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Abstract
Background. Precision medicine requires a strati�cation of patients by disease presentation that is su�ciently informative
to allow for selecting treatments on a per-patient basis. For many diseases, such as neurological disorders, this
strati�cation problem translates into a complex problem of clustering multivariate and relatively short time series, because
(1) these diseases are multifactorial and not well described by single clinical outcome variables, and (2) disease progression
needs to be monitored over time. Clinical datasets often additionally su�er from the presence of many missing values,
further complicating any clustering attempts.
Findings. No standard methods exist for clustering multivariate short time series with many missing values. In this work,
we propose a deep learning-based method to address this issue, variational deep embedding with recurrence (VaDER).
VaDER relies on a Gaussian mixture of variational autoencoder framework, which is further extended by (1) incorporating
long short term memory units and (2) de�ning an appropriate approach to directly deal with missing values via implicit
imputation and loss re-weighting. We validated VaDER by accurately recovering clusters from simulated data with known
ground truth clustering, while varying the degree of missingness. We then used VaDER to successfully stratify Alzheimer’s
disease (AD) patients and Parkinson’s disease (PD) patients into subgroups characterized by clinically divergent disease
progression pro�les. Additional analyses demonstrated that these clinical di�erences re�ected known underlying aspects
of AD and PD.
Conclusions. We believe our results show that VaDER can be of great value for future e�orts in patient strati�cation, and
multivariate short time series clustering in general.
Key words: Patient strati�cation; deep learning; multivariate short time series; multivariate longitudinal data; clustering

Findings Background

In precision medicine, patients are strati�ed based on their dis-
ease subtype, risk, prognosis, or treatment response using spe-
cialized diagnostic tests. An important question in precision
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medicine, is how to appropriately model disease progression
and accordingly decide for the right type and time point of ther-
apy for an individual. However, the progression of many dis-
eases, such as neurological disorders, cardiovascular diseases,
diabetes, obesity [1, 2, 3, 4, 5], is highly multifaceted and not
well described by one clinical outcomemeasure alone. Classical
univariate clustering methods are likely to miss the inherent
complexity of diseases that demonstrate a highly multifaceted
clinical phenotype. Accordingly, strati�cation of patients by
disease progression translates into the challenging question of
how to identify a clustering of a multivariate time series.
Clustering is a fundamental and generally well investigated

problem in machine learning and statistics. Its goal is to seg-
ment samples into groups (clusters), such that there is a higher
degree of similarity between samples of the same cluster than
between samples of di�erent clusters. Following [6], algo-
rithms to solve clustering problems may be put into three main
categories, (1) combinatorial algorithms, (2) mixture modeling
and (3) mode seeking. Within each of these three categories,
a wide range of methods is available for a great diversity of
clustering problems. Combinatorial algorithms do not assume
any underlying probability model, but work with the data di-
rectly. Examples are K-means clustering, spectral clustering
[7] and hierarchical clustering [8]. Mixturemodels assume that
the data can be described by some probabilistic model. An ex-
ample is Gaussian mixture model clustering. Finally, in mode
seeking one tries to directly estimate modes of the underlying
multi-modal probability density. An important example here
is the mean-shift algorithm [9].
For the clustering of multivariate time series data, a few

techniques have been developed [10, 11, 12, 13, 14]. However,
these approaches generally rely on time series of far greater
length than available in most longitudinal clinical datasets.
Moreover, these methods are not suited for the large numbers
of missing values often found in clinical data.
Missing values in clinical data can occur due to di�erent

reasons: (1) patients drop out of a study, e.g. due to worsening
of symptoms; (2) a certain diagnostic test is not taken at a par-
ticular visit (e.g. due to lack of patient agreement), potentially
resulting into missing information for entire variable groups;
(3) unclear further reasons, e.g. time constraints, data qual-
ity issues, etc. From a statistical point of view, these reasons
manifest into di�erent mechanisms of missing data [15, 16]:
i. Missing completely at random (MCAR): The probability
of missing information is neither related to either the spe-
ci�c value which is supposed to be obtained, nor to other ob-
served data. Hence, entire patient records could be skipped
without introducing any bias. However, this type of missing
data mechanism is probably rare in clinical studies.
ii. Missing at random (MAR): The probability of missing in-
formation depends on other observed data, but is not related
to the speci�c missing value that is expected to be obtained.
An example would be patient drop out due the to worsening
of certain symptoms, which are at the same time recorded
during the study.
iii. Missing not at random (MNAR): any reason for missing
data, which is neither MCAR nor MAR. MNAR is problematic,
because the only way to obtain unbiased estimates is tomodel
missing data.
Multiple imputation methods have been proposed to deal

with missing data in longitudinal patient data [16]. However,
any imputation method will result in certain errors, and if im-
putation and clustering are done separately, these errors will
propagate through to the following clustering procedure.
To address the problem of clustering multivariate and rela-

tively short time series data with many missing values, in this

paper we propose an approach that uses techniques from deep
learning. Autoencoder networks have been highly successful
in learning latent representations of data, e.g. [17, 18, 19, 20].
Speci�cally for clustering, autoencoders can be used to �rst
learn a latent representation of a multivariate distribution, and
then independently �nd clusters [21]. More recently, some au-
thors have suggested to simultaneously learn latent representa-
tions and cluster assignments. Interesting examples are deep
embedded clustering (DEC) [22] and variational deep embed-
ding (VaDE) [23].
Here, we present a new method for clustering multivariate

short time series with potentially many missing values, VaDER
(variational deep embedding with recurrence). VaDER is based
on VaDE [23], a clustering algorithm based on variational au-
toencoder principles, with a latent representation forced to-
wards a multivariate Gaussian mixture distribution. VaDER ex-
tends VaDE by (1) integrating two LSTM networks [24] into
a VaDE architecture, to allow for the analysis of multivariate
short time series, and (2) adopting an approach of implicit im-
putation and loss re-weighting to account for the typically high
degree of missingness in clinical data.
After a validation of VaDER via a simulation study, we ap-

plied the method to the problem of patient strati�cation in
Alzheimer’s disease (AD) and Parkinson’s disease (PD), us-
ing data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [25] and the Parkinson’s Progression Markers Initiative
(PPMI) [26] respectively. Alzheimer’s and Parkinson’s disease
are multifactorial and highly heterogeneous diseases, both in
clinical and biological presentation, as well as in progression
[27, 28, 29, 30]. For example, PD is characterized by motor
symptoms, behavioral changes (e.g. sleeping disorders) as well
as cognitive impairment 1. Cognitive impairment, one of the
hallmarks of AD, is not straightforward to assess, since cogni-
tion itself is highly multifaceted, and described by e.g. orien-
tation, speech and memory. Consequently, in the �eld of AD,
a wide range of tests have been developed to assess di�erent
aspects of cognition.
This heterogeneity presents one of the major challenges in

understanding these diseases and developing new treatments.
As such, better clustering (strati�cation) of patients by disease
presentation could be of great help in improving disease man-
agement and designing better clinical trials that speci�cally fo-
cus on treating patients that are rapidly progressing.
Our analyses of the ADNI and PPMI data show that VaDER

is highly e�ective at disentangling multivariate patient trajec-
tories into clinically meaningful patient subgroups.

Results

Variational deep embedding (VaDE)
The basis for our proposed variational deep embedding with
recurrence (VaDER) method is variational deep embedding
(VaDE) [23], a variational autoencoding clustering algorithm
with a multivariate Gaussian mixture prior. In variational au-
toencoding algorithms, the training objective is to optimize the
variational lower bound on the marginal likelihood of a data
point x [31]:

L(x) = Eq(z|x)[log(p(x|z))] – DKL(q(z|x)||p(z)) (1)
This lower bound can be seen as composed of two parts. The

�rst term corresponds to the likelihood of seeing x given a la-

1 https://www.ninds.nih.gov/Disorders/All-Disorders/Parkinsons-
Disease-Information-Page
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Figure 1. VaDER architecture

tent representation z. Its negative is often called the recon-
struction loss, and it forces the algorithm to learn good recon-
structions of its input data. The negative of the second term
is often called the latent loss. It is the Kullback–Leibler diver-
gence of the prior p(z) to the variational posterior q(z|x), and
it regularizes the latent representation z to lie on a manifold
speci�ed by the prior p(z).
In VaDE, this prior is a multivariate Gaussian mixture. Ac-

cordingly including a parameter for choosing a cluster c, the
variational lower bound can then be written as follows:

L(x) = Eq(z,c|x)[log(p(x|z))] – DKL(q(z, c|x)||p(z, c)) (2)
By forcing the latent representation z towards a multivari-

ate Gaussian mixture distribution, VaDE has the ability to si-
multaneously learn latent representations and cluster assign-
ments of its input data. For more details on variational autoen-
coders and VaDE, we refer the reader to [32, 31, 23].
Variational deep embedding with recurrence (VaDER)
VaDER builds upon and extends VaDE in a number of ways,
mainly related to (1) modeling multivariate short time series,
and (2) dealing with missing values.
To model the auto- and cross-correlations in multivariate

short time series data, we integrate peephole LSTM networks
[24, 33] into the VaDE architecture. The resulting architecture
is visualized in Figure 1.
To deal with missing values, we directly integrate imputa-

tion into model training. As outlined in Section Background,
separating imputation from clustering can potentially intro-

duce bias. To avoid this bias, we here propose an implicit
imputation scheme, which is performed within VaDER train-
ing. Our approach bears some similarity to other approaches
[34, 35]. However, in contrast to [34], VaDER uses missingness
indicators for implicit imputation as an integral part of neural
network training. Additionally, in contrast to [35], our method
is also suited for MNAR data, which are often encountered in
clinical datasets.
We �rst de�ne a weighted reconstruction loss on feature

and sample level: Imputed values are weighted to 0, non-
imputed values are weighted to 1. To retain the balance with
the latent loss, the resulting reconstruction loss is re-scaled
to match the original dimensions of the data. More formally,
for a mean squared reconstruction loss, let L be the number
of samples in our dataset, xl a single input sample, and x̂l its
corresponding reconstructed output (l ∈ 1 . . . L). xl and x̂l are
matrices ∈ RN×M, where N is the number of time points and M
is the number of clinical outcome measures (e.g. cognitive as-
sessments) for a particular patient. Then the unweightedmean
reconstruction loss is:

1
L

L∑
l=1

N∑
i=1

M∑
j=1
(xlij – x̂lij)2 (3)

Now, let A := {xlij|xlijis missing}, 1A(.) be the indicator functionon set A, and |A| be the cardinality of A. Then, the weighted
mean squared reconstruction loss is:

NM
|A|

L∑
l=1

N∑
i=1

M∑
j=1
1A(xlij)(xlij – x̂lij)2 (4)
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In addition to the weighted reconstruction loss, we adopt an
implicit imputation scheme, where imputed values are learned
as an integral part of model training. More speci�cally, Let xl,
N, M, xlij, A and 1A(.) be de�ned as above. Also assume that
all xlij for which 1A(xlij) = 1, are initially imputed with arbitrary�nite values. Then we add one additional layer before the input
LSTM (Figure 1) as follows:

x̃lij = xlij × (1 – 1A(xlij)) + bij × 1A(xlij) (5)

Here, xlij is the actual observed (or missing) value of sample
l at time points i and assessment j, and x̃lij serves as input to the
LSTM. In other words, if xlij is missing, then it is replaced by
bij in x̃. Parameters bij are trained as an integral part of VaDERusing stochastic gradient descent, and can be considered (time,
assessment)-speci�c expected values. Note that (1) the initial
arbitrary imputation does not in�uence the eventual clustering,
and (2) the implicitly imputed values are weighted to 0 in the
reconstruction loss.
VaDER achieves high accuracy on simulated data
To our knowledge, no benchmark datasets exist for multivari-
ate short time series clustering. Hence, we simulated data for
validating VaDER instead. A natural framework to this end is
the vector autoregressive (VAR) model, because (1) it can ex-
press serial correlation between time points, (2) it can express
cross-correlation between variables, and (3) given a fully pa-
rameterized VAR process, one can simulate random trajectories
from that VAR process.
More speci�cally, to generate clusters of multivariate short

time series, we simulated from VAR process mixtures, for dif-
ferent values of a clusterability parameter λ. The clusterabil-
ity parameter λ in�uences how easily separable the simulated
clusters are (see Section Simulation experiments). Sample data
is provided in the Supplemental Material.
As shown in Figure 2a, VaDER was able to highly accurately

recover the simulated clusters, achieving an adjusted rand in-
dex of ∼0.9 for λ ≈ 0.05, and converging to 1.0 for larger λ. In
contrast, hierarchical clustering performed substantially worse
and even close to random for lower λ. This highlights that data
generated from VAR process mixtures is not trivially clustered.
We used the same VAR framework to assess how varying de-

grees of missing values a�ect the performance of VaDER. Both
missing values completely at random (MCAR) and missing val-
ues not at random (MNAR) were simulated as described in Sec-
tion Methods. In the MCAR simulation, missing values were
uniformly distributed across time and clinical outcome mea-
sures. In the MNAR simulation, the expected degree of miss-
ing values depended on time (see Section Methods). For vary-
ing clusterability levels λ, it can be seen that VaDER seems re-
markably robust against high degrees of both MCAR and MNAR
(Figures 2b and 2c).
Application 1: VaDER identi�es clinically diverse AD patient sub-
groups
We applied VaDER to clinical data for identifying meaningful
patient subgroups. From the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [25], we collected data from 689 patients
that were at some point diagnosed with dementia during the
course of this study. Four di�erent cognitive assessment scores
were available at 8 di�erent visits: ADAS13, CDRSB, MMSE and
FAQ. We pre-processed the data as described in Section ADNI
data preparation. Overall, the fraction of missing values was
∼ 43%. We used VaDER to cluster patients by disease progres-
sion as measured using these cognitive assessments.

Hyperparameter optimization was performed by random
grid search as described in Section Methods. For each number
of clusters k ∈ {2 . . . 15}, the prediction strength [37] of the cor-
responding optimal model was compared to a null distribution
(see Section Hyperparameter optimization and choice of num-
ber of clusters), which is shown in the Supplemental Materials.
For our subsequent analyses, we chose k = 3, which demon-
strated relatively high prediction strength, signi�cantly di�er-
ent from the null distribution, while still allowing VaDER to
uncover potentially interesting interactions between the time
series.
The resulting cluster mean trajectories are shown in Figure

3, and demonstrate that (1) VaDER e�ectively clusters the data
into patient subgroups showing divergent disease progression,
and (2) VaDER is able to �nd interactions between the di�er-
ent cognitive assessments, which would be principally di�cult
to distill from univariate analyses of the assessments. For ex-
ample, the patients in cluster 1 are the most severely progress-
ing patients when assessed using ADAS13, CDRSB and MMSE.
However, the FAQ assessment (instrumental activities of daily
living) does not distinguish between these severely progress-
ing patients and the more moderately progressing patients in
cluster 1.
In addition to cognitive assessment measurements, ADNI

presents a wealth of data on brain volume and various AD
markers that we did not use for clustering. In this data, we
identi�ed numerous statistically signi�cant associations with
our patient subgroups. For example, the clusters strongly as-
sociated with time-to-dementia diagnosis relative to baseline,
with cluster 2 showing generally the shortest time, and clus-
ter 0 the longest. The relatively mildly progressing patients
in cluster 0 also demonstrated on average a larger whole brain
volume at baseline, which moreover declined less steeply over
time, compared to more severely progressing patients. Espe-
cially the middle temporal gyri and fusiform gyri were larger
(and shrinking more slowly over time), whereas the ventri-
cles were smaller (and expanding more slowly over time). In-
deed, atrophy of the middle temporal gyri and fusiform gyri,
as well as ventricular enlargment, have been associated with
Alzheimer’s disease progression [38, 39]. As another exam-
ple, the more severely progressing patients (clusters 1 and es-
pecially 2), demonstrated lower cerebral glucose uptake and
lower cerebrospinal Abeta42 levels, again con�rming the litera-
ture [40, 41] (see Section Methods and Supplemental Material).
These observations demonstrate that the clinical di�erences
between our patient subgroups re�ect known Alzheimer’s dis-
ease aspects.
Application 2: VaDER identi�es clinically diverse PD patient sub-
groups
We additionally applied VaDER to data from the Parkinson’s
Progression Markers Initiative (PPMI) [26]. From PPMI, we
collected data from 362 de novo PD patients that had been di-
agnosed within a time period of two years before study onset
andwere initially not been treated. 9 variables on several motor
and non-motor symptoms (UPDRS total, UPDRS1-3, TD, PIGD,
RBD, ESS, SCOPA-AUT) measured at either 5 or 10 time points
were available. The data was pre-processed as described in
Section PPMI data preparation. Overall, the fraction of miss-
ingness values was ∼ 17% (or ∼ 31%, when including time
points entirely missing for some assessments). We again used
VaDER to cluster patients according to disease progression as
measured by these assessments.
Hyperparameter optimization and selection of the number

of clusters was performed in the same way as for ADNI, and we
decided on k = 3 patient subgroups accordingly. The resulting
cluster mean trajectories are shown in Figure 4. These again
illustrate that (1) VaDER e�ectively clusters the data into clini-
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Figure 2. VaDER performance on simulated data, with varying degrees of clusterability and missingness.

cally divergent patient subgroups, and (2) VaDER is able to �nd
interactions between the assessments that would principally be
di�cult to �nd based on univariate analyses alone. For exam-
ple, cluster 0 represents patients with a moderate progression
in terms of mental impairment, behavior, and mood (UPDRS1)
and autonomic dysfunction (SCOPA). However, these patients
remain relatively stable, or even improve, on many other as-

sessments, such as tremor dominance (TD), the self-reported
ability to perform activities of daily life (UPDRS2) and motor
symptoms evaluation (UPDRS3).
Similar to ADNI, PPMI presents a wealth of additional data

on brain volume and various PD markers that were not used for
clustering. Aligning these data with our PD patient subgroups,
we found numerous statistically signi�cant associations that
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Figure 3. Normalized cluster mean trajectories relative to baseline (x-axis in months), as identi�ed by VaDER from the ADNI cognitive assessment data.

con�rmed existing literature, many related to quality of life
and physiological changes to the brain. For example, men were
over-represented in cluster 1, and showed the most severe dis-
ease progression, con�rming the literature on gender di�er-
ences in PD (e.g. [42]). Moreover, these severely progressing
patients showed an expected steeply declining ability to per-
form activities of daily living (modi�ed Schwab and England
score [43]), as well as rapidly developing symptoms of depres-
sion (geriatric depression scale [44]), common in PD patients
[45]. Additionally, these patients demonstrated physiological
di�erences in the brain when compared to more mildly pro-
gressing patients. Examples are the caudate nucleus and puta-
men brain regions, which were smaller at baseline and during
follow-ups in the more severely progressing patients in cluster
1, and from the literature are known to be subject to atrophy
in PD [46] (see Section Methods and Supplemental Material).
These observations demonstrate that the clinical di�erences
between our patient subgroups re�ect known aspects of PD dis-
ease progression.

Discussion and conclusions

Identifying subgroups of patients with similar progression
patterns can help to better understand the heterogeneity of
complex diseases. Together with predictive machine learning
methods, this might help to better decide on the right time and
type of treatment for an individual patient, as well as to im-
prove the design of clinical studies. However, one of the main
challenges is the multifaceted nature of progression in many
areas of disease.
In this paper, we proposed VaDER, an extension of VaDE

[23] for clustering multivariate short time series with poten-
tially many missing values, a setting that seems generally not
well addressed in the literature so far, but nonetheless often
encountered in clinical study data. The main extensions com-
pared to VaDE are (1) the use of LSTMs and (2) an architecture
and loss function that directly deal with missing values.
We validated VaDER by showing the very high accuracy on

clustering simulated data with a known ground truth. We then
applied VaDER to data from (1) ADNI and (2) PPMI, resulting
in subgroups characterized by clinically highly divergent dis-
ease progression pro�les. A comparison with other data from
ADNI and PPMI, such as brain imaging, motor- and cognitive
assessment data, furthermore supported the observed patient
subgroups.
VaDER has two main distinctive features. One is that VaDER

deals directly with missing values. For clinical research this is
crucial, since clinical data often show a very high degree of
missing values [47, 48]. The other main distinctive feature is
that, as opposed to existing methods [10, 11, 12, 13, 14], VaDER
is speci�cally designed to deal with multivariate and relatively
short time series that are typical for (observational) clinical
studies. However, it is worthwhile to mention that VaDER is
not per se limited to longitudinal clinical study data. Future ap-
plications (potentially requiring some adaptations) could e.g.
include data originating from electronic health records, mul-
tiple wearable sensors, video recordings, or time series gene
(co-)expression. Moreover, VaDER could be used as a gener-
ative model: given a trained model, it is possible to generate
"virtual" patient trajectories.
Altogether, we believe that our results show that VaDER has

the potential to enhance future patient strati�cation e�orts,
and multivariate short time series clustering in general.



De Jong et al. | 7

0 5 10 15

−
1.

0
0.

0
1.

0

TD

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

0
1

2
3

PIGD

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

0.
0

1.
0

2.
0

UPDRS1

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

−
0.

5
0.

5
1.

5
2.

5

UPDRS2

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

−
1.

0
0.

0
1.

0
2.

0

UPDRS3

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

0
1

2
3

UPDRS

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

−
0.

4
0.

0
0.

4
0.

8

RBD

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

0.
0

0.
5

1.
0

ESS

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 5 10 15

0.
0

0.
4

0.
8

1.
2

SCOPA

Month

z−
sc

or
e 

re
la

tiv
e 

to
 b

as
el

in
e

0 (n = 61)
1 (n = 56)
2 (n = 245)
95% CI

Figure 4. Normalized cluster mean trajectories relative to baseline (x-axis in months), as identi�ed by VaDER from the PPMI motor/non-motor score data.

Methods

Data preparation

ADNI data preparation
The ADNIMERGE R-package [49] contains mainly two cate-
gories of data, (1) longitudinal and (2) non-longitudinal. These
data represent 1737 participants that include healthy controls
and patients diagnosed with Alzheimer’s Disease (AD). The
non-longitudinal features such as demographics and APOE e4
status were measured only once, at baseline. The longitudi-
nal features (i.e. neuroimaging features, cerebrospinal �uid
(CSF) biomarkers, cognitive tests and everyday cognition) were
recorded over a span of 5 years.
Clinical data. In the current study, we have focused on those
participants who were diagnosed with AD at baseline or during
one of the follow-up visits. After this �ltering step, we had
a total of 689 patients. For these 689 patients, four cognitive
assessments were selected for clustering:
• ADAS-13: The Alzheimer’s disease assessment scale
• CDRSB: The clinical dementia rating sum of box score.

• FAQ: The functional activities questionnaire.
• MMSE: mini–mental state examination
The above assessments were taken at baseline and at 6, 12,

18, 24, 36 48 and 60 months after baseline. For each of the four
cognitive assessments, all time points were normalized relative
to baseline by (1) subtracting the baseline mean across the 689
patients, and (2) dividing by the baseline standard deviation
across the 689 patients.
Imaging data. All available MR scans (T1-weighted scans) from
the ADNI database were quanti�ed by an open-source, auto-
mated segmentation pipeline at the Erasmus University Medi-
cal Center, The Netherlands. The number of slices of the T1w
scans varied from 160 to 196 and the in-plane resolution was
256 x 256 on average, yielding an overall voxel-size of 1.2 x 1.0
x 1.0 mm. From the 1715 baseline ADNI scans, the volumes of
34 bilateral cortical brain regions, 68 structures in total, were
calculated using a model- and surface-based automated image
segmentation procedure, incorporated in the FreeSurfer Pack-
age (v.6.0, http://surfer.nmr.mgh.harvard.edu/). Segmenta-
tion in Freesurfer was performed by rigid-body registration
and nonlinear normalization of images to a probabilistic brain
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atlas. In the segmentation process, each voxel of the MRI vol-
umes was labeled automatically as a corresponding brain re-
gion based on two di�erent cortex parcellation guides [50, 51],
subdividing the brain into 68 and 191 regions respectively.
PPMI data preparation
Patients were selected if their PD diagnosis was less than 2
years old at baseline time, and if follow up data was available
for at least 48 months (5 - 10 time points), resulting in a total
of 362 patients. For these 362 patients, a set of 9 motor and
non-motor symptoms were selected for clustering:
• TD: tremor-dominant
• PIGD: postural instability and gait disturbance.
• UPDRS1: Uni�ed Parkinson’s disease rating scale, part 1:
mentation, behavior, and mood.

• UPDRS2: Uni�ed Parkinson’s disease rating scale, part 2:
activities of daily living.

• UPDRS3: Uni�ed Parkinson’s disease rating scale, part 3:
motor examination.

• UPDRS: Uni�ed Parkinson’s disease rating scale (UPDRS1 +
UPDRS2 + UPDRS3).

• RBD: REM sleep behavior disorder.
• ESS: Epworth sleepiness scale.
• SCOPA-AUT: Scales for outcomes in Parkinson’s disease: as-
sessment of autonomic dysfunction.
All scores were normalized relative to baseline by (1) sub-

tracting the baseline mean across all patients, and (2) dividing
by the baseline standard deviation across all patients.
For some assessments, fewer time points were available.

These were treated as missing values.

Variational deep embedding with recurrence (VaDER)

The VaDER model is extensively described in Section Results.
This section describes how VaDER was trained.
Pre-training
Similar to [23], we pre-train VaDER by disregarding the la-
tent loss during the �rst epochs, essentially �tting an non-
variational LSTM autoencoder to the data. We then �t a Gaus-
sian mixture distribution in the latent space of this autoen-
coder, and use its parameters to initialize the �nal variational
training of VaDER.
Hyperparameter optimization and choice of number of clusters
We used prediction strength [37] to select suitable values for
VaDER’s hyperparameters. These comprise:
• number of layers (for both ADNI and PPMI: {1, 2})
• number of nodes per hidden layer (for
ADNI: {20, 21, 22, 23, 24, 25, 26}; for PPMI:
{20, 21, 22, 23, 24, 25, 26, 27})

• learning rate (for both ADNI and PPMI:
{10–4, 10–3, 10–2, 10–1})

• mini-batch size (for both ADNI and PPMI: {24, 25, 26, 27})
Hyperparameter optimizationwas performed via a random grid
search (i.e. by randomly sampling a prede�ned hyperparame-
ter grid) with repeated cross-validation (n = 20), using the
reconstruction loss as objective. This was done during the pre-
training phase of VaDER.
After hyperparameter optimization we trained VaDER mod-

els for di�erent numbers of clusters k ∈ {2 . . . 15}. For each k,
prediction strength was computed by 2-fold cross-validation
[37]: For a given training and test dataset:

i. Train VaDER on the training data. (the training data
model)
ii. Assign clusters to the test data using the training data
model.
iii. Train VaDER on the test data. (the test data model)
iv. Assign clusters to the test data using the test data model.
v. Compare the resulting two clusterings: For each cluster
of the test data model, compute the fraction of pairs of sam-
ples in that cluster that are also assigned to the same cluster
by the training data model. Prediction strength is de�ned as
the minimum proportion across all clusters of the test data
model. [37].
Prediction strength was then compared to an empirical null

distribution of that measure. The null distribution of the pre-
diction strength was computed by randomly permuting the pre-
dicted cluster labels 103 times, then recomputing the prediction
strength, and eventually taking the average of the 103 predic-
tion strength values. Doing this for all 20 repeats, resulted in
20 values for the eventual null distribution, which were then
compared to 20 actual prediction strength values (similarly,
one for each repeat).

Simulation experiments

Overview about data generating process
To better understand the performance of VaDER we conducted
an extensive simulation study: We simulated multivariate
short time series via vector autoregressive (VAR) processes [52],
because (1) they can model the auto-correlation between time
points, (2) they can model the cross-correlation between vari-
ables and (3) given a VAR, one can generate random trajectories
from that VAR.
We used mixtures of VAR processes to simulated multivari-

ate time series data of the same dimensions as the ADNI data:
4 variables measured over 8 time points. Given a clusterability
factor λ, we generated trajectories as follows:
i. Sample coe�cient matrices for 3 VAR(8) processes, by
randomly sampling the individual entries of each 4×4matrix
from the uniform distribution U(–.1, .1). Multiply each of the
matrix entries by λ.
ii. Randomly sample 3 additional 4 × 4 matrices from
U(–.1, .1), and multiply each with its own transpose. Let each
of results correspond to the variance-covariance matrix of
one of the 3 VAR(8) processes.
iii. Repeat 103 times:
i. Randomly select one of the 3 VAR(8) processes (with
equal probability).
ii. Generate a random trajectory from the selected VAR(8)
process.
The above generates one set of random data. Given a value

of λ, the entire sampling process was repeated 100 times, and
each of the 100 datasets was clustered using both VaDER and hi-
erarchical clustering (with three distance measures). For com-
putational reasons, hyper-parameters for VaDER were �xed
and not further optimized during our simulation (103 epochs of
training, learning rate: 10–3, two hidden layers: [36, 4], α : 0.2,
batch size: 64).
Comparison against hierarchical clustering
We compared VaDER against a conventional hierarchical clus-
tering (complete linkage), in which we �atten the N ×M data
matrices of each patient into vectors. We considered three dis-
tance measures for these vectors:
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• Pearson correlation
• Euclidean distance
• Short time series (STS) distance [36], a distance measure
especially developed for univariate short time series. The
STS distance relies on the di�erence between adjacent time
points. Here we �rst computed the STS distance for each of
the di�erent clinical outcome measures, and then summed
these up to arrive at an aggregated STS distance across the
M clinical measures.

Simulating missing data
To test the ability of VaDER to deal with missing data we per-
formed a separate set of simulations: Let L be the number of
patients in our dataset, and xl ∈ RN×M a single patient trajec-
tory (l ∈ 1 . . . L), where N is the number of time points and M is
the number of measured features. Missing values completely
at random (MCAR) were simulated by an individual entry xlij tomissing with probability θ.
Missing not at random (MNAR) was simulated by letting

the probability of a missing value for entry xlij depend on time.
More speci�cally, each individual entry xlij was set to missing
with probability θ1+ei0–i , where i0 = 1+N2 . The above results in a
missingness that sigmoidally increases as a function of i, and
an expected missingness fraction of θ when aggregated over
all time points.
Estimating clustering performance
Performance was recorded using the adjusted rand index [53,
54] for di�erent values of λ in the interval [0.001, 0.25]. For
λ ' 0.25, generating coe�cient matrices that lead to stable
VARs becomes very di�cult.

Post-hoc analysis of patient clusters

We collected a wide range of additional variables from ADNI
and PPMI, and assessed the association of the identi�ed pa-
tient subgroups with a given variable by multinomial logistic
regression. For any baseline variable x, we �rst �tted the fol-
lowing full model:

subgroup ∼ x + confounders (6)
Each of these full models were then compared to a null

model:

subgroup ∼ confounders (7)
by means of a likelihood ratio test.
For any longitudinal variable xmeasured at timepoints t, we

�rst �tted the following multinomial logistic regression model:

subgroup ∼ x + t + x ∗ t + confounders (8)
We tested this model against the null model:

subgroup ∼ confounders (9)
by performing a likelihood ratio test, and applying an FDR

correction for multiple testing. If the above test was found to
be signi�cant (q < 0.05), we tested the e�ects of the individual
terms x ∗ t, x and t against the same null model above.

Confounders considered were age, education and gender,
but were only included when univariate signi�cantly associ-
ated with subgroup. For ADNI, this was only age (p = 0.0029,
ANOVA F-test). For PPMI, this was only gender (p = 0.0017,
χ2-test).
In the post-hoc analysis, only complete cases were included,

i.e. patients with missing values were ignored.

Availability of supporting source code and re-
quirements

A complete implementation of VaDER in Python/Tensor�ow:
https://github.com/johanndejong/VaDER.
An R-package for streamlining the processing of PPMI data:

https://github.com/patzaw/PPMI-R-package-generator
Other code used for generat-

ing results presented in this paper:
https://github.com/johanndejong/VaDER_supporting_code
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Dear Editor, 

Submission of our manuscript “Deep learning for clustering of multivariate clinical patient 

trajectories with missing values” 

I would like to draw your attention towards our manuscript entitled “Deep learning for clustering of 

multivariate clinical patient trajectories with missing values” for review by GigaScience. In this work, 

we propose a new method for clustering multivariate short time series with potentially many missing 

values, and we demonstrate its potential in Alzheimer’s and Parkinson’s disease patient stratification, 

within a broader context of precision medicine. 

In precision medicine, the goal is to select treatments on a per-patient basis. One facet of this aim is 

to identify patients with differences in their disease progression. However, for many multifactorial 

diseases, such as neurological disorders, there is no single outcome measure that describes clinical 

disease progression. Hence, grouping patients by disease progression translates into a highly complex 

problem of clustering multivariate times series. An additionally complicating factor is that in real 

clinical studies typically large numbers of missing values are observed, e.g. due to patient drop out. No 

standard methods currently exist for this setting.  

For this purpose, we propose a new deep learning-based method, variational deep embedding with 

recurrence (VaDER). We first technically validate VaDER on simulated data, and then use VaDER to 

stratify Alzheimer's disease patients and Parkinson's disease patients into clinically divergent 

subgroups. Finally, we demonstrate that the observed differences in disease progression reflect known 

underlying aspects of Alzheimer’s and Parkinson’s disease. 

We believe our results show that VaDER has the potential to significantly enhance future patient 

stratification efforts using clinical time series data, and multivariate time series clustering in general. 

We hope that you will find our manuscript a valuable contribution to your journal.  
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