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1 IL15 CN gain
2 AHRR CN gain
3 BRD9 CN gain
4 CCDC127 CN gain
5 CEP72 CN gain
6 EXOC3 CN gain
7 LRRC14B CN gain
8 PDCD6 CN gain
9 PLEKHG4B CN gain
10 PP7080 CN gain
11 SDHA CN gain
12 SLC9A3 CN gain
13 TPPP CN gain
14 TRIP13 CN gain
15 ZDHHC11 CN gain
16 NKD2 CN gain
17 SLC12A7 CN gain
18 SLC6A18 CN gain
19 SLC6A19 CN gain
20 TERT CN gain
21 FGF1 CN gain
22 ARHGAP26 CN gain
23 FKBP5 CN gain
24 PDCD4 CN gain
25 BBIP1 CN gain
26 SHOC2 CN gain
27 RPL13AP6 CN gain
28 ADRA2A CN gain
29 GPAM CN gain
30 MANEA missense
31 SIMC1 missense
32 DGKQ missense
33 MYLK missense
34 OXA1L missense
35 SHPRH missense
36 ZNF366 missense

37 AOX2P CN loss
38 D21S2088E CN loss
39 SSX5 missense
40 PCDH11X missense

41 PTPRVP CN loss
42 CR1 CN gain
43 BZW1 CN loss
44 ZNF142 CN gain
45 BCS1L CN gain
46 CDKN2A CN loss
47 CDKN2B−AS1 CN loss
48 CDKN2B CN loss
49 FLJ46361 CN loss
50 TP53I11 CN loss
51 DLEU7 CN loss
52 GUCY1B2 CN loss
53 RNASEH2B CN loss
54 SLITRK6 CN loss
55 SLITRK5 CN loss
56 INCA1 CN gain
57 KIF1C CN gain
58 POLR3B splice
59 ARID4B frameshift
60 METTL2B missense
61 MTCH2 inframe
62 BMP6 inframe
63 MYO10 missense
64 WDR47 missense
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Supplementary Figure 1 Intra-tumoral heterogeneity. Landscape of somatic 

alterations (SNVs and CNVs) in four regional samplings from patient #39, indicated as 

T1, T2, T3 and T4 on the x axis. Thirty-six somatic alterations are shared by all tumors 

(truncal, brown); 4 alterations are shared by 2 samples (green) and 24 lesions are found 

in individual samples (private, purple). The fraction of tumor cells containing the indicated 

lesion was estimated from VAF for SNV and absolute log R ratio for CNVs and is reported 

on the z axis. 
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Supplementary Figure 2 Immune signature enrichment in low-grade NF1-glioma. a, 

RT-qPCR data of 17 immune-related genes from 14 NF1 low-grade glioma. Each point 

represents the mean of 3 technical replicates (-ΔCT relative to 18S) for each sample; low-

grade/low-immune glioma samples, green (n=6); low-grade/high-immune glioma 

samples, red (n=6); p-values were calculated using a two-sided t-test with Welch 

correction. Boxplots show median with interquartile range and minimum to maximum 

values. b, Representative microphotographs of CD20 (B cell marker) 

immunohistochemistry in low-grade/high-immune (left panels) and low-grade/low-

immune (right panels) NF1-glioma. c, Representative microphotographs of CD68 

(macrophage marker) immunohistochemistry in low-grade/high-immune (left panels) and 

low-grade/low-immune (right panels) NF1-glioma. Arrows indicate rare CD20 and CD68-

positive cells. Boxed images in each panel are higher magnifications of individual positive 

cells. Results were validated on more than 10 independent samples to ensure the staining 

pattern on human tissue was reproducible.   
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Supplementary Figure 3 Integrative analysis of gene expression and DNA 

methylation in low-grade NF1-glioma. a, DNA methylation hierarchical clustering of 11 

low-grade glioma obtained using the Euclidean distance with Ward linkage method built 

on 259 probes most differentially methylated between low-grade/low-immune and low-

grade/high-immune glioma samples (229 hyper- and 30 hypo-methylated probes; two-

sided Mann-Whitney-Wilcoxon (MWW) test p < 0.01 and absolute methylation fold-

change > 0.3). b, Enrichment map network of statistically significant GO categories in 

hypermethylated genes in low-grade/low-immune (n=5) versus low-grade/high-immune 

(n=6) glioma (two-sided MWW-GST; q < 0.001, normalized enrichment score, NES > 0.6). 

Nodes represent GO terms and lines their connectivity. Node size is proportional to 

number of genes in the GO category and line thickness indicates the fraction of genes 

shared between groups. c, Starburst plot (left panel) comparing DNA methylation and 

gene expression by RNAseq for 11,979 unique genes. For each gene, the -log10 p-value 

is plotted for DNA methylation (x axis) and gene expression (y axis). If a mean DNA 

methylation -value or mean gene expression value was higher in high-immune samples 

(log fold-change < 0), we multiplied the -log10 p-value by -1. The dashed black lines 

indicate p-value at 0.05 (two-sided MWW test). The bottom right area of the plot, 

corresponding to the significantly hyper-methylated and down-regulated genes in low-

immune compared with high-immune NF1-glioma, is magnified in the right panel and 

genes involved in T cell functions are indicated. d, Enrichment map network of statistically 

significant GO categories (two-sided Fisher’s exact test p < 0.001) for the lists of down-

regulated and hyper-methylated genes in low-grade/low-immune (n=5) compared with 

low-grade/high-immune glioma n=6). Nodes represent GO terms and lines their 



connectivity. Node size is proportional to number of genes in the GO category and line 

thickness indicates the fraction of genes shared between groups. 
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Supplementary Figure 4 Validation of predicted neoantigens in low-grade/high-

immune NF1-glioma. a, In vitro binding affinity kinetics of neoantigens and 

corresponding wild type peptides for their restricted HLA class I allele. Data are shown as 

counts per second with increasing peptide concentration (log10 M). Data are mean of 2 

independent experiments. 
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Supplementary Figure 5 Unsupervised analysis of combined TCGA pan-glioma and 

NF1-glioma cohorts. a, Unsupervised analysis of DNA methylation data for TCGA pan-

glioma (n=819) and NF1-glioma (n=31) cohorts according to TCGA methylation clusters. 

1,233 cancer-specific DNA methylation probes were used.  The dendogram identifies two 

main branches, one corresponding to IDH1-mutant tumors and other corresponding to 

IDH-wild type tumors. Cutting the dendrogram tree into five groups produced a distinct 

cluster (cluster 3) including 100% of the NF1 tumors (31 samples) and 95% (62 out of 65) 

of sporadic LGm6 tumors. b, Contingency table between clusters and subtypes for the 

dendrogram in a. 
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Supplementary Figure 6 Cancer mutation signatures of NF1-glioma and sporadic 

glioma. a, Heat map of the frequency of cancer mutation signatures of NF1-glioma and 

IDH-wild type sporadic glioma. Hierarchical clustering segregates two main groups: 

cluster 1 includes all NF1-glioma and cluster 2 includes the majority of sporadic glioma. 

b, Contingency table indicates the number of LGm6 and all other sporadic IDH-wild type 

glioma falling into cluster 1 and cluster 2, respectively. The significant enrichment of 

LGm6 glioma in cluster 1 was determined by two-sided Fisher's exact test (p=8.1e-08). 

c, Distribution of LGm6 glioma molecular features including histology grade and selected 

somatic genomic alterations across cluster 1 and cluster 2 (two-sided Fisher’s exact test 

p-value is reported for each feature). 
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