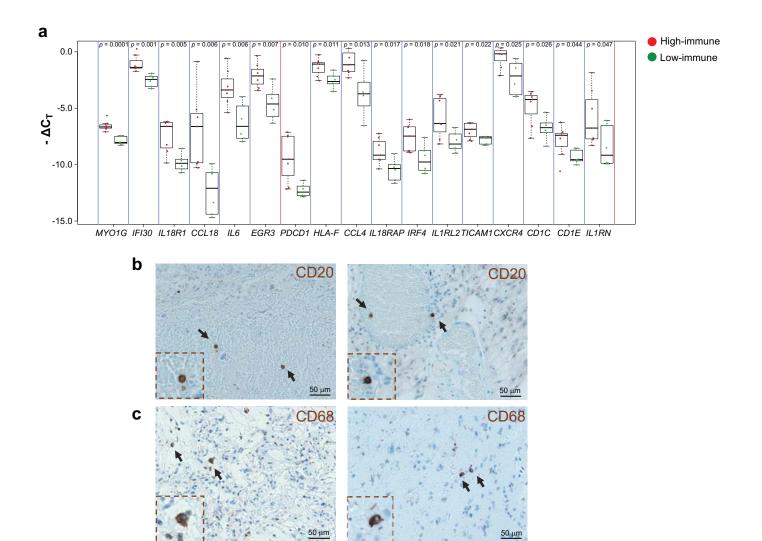
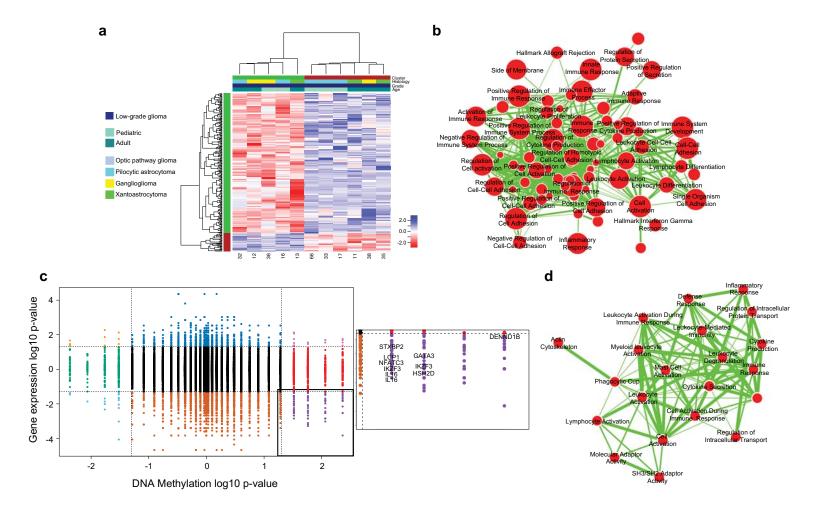

In the format provided by the authors and unedited.

The molecular landscape of glioma in patients with Neurofibromatosis 1

Fulvio D'Angelo^{1,2,41}, Michele Ceccarelli^{2,3,41}, Tala¹, Luciano Garofano^{1,2}, Jing Zhang¹, Véronique Frattini¹, Francesca P. Caruso^{2,3}, Genevieve Lewis¹, Kristin D. Alfaro⁴, Luc Bauchet⁵, Giulia Berzero⁶, David Cachia^{7,8}, Mario Cangiano², Laurent Capelle⁹, John de Groot¹⁰, Francesco DiMeco^{11,12,13}, François Ducray¹⁴, Walid Farah¹⁵, Gaetano Finocchiaro¹⁶, Stéphane Goutagny¹⁷, Carlos Kamiya-Matsuoka¹⁰, Cinzia Lavarino¹⁸, Hugues Loiseau¹⁹, Véronique Lorgis²⁰, Carlo E. Marras²¹, Ian McCutcheon¹⁰, Do-Hyun Nam^{22,23}, Susanna Ronchi⁶, Veronica Saletti²⁴, Romuald Seizeur²⁵, John Slopis¹⁰, Mariona Suñol²⁶, Fanny Vandenbos²⁷, Pascale Varlet^{28,29}, Dominique Vidaud³⁰, Colin Watts³¹, Viviane Tabar³², David E. Reuss^{33,34}, Seung-Ki Kim³⁵, David Meyronet³⁶, Karima Mokhtari⁶, Hector Salvador^{10,37}, Krishna P. Bhat¹⁰, Marica Eoli¹⁶, Marc Sanson⁶, Anna Lasorella^{0,1,38,39,42*} and Antonio Iavarone^{0,1,39,40,42*}

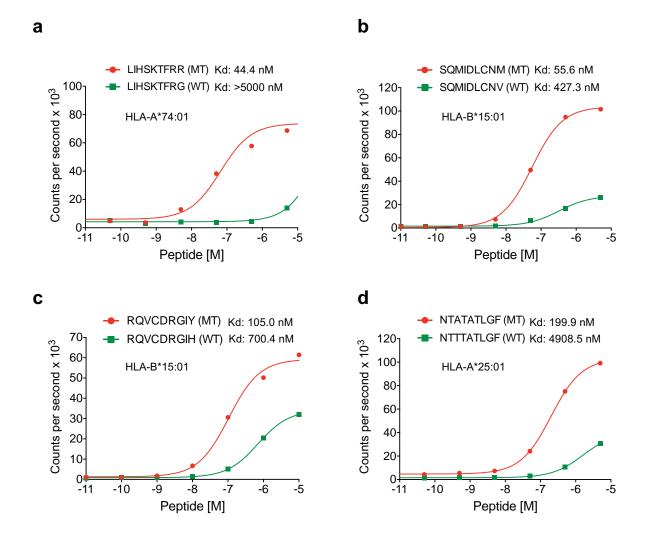

¹Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA. ²BIOGEM Istituto di Ricerche Genetiche 'G. Salvatore', Ariano Irpino, Italy. ³Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy. ⁴The University of Texas M.D. Anderson Cancer Center John Mendelsohn Faculty Center (FC7.3025) - Neuro-Oncology - Unit 0431, Houston, TX, USA. 5Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France. 6 Sorbonne Universités UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, APHP, Paris, France. ⁷Department of Neuro-Oncology, Medical University of South Carolina, Charleston, SC, USA. ⁸Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA. 9AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France. ¹⁰The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. ¹¹Department of Neurological Surgery, Carlo Besta Neurological Institute, Milan, Italy. ¹²Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. ¹³Hunterian Brain Tumor Research Laboratory CRB2 2M41, Baltimore, MD, USA. ¹⁴Service de Neuro-Oncologie, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR5286, Lyon, France. ¹⁵Department of Neurosurgery, CHU, Dijon, France. ¹⁶Unit of Molecular Neuro-Oncology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy. ¹⁷Service de Neurochirurgie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France. ¹⁸Developmental Tumor Laboratory, Fundación Sant Joan de Déu, Barcelona, Spain. ¹⁹Department of Neurosurgery, Bordeaux University Hospital. Labex TRAIL (ANR-10-LABX-57). EA 7435 - IMOTION Bordeaux University, Bordeaux, France. ²⁰Department of Medical Oncology, Centre GF Leclerc, Dijon, France. ²¹Pediatric Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, Rome, Italy.²²Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. ²³Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. ²⁴Developmental Neurology Unit, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy.²⁵Service de Neurochirurgie, Hôpital de la Cavale Blanche, CHRU de Brest, Université de Brest, Brest, France. ²⁶Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain. ²⁷Central Laboratory of Pathology, Pasteur I University Hospital, Nice, France. ²⁸Department of Neuropathology, Sainte-Anne Hospital, Paris, France. ²⁹IMA-Brain, Inserm U894, Institute of Psychiatry and Neuroscience of Paris, Paris, France. ³⁰EA7331, Université Paris Descartes, France; Service de Génétique et Biologie Moléculaires, Hôpital Cochin, AP-HP, Paris, France. ³¹Institute of Cancer and Genomic Sciences University of Birmingham Edgbaston, Birmingham, United Kingdom. ³²Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA. ³³Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ³⁴Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany. ³⁵Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. ³⁶Centre de Pathologie Et Neuropathologie Est Hospices Civils de Lyon, Lyon, France. ³⁷Pediatric Oncology Unit, Hospital Sant Joan de Déu, Esplugues, Barcelona, Spain. ³⁸Department of Pediatrics, Columbia University Medical Center, New York, NY, USA. ³⁹Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA. ⁴⁰Department of Neurology, Columbia University Medical Center, New York, NY, USA. ⁴¹These authors contributed equally: F. D'Angelo, M. Ceccarelli. ⁴²These authors jointly supervised this work: A. Lasorella, A. lavarone. *e-mail: al2179@cumc.columbia.edu; ai2102@cumc.columbia.edu

Supplementary Figure 1

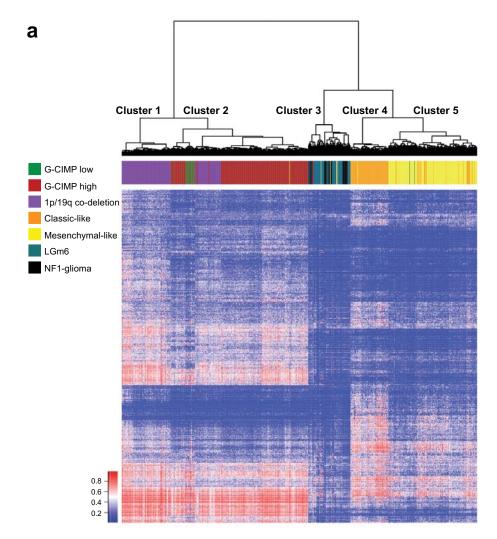


Supplementary Figure 1 Intra-tumoral heterogeneity. Landscape of somatic alterations (SNVs and CNVs) in four regional samplings from patient #39, indicated as T1, T2, T3 and T4 on the x axis. Thirty-six somatic alterations are shared by all tumors (truncal, brown); 4 alterations are shared by 2 samples (green) and 24 lesions are found in individual samples (private, purple). The fraction of tumor cells containing the indicated lesion was estimated from VAF for SNV and absolute log R ratio for CNVs and is reported on the z axis.

Supplementary Figure 2

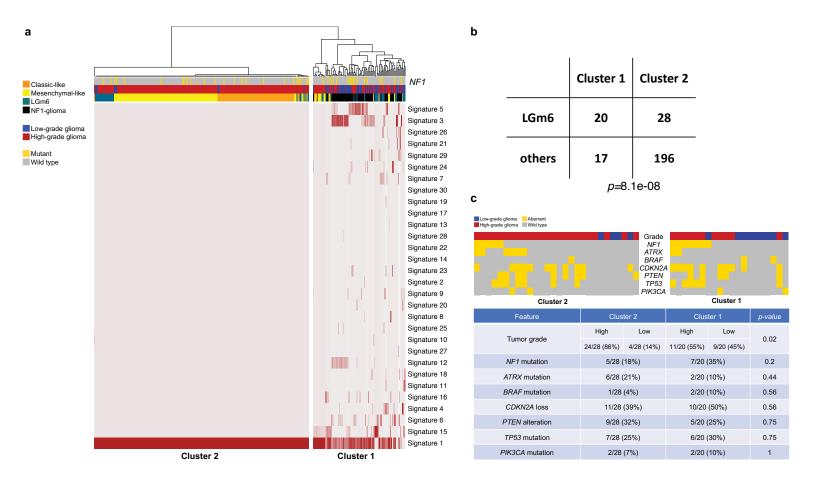


Supplementary Figure 2 Immune signature enrichment in low-grade NF1-glioma. a, RT-qPCR data of 17 immune-related genes from 14 NF1 low-grade glioma. Each point represents the mean of 3 technical replicates (- ΔC_T relative to 18S) for each sample; lowgrade/low-immune glioma samples, green (n=6); low-grade/high-immune glioma samples, red (n=6); p-values were calculated using a two-sided t-test with Welch correction. Boxplots show median with interquartile range and minimum to maximum values. b, Representative microphotographs **CD20** (B cell marker) of immunohistochemistry in low-grade/high-immune (left panels) and low-grade/lowimmune (right panels) NF1-glioma. c, Representative microphotographs of CD68 (macrophage marker) immunohistochemistry in low-grade/high-immune (left panels) and low-grade/low-immune (right panels) NF1-glioma. Arrows indicate rare CD20 and CD68positive cells. Boxed images in each panel are higher magnifications of individual positive cells. Results were validated on more than 10 independent samples to ensure the staining pattern on human tissue was reproducible.



Supplementary Figure 3 Integrative analysis of gene expression and DNA methylation in low-grade NF1-glioma. a, DNA methylation hierarchical clustering of 11 low-grade glioma obtained using the Euclidean distance with Ward linkage method built on 259 probes most differentially methylated between low-grade/low-immune and lowgrade/high-immune glioma samples (229 hyper- and 30 hypo-methylated probes; twosided Mann-Whitney-Wilcoxon (MWW) test p < 0.01 and absolute methylation foldchange > 0.3). **b**, Enrichment map network of statistically significant GO categories in hypermethylated genes in low-grade/low-immune (n=5) versus low-grade/high-immune (n=6) glioma (two-sided MWW-GST; q < 0.001, normalized enrichment score, NES > 0.6). Nodes represent GO terms and lines their connectivity. Node size is proportional to number of genes in the GO category and line thickness indicates the fraction of genes shared between groups. c, Starburst plot (left panel) comparing DNA methylation and gene expression by RNAseg for 11,979 unique genes. For each gene, the -log10 p-value is plotted for DNA methylation (x axis) and gene expression (y axis). If a mean DNA methylation β -value or mean gene expression value was higher in high-immune samples (log fold-change < 0), we multiplied the -log10 *p*-value by -1. The dashed black lines indicate p-value at 0.05 (two-sided MWW test). The bottom right area of the plot, corresponding to the significantly hyper-methylated and down-regulated genes in lowimmune compared with high-immune NF1-glioma, is magnified in the right panel and genes involved in T cell functions are indicated. d, Enrichment map network of statistically significant GO categories (two-sided Fisher's exact test p < 0.001) for the lists of downregulated and hyper-methylated genes in low-grade/low-immune (n=5) compared with low-grade/high-immune glioma n=6). Nodes represent GO terms and lines their

connectivity. Node size is proportional to number of genes in the GO category and line thickness indicates the fraction of genes shared between groups.


Supplementary Figure 4 Validation of predicted neoantigens in low-grade/highimmune NF1-glioma. a, *In vitro* binding affinity kinetics of neoantigens and corresponding wild type peptides for their restricted HLA class I allele. Data are shown as counts per second with increasing peptide concentration (log₁₀ M). Data are mean of 2 independent experiments.

b

Cluster	G-CIMP-low	G-CIMP-high	Codel	Classic-like	Mesenchymal-like	LGm6	NF1
#1	0	0	117	0	0	0	0
#2	25	245	57	0	1	1	0
#3	3	3	0	1	4	62	31
#4	0	0	0	90	1	0	0
#5	0	0	0	28	182	2	0

Supplementary Figure 5 Unsupervised analysis of combined TCGA pan-glioma and NF1-glioma cohorts. a, Unsupervised analysis of DNA methylation data for TCGA panglioma (n=819) and NF1-glioma (n=31) cohorts according to TCGA methylation clusters. 1,233 cancer-specific DNA methylation probes were used. The dendogram identifies two main branches, one corresponding to IDH1-mutant tumors and other corresponding to IDH-wild type tumors. Cutting the dendrogram tree into five groups produced a distinct cluster (cluster 3) including 100% of the NF1 tumors (31 samples) and 95% (62 out of 65) of sporadic LGm6 tumors. **b**, Contingency table between clusters and subtypes for the dendrogram in a.

Supplementary Figure 6 Cancer mutation signatures of NF1-glioma and sporadic glioma. **a**, Heat map of the frequency of cancer mutation signatures of NF1-glioma and IDH-wild type sporadic glioma. Hierarchical clustering segregates two main groups: cluster 1 includes all NF1-glioma and cluster 2 includes the majority of sporadic glioma. **b**, Contingency table indicates the number of LGm6 and all other sporadic *IDH*-wild type glioma falling into cluster 1 and cluster 2, respectively. The significant enrichment of LGm6 glioma in cluster 1 was determined by two-sided Fisher's exact test (p=8.1e-08). **c**, Distribution of LGm6 glioma molecular features including histology grade and selected somatic genomic alterations across cluster 1 and cluster 2 (two-sided Fisher's exact test p-value is reported for each feature).