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In this supplement, we present technical details expanding upon the method presented

in the main text. These include: i) additional details on the theoretical approaches used;

and ii) a complete description of the inference framework developed.

APPENDIX A: DETAILED METHODS DESCRIPTION

In this section, we show the details of our adaptation of the method of cascades. The basis

chosen to expand the vector, x, in applying cascade method must have the capacity to ap-

proximate ODE solutions, as well as derivatives involved in ODEs. Ramsay and Silverman1

discussed how to choose a basis function system that guaranteed adequate flexibility to rep-

resent the variation in the approximated function x̂i and its derivatives. In our case, we select

B-splines as our basis functions because they allow appropriate control over the smoothness

of the solution at specific times, including any discontinuities in the first or higher order

derivatives associated with step and point changes in the inputs.2–6

From a mathematical viewpoint, the spline is a numeric function consisting of polynomial

functions each of which describes one portion of the time trace; the time trace locations where

these polynomial pieces connect are called knots.7–9 De Boor6 showed how to improve the

spline approximation accuracy and efficiency by carefully selecting each knot.

Our approach centers on estimating parameters from two parameter classes (structural

parameters and nuisance parameters) in relatively different ways by the use of a multi-

criterion optimization method. In this estimation procedure, there are two optimization

steps: inner and outer optimizations, in which nuisance and structural parameters are, re-

spectively, estimated. Iteration between these inner and the outer steps continues until some

convergence criterion is achieved. We thus acquire good estimates of the nuisance parameters

and, more importantly, of the structural parameters, which include both the measurement

parameters and kinetic rates we are interested in.
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The Inner Optimization

In the inner step, the structural parameter vector, θ′, is kept fixed and we try to find

an estimate, ĉ, for the basis expansion coefficients c (the nuisance parameters). Since we

need the curve fitted to the data to also satisfy the ODEs
dx(t)

dt
= f(x, t|θ), our estimated

smoothed functions x̂i should also satisfy the ODEs,
dx̂(t)

dt
= f(x̂, t|θ), and it is natural to

express the penalty term (PEN ) with respect to the differential operator vector L{x̂(t)} =

dx̂(t)

dt
− f(x̂, t|θ)

PENi(x̂) =

∫
[Li{x̂i(t)}]2 dt (1)

where Li is the ith component of L{x̂(t)} =
dx̂(t)

dt
− f(x̂, t|θ). Putting together all i compo-

nents, we arrive at

PEN(x̂) =
∑
i

λiPENi(x̂). (2)

where the regularization factor, λi, allows us to differently weight each component of x̂(t).

Thus, the fitting criterion for estimating the smooth curve is given by minimizing the penal-

ized sum of squares

Jin(c|θ′,λ,y) =
n∑

i=1

|yi − x̂i|2 + PEN(x̂). (3)

In the general case, if we have d differential equations and r measurements at any given

time, the fitting criterion can be generalized to

Jin(c|θ′,λ,y) =
r∑

j=1

ωj

n∑
i=1

|yj(tij)− x̂j(tij)|2 +
d∑

k=1

λkPENk =
r∑

j=1

SSEj +
d∑

k=1

λkPENk (4)

where yj is intended to indicate the vectors of measured values at the time tij. The norm

notation |.|2 is used here to represent a sum of squared error (SSE) measures of fit and ωj is

the normalization factor. We note that in our case all observables are fluorescence intensities

and thus normalizing weights are not needed, unlike the general case where observables with

different units would require use of such weights.
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The second term in Eq. (3) expresses the penalty term when assessing the fidelity of x̂j

to the ODE system. Small λk reduce the importance of smoothing (i.e., the second term in

Eq. (3)). As is common in regularization problems, the value of λk is normally adjusted based

on the expected noise level of the data.10 In fact, we expect λk to be directly proportional

to the constant variance of the data assumed.

By minimizing the criterion Jin(c|θ′,λ,y) in Eq. (3), we find the estimate ĉ of the nui-

sance coefficient vector c. In other words, ĉ can be treated as a function of the ODE

parameter vector θ′. When our ODEs are linear, ĉ is explicit and when the ODEs are non-

linear, the examples of nonlinear ODEs using the method of cascades have previously been

dealt with in Ref.11

The Outer Optimization

In the outer optimization step, Jout(θ
′|λ,y), is optimized with respect to the structural

parameters, θ′, alone. The dependency of Jout on θ′ has two parts: directly, and implicitly

through the involvement of ĉ(θ′,λ) in describing the fit x̂. Since ĉ(θ′,λ) is regularized

already, Jout(θ
′|λ,y) does not need further regularization and is a straightforward measure

of fit.

The structural parameter vector θ′ values are varied in the outer optimization, and are

required to minimize the relation

Jout(θ
′|λ,y) =

r∑
j=1

ωj

n∑
i=1

|yj(tij)− x̂j(tij|θ′)|2 (5)

which calculates only the squared distance between the data and the smoothed curve (a

simple χ2 metric). We use the notation x̂j(ti|θ′) to emphasize that the fit to variable j at

this stage is actually a function of θ′, since each time x̂j(ti|θ′) is re-estimated, θ′ changes.

For the optimization of Eq. (3) involving a non-linear penalty term, we use the Newton-
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Raphson method and, within Newton-Raphson, we compute gradients and Hessian matrices

analytically. For more information see.11–15
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APPENDIX B: IDENTIFIABILITY

Parameter Identifiability

We ask here if it is possible to find a unique solution for each of the unknown parameters of

our ODE model, from data collected from experiments.16,17

By using a method detailed in Ref.,18 we first find unidentifiable parameters and fix their

value based on additional pieces of information. For pedagogical reasons, before explaining

how we applied this method to your full hepatic transport model, we demonstrate the method

on a simple two states system with two rates and a measurement model provided by Eq. (5)

from the main text. Fig. (1) in the main text shows a schematic of this system. This system

is described by the Eqs. (6) and (7) with parameter vector θ′ = [k+, k−, α, β].


dX1

dt
= −k+X1 + k−X2

dX2

dt
= k+X1 − k−X2

(6)

with measurements

yX1

yX2

 =

α 0

0 β


X1

X2

 +

ε1
ε2

 (7)

We first Laplace transform Eq. (6) which yields


sX̂1(s)−X1(0) = −k+X̂1(s) + k−X̂2(s)

sX̂2(s)−X2(0) = k+X̂1(s)− k−X̂2(s)

(8)
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⇒


X̂1(s) =

k−X̂2(s)

s+ k+
+
X1(0)

s+ k+

X̂2(s) =
k+X̂1(s)

s+ k−
+
X2(0)

s+ k−

(9)

From Eq. (9) we can isolate X̂1(s). From this, we can write ŷX1(s) as follows

⇒ X̂1(s) =
k−X2(0)

s2 + (k+ + k−)s
+

(s+ k−)X1(0)

s2 + (k+ + k−)s

⇒ ŷX1(s) =
αk−X2(0)

s2 + (k+ + k−)s
+
α(s+ k−)X1(0)

s2 + (k+ + k−)s
.

(10)

Insofar as identifiability is concerned, Eq. (10) captures the model structure with un-

known parameter vector {α, k+, k−}. Now, from Eq. (10), we create an analogous model

structure form for the hypothetical true parameter values of the same form

ŷX1(s) =
α∗k∗−X2(0)

s2 + (k∗+ + k∗−)s
+
α∗(s+ k∗−)X1(0)

s2 + (k∗+ + k∗−)s
(11)

where the * sign shows the true or known value of the parameter. By comparing Eqs. (10)

and (11) we find

⇒


αk− = α∗k∗−

k+ + k− = k∗+ + k∗−.

(12)

Likewise, for the second species, X̂2(s), we similarly have

⇒ X̂2(s) =
k+k−X2(0)

(s+ k−)(s2 + (k+ + k−)s)
+

k+X1(0)

s2 + (k+ + k−)s
+
k−X2(0)

(s+ k−)

⇒ ŷX2(s) =
βk−k+X2(0)

(s+ k−)(s2 + (k+ + k−)s)
+

βk+X1(0)

s2 + (k+ + k−)s
+
βk−X2(0)

(s+ k−)
.

(13)

S7



Similarly, we find

⇒



βk−k+ = β∗k∗−k
∗
+

βk+ = β∗k∗+

βk− = β∗k∗−

k+ + k− = k∗+ + k∗−.

(14)

By using either Eqs. (12) or (14) we find that in order to uniquely express all the starred

quantities in terms of unstarred quantities we need to pre-specify the value of either α or β.

We can now apply the same procedure to our full hepatic transport model described by

Eqs. (15), (16) and Eq. (17).



dS

dt
= −kS→HS + kH→SH

dH

dt
= kS→HS − (kH→S + kH→C)H − kHTH

dC

dt
= kH→CH − kCC

(15)

and



dS ′

dt
= −k′S→HS

′ + k′H→SH
′

dH ′

dt
= k′S→HS

′ − (k′H→S + kH→C)H ′ + kHTH

dC ′

dt
= k′H→CH

′ − k′CC ′.

(16)
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With the measurement model


yS

yH

yC

 =


α 0 0 α′ 0 0

0 β 0 0 β′ 0

0 0 γ 0 0 γ′





S

H

C

S ′

H ′

C ′


+


ε1

ε2

ε3

 . (17)

Laplace transforming Eqs. (15) and (16) gives



sŜ(s)− S(0) = −k+Ŝ(s) + k−Ĥ(s)

sĤ(s)−H(0) = k+Ŝ(s)− (k− + k2 + kHT )Ĥ(s)

sĈ(s)− C(0) = k2Ĥ(s)− k3lĈ(s)

(18)



sŜ ′(s)− S ′(0) = −k′+Ŝ ′(s) + k′−Ĥ
′(s)

sĤ ′(s)−H ′(0) = k′+Ŝ
′(s)− (k′− + k′2)Ĥ

′(s) + kHT Ĥ(s)

sĈ ′(s)− C ′(0) = k′2Ĥ
′(s)− k′3lĈ ′(s).

(19)

By re-arranging Eqs. (18) and (19), we can determine Ŝ(s), Ĥ(s), and Ĉ(s) (for fluorescein)
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and their primed counter-parts (for glucuronidated fluorescein). Thus, we have

⇒



Ŝ(s) =
k−Ĥ(s)

s+ k+
+

S(0)

s+ k+

Ĥ(s) =
k+Ŝ(s)

s+ k− + k2 + kHT

+
H(0)

s+ k− + k2 + kHT

Ĉ(s) =
k2Ĥ(s)

s+ k3l
+

C(0)

s+ k3l
.

(20)

Likewise, for the primed counter-parts, we have

⇒



Ŝ ′(s) =
k′−Ĥ

′(s)

s+ k′+
+

S ′(0)

s+ k′+

Ĥ ′(s) =
k′+Ŝ

′(s)

s+ k′− + k′2
+

kHT Ĥ(s)

s+ k′− + k′2
+

H ′(0)

s+ k′− + k′2

Ĉ ′(s) =
k′2Ĥ

′(s)

s+ k′3l
+

C ′(0)

s+ k′3l
.

(21)

By isolating Ĥ(s) and Ĥ ′(s) from Eqs. (20) and (21), we find

Ŝ(s) =
k−H(0)

s2 + (k+ + k− + k2 + kHT )s+ k+k2 + k+kHT

+

S(0)(s+ k− + k2 + kHT )

s2 + (k+ + k− + k2 + kHT )s+ k+k2 + k+kHT

(22)

Ŝ ′(s) =
kHTk

′
−Ĥ(s)

s2 + (k′+ + k′− + k′2)s+ k′+k
′
2

+
k′−H(0)

s2 + (k′+ + k′− + k′2)s+ k′+k
′
2

+

S ′(0)(s+ k′− + k′2)

s2 + (k′+ + k′− + k′2)s+ k′+k
′
2

.

(23)

S10



Now by using the first measurement equation, yS = αS + α′S ′, by comparing Eq. (23) with

the model structure for known parameters (same as we did for Eq. (11)) the we obtain

⇒



αk− = α∗k∗−

k+ + k− + k2 + kHT = k∗+ + k∗− + k∗2 + k∗HT

k+ + k− = k∗+ + k∗−

α′kHTk
′
2 = α′∗k∗HTk

′∗
2

α′∗k′∗− = α′∗k′∗−

k′+ + k′− = k
′∗
+ + k,∗−.

(24)

Therefore, according to Eq. (24), we find that we need to pre-specify the values of α, α′ and

kHT to uniquely determine the other parameters.
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