by running the
optimization with various settings of the penalty weights λ on Chromosome 19 of each
of the eight single cells in the mESC data set. Finally, in the third experiment we
compare the performance of the BFGS and L-BFGS with and without the multiscale
approach in terms of computation times and final energies on all 20 chromosomes and
all 8 cells in the data set. Fig. 4 in the main text summarizes the results of this
experiment, but here we present the results in their entirety.

Table S1 and Fig. S1 summarize the results from the simulated computation time
experiment. The ground truth curve is a unit length double spiral shape as seen in Fig.
S1 (A). For each row of Table S1, the number of nodes in the double spiral curve was
doubled using upsampling via spline interpolation, and a corresponding data matrix was
generated from the upsampled curve. Fig. S1 (B) shows an example data matrix that
corresponds with the curve and number of nodes presented in Fig. S1 (A). The entries
of the upper triangular portion of each data matrix were simulated using the
independent Poisson random variables Cij ∼ Poisson(b‖xi − xj‖a) with a = −3 and b
set large enough to avoid simulating a sparse matrix. For each number of nodes n, ten
initializations to the optimization procedure were generated as random samples of size n
from the 3-dimensional standard multivariate normal distribution. Then for each
number of nodes and for each initialization, the optimization was run using the BFGS
without the multiscale approach, and the computation time and final energy were
recorded in each case. However, in the case with 2560 nodes, the experiment was
stopped prematurely after the sixth initialization due to an unreasonably long
computation time. The penalty weight vector λ remained fixed for all optimizations in
the experiment, with λ3 = 0 due to the absence of simulated prior data. Fig. S1 (C)
shows the evolution of the energy, i.e. the objective function evaluated at each iteration
of the optimization algorithm, for one initialization and using the data given in panel
(B), and panel (D) shows the final estimated solution curve. Panel (E) is a scatter plot
of the log computation time using each of the ten initializations versus the log number
of nodes, including a fitted regression line.

The results presented in Fig. 4 of the main text have been extended in Table S2 to
include comparisons using BFGS and the limited memory version L-BFGS with and
without the multiscale approach. The experiment shows how computation time varies
with respect to the number of nodes by executing the optimization on all 20
chromosomes in each of the eight single cells. It also shows that one can use SIMBA3D
on a standard laptop to achieve a full genome reconstruction within a practical time
frame. The penalty weight vector λ was fixed throughout the experiment and set to
have reasonable non-zero component values according to the results gathered from the
previous experiment. Table S2 lists and plots the final computation times and energies
from these reports along with other information describing the data.

3



Figure S1. Example of 3D shape reconstruction in simulated data.
Computation time experiment on simulated data. (A) Ground truth curve using 80
points. (B) Simulated matrix using the Poisson model from Eq. 3. (C) Example of the
energy evolution from a randomly initialized curve. (D) Example of a reconstructed
curve from the data matrix. (E) Log scale computation time versus the log scale
number of nodes plotted for each of the ten initializations.

Table S1. Computation time summary statistics on simulated data The
mean and variance of the computation times for each number of nodes are computed
after executing the optimization using ten different initializations. An example of one
run for this experiment is shown in Fig. S1 for the case when there are 80 nodes.

Table S2. A Comparison of computation times and energies on the full
chromosome data. There are 8 sheets – one for each of the 8 cells – and on each
sheet there are 20 rows of data corresponding to the 20 chromosomes. The first 5
columns specify generic information about the single cell data matrix. The following
columns correspond to computation times and final energies for single initialized runs
using four different methods. A BFGS and L-BFGS label respectively indicates the use
of the quasi-Newton BFGS or its limited memory version. The FS tag on the label
indicates that the algorithm was initialized on the full scale space. For example with
Cell 1 Chromosome 1, the BFGS FS column indicates that BFGS was used and the
solution was initialized with a random sample of size 1923 from the standard
multivariate normal distribution in R3. The MS tag on the label indicates that the
curve was estimated using the multiscale approach detailed in the main text. In the
multiscale approach the scale was roughly halved a total of four times; thus, for each
chromosome the number of nodes in the initialization for the MS case is roughly 1/24

that of the FS case.

Movie S1. Time-course optimization for chromosome 19. This movie displays
the intermediate structures obtained during the optimization procedure. Rotating
chromosome structure (top left). Stationary view of chromosome structure (top right).
Energy as a function of iteration step (bottom left). Single cell contact matrix at the
current resolution (bottom center). Bulk contact matrix at the current resolution
(bottom right).

References

Byrd, Richard H., Peihuang Lu, et al. (1994). “A Limited-Memory Algorithm for Bound
Constrained Optimization”. In: SIAM JOURNAL ON SCIENTIFIC COMPUTING
16, pp. 1190–1208.

Gill, P.E., W. Murray, and M.H. Wright (1981). Practical optimization. Academic Press.
isbn: 9780122839504. url: https://books.google.com/books?id=xUzvAAAAMAAJ.

Liu, D. C. and J. Nocedal (Dec. 1989). “On the Limited Memory BFGS Method for
Large Scale Optimization”. In: Math. Program. 45.3, pp. 503–528. issn: 0025-5610.
doi: 10.1007/BF01589116. url: http://dx.doi.org/10.1007/BF01589116.

Nesterov, Y. (1983). “A Method for Solving a Convex Programming Problem with
Convergence Rate O(1/K2)”. In: Soviet Mathematics Doklady 27, pp. 372–367.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization. Second.
Springer Series in Operations Research and Financial Engineering. Springer New
York. isbn: 978-0-387-30303-1. doi: 10.1007/978-0-387-40065-5. url:
http://dx.doi.org/10.1007/978-0-387-40065-5.

4

https://books.google.com/books?id=xUzvAAAAMAAJ
https://doi.org/10.1007/BF01589116
http://dx.doi.org/10.1007/BF01589116
https://doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1007/978-0-387-40065-5


Su, Weijie, Stephen Boyd, and Emmanuel J. Candes (2015). “A Differential Equation
for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights”. In:
eprint: arXiv:1503.01243v2.

Wibisono, Andre, Ashia C. Wilson, and Michael I. Jordan (2016). “A variational
perspective on accelerated methods in optimization”. In: Proceedings of the National
Academy of Sciences 113.47, E7351–E7358. issn: 0027-8424. doi:
10.1073/pnas.1614734113. eprint:
http://www.pnas.org/content/113/47/E7351.full.pdf. url:
http://www.pnas.org/content/113/47/E7351.

Wilson, Ashia C., Benjamin Recht, and Michael I. Jordan (2015). “A Lyapunov
Analysis of Momentum Methods in Optimization”. In: eprint: arXiv:1611.02635v3.

5

arXiv:1503.01243v2
https://doi.org/10.1073/pnas.1614734113
http://www.pnas.org/content/113/47/E7351.full.pdf
http://www.pnas.org/content/113/47/E7351
arXiv:1611.02635v3

	Gradient Expressions
	Software Implementation and Optimization Techniques
	Additional Results

