Exploring the limitations of biophysical propensity
scales coupled with machine learning for protein
sequence analysis
(Supplementary Material)

D. Raimondi, G. Orlando, W. Vranken, Y. Moreau
September 26, 2019

S1 Datasets

The SCRATCH-1D dataset is available from: http://download.igb.uci.edu/ .
PDBCYS dataset is available from: http://www.biocomp.unibo.it/savojard/PDBCYS.ssbonds.txt

S2 ML methods hyper-parameters

The parameters used by the MLP, RF, Ridge and LinSVC were the default ones provided
by the scikit-learn implementation, except for the RF, which uses 50 trees and the MLP,
which has 50 hidden units, a maximum number of epochs set to 70.

We list the full sets of parameters here.

sklearn.neural network.MLPClassifier(hidden_layer_sizes=(50,), activation="relu",
solver="adam", alpha=0.0001, batch_size="auto",
learning rate="constant", learning rate_init=0.001, power_t=0.5, max_iter=70,
shuffle=True, random_state=None, to0l=0.0001, verbose=False, warm_start=False,
momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1,
beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter no_change=10)

sklearn.ensemble.RandomForestClassifier(n estimators=50, criterion="gini",
max_depth=None, min samples_split=2, min samples_leaf=1, min weight fraction_leaf=0.0,
max_features="auto", max_leaf nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm start=False, class_weight=None)

sklearn.linear model.RidgeClassifier(alpha=1.0, fit_intercept=True,
normalize=False, copy_X=True, max_iter=None, tol=0.001, class_weight=None,
solver="auto", random_state=None)

sklearn.svm.LinearSVC(penalty="12", loss="squared hinge", dual=True, tol=0.0001,
C=1.0, multi_class="ovr", fit_intercept=True, intercept_scaling=1, class_weight=None,
verbose=0, random_state=None, max_iter=1000)

S3 Evaluation metrics

The Matthews Correlation Coefficient used to evaluate the SS prediction task is computed
as follows:

TP xTN—-FPxFN

MCC =
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

and
2T P

" 2TP+ FP+ FN
where TP, TN, FP and FN are respectively the true positives, true negatives, false posi-

tives and false negatives.
The Cohen’s d effect size has been computed as follows:

F1

g e 8:\/(721—1)0%—1-(712—1)0%

s ny+no — 2

where ji; is the mean of the sample i, s is the pooled standard deviation and o? is the
unbiased estimator of the variance.

S4 Performance in function of the feature size

Fig. S1 shows the performance of the ML methods on the 3 structural bioinformatics
tasks in function of the number of features used. The lines represent the mean scores and
the error bars indicate the standard deviation within each of the 23 bins used.

Overall, we can see that there is a clear positive correlation between the AUC (MCC in
the case of the SS prediction) scores obtained and the number of features used, regardless
of the feature encoding. In particular, we can see that the Shuffled and Random scores
(respectively in yellow and green) are generally superimposed, while the use of Real scales
yield to higher means. Nonetheless, these means fall very often within the error bars of
the scores obtained by the randomized experiments.

In the RSA and SS experiments, non-linear models tend to reach optimal or near-
optimal scores with relatively small feature sizes (between 50 and 100 dimensions) and
show little benefit when this number is increased. On the other hand, linear models
scores are generally more scattered, in particular in the LinSVC case. A striking point
concerning linear models is that in the SS and RSA experiments, ONEHOT encoding
consistently outperforms the other encodings, regardless of the number of features used.
This is not the case for the CYS prediction, where ONEHOT performs poorly regardless
of the MLL method used.

MLP RF

0.75 A b b
0.70 A 1 b

<
& 0.65 A

LinsSvC

//-

0.60 -

0.55 -

1

CYs

/
ZW;

1 —— reaL
—}— SHUFFLED

0.11 1 —F— RANDGEN
—J— ONEHOT

0.4

0.3 A

SS

0.2

0.0 T T T T T T g T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure S1: Performances of the four ML methods on the 3 tasks tested in this study in
function of the number of features used during each of the randomizations shown in Fig.
1. The lines have been obtained by binning the x axis in 23 bins of size 10 and plotting
the mean scores obtained within each bin. The error bars indicate the standard deviation
in each bin.

S5 Description of the NN and Perceptron models

Here we provide the detailed description of the Neural Network (NN) and Perceptron
models used in Section 4.4 of the main paper.

We built both models using pytorch version 0.3.1 (https://pytorch.org/).

The Perceptron is has no hidden layers, and produces 3 outputs with a Softmax
activation, since the SS prediction is multiclass. The NN has one hidden layer with
50 neurons with ReLLU activations. The output layer has the same 3 neurons as the
Perceptron.

For both the models, the windows size is fixed to 17 residues. The only difference
between the NN and Perceptron using embeddings instead of MAPP scales is that the
embeddings are defined as self.e = t.nn.Embedding(21,6) . They have the same
number of dimensions of the MAPP scales. The 21st dimensions is used to represent
the padding fo the incomplete sliding windows (the one at the beginning and at the end
of the proteins). In the MAPP case, we used zero padding, similarly to all the other
experiments presented in the paper.

Listing 1: Perceptron(MAPP) pytorch code

class Perceptron(t.nn.Module):

def __init__(self, WS):
super (Perceptron, self).__init__()
WS is the window size. we used WS=17
self .f = t.nn.Sequential(t.nn.Linear (WS*6, 3), t.nn.Softmax())
#the softmaxz provide 3D output

def forward(self, x):
o = self.f(x)
return o

}

Listing 2: NN(MAPP) pytorch code

class NN(t.nn.Module):

def __init__(self, WS):
super (NN, self).__init__()
WS 1s the window stize. we used WS=17
self .f = t.nn.Sequential(t.nn.Linear (WS*6,50), t.nn.RelLU(Q),\
t.nn.Linear (50,3), t.nn.Softmax())
#the softmaxz provide 3D output

def forward(self, x):
o = self.f(x)
return o

}

Listing 3: NN(emb) pytorch code

class NN(t.nn.Module):

def __init__(self, WS):
super (NN, self).__init__(Q)
WS 1s the window stize. we used WS=17
self.e = t.nn.Embedding(21,6)
self .f = t.nn.Sequential(t.nn.Linear (WS*6,50), t.nn.RelLU(),\
t.nn.Linear (50,3), t.nn.Softmax())
#the softmaxz provide 3D output

def forward(self, x):
el = self.e(x).view(x.size(0), x.size (1)%*6)
o = self.f(el)
return o

}

Listing 4: Perceptron(emb) pytorch code

class Perceptron(t.nn.Module):

def __init__(self, WS):
super (Perceptron, self).__init__Q)
WS is the window size. we used WS=17
self.e = t.nn.Embedding(21,6)
self .f = t.nn.Sequential(t.nn.Linear (WS*6,3), t.nn.Softmax())

#the softmaxz provide 3D output

def forward(self, x):

el = self.e(x).view(x.size(0), x.size (1)%*6)
o = self.f(el)

return o

}

We used the Cross Entropy loss function. For the training, we used the Adam opti-
mizer starting with a learning rate of 1le-2. We scheduled a 0.5 reduction of the learning
rate every 5 epochs with no improvement of the training error. All these parameters are

shown below.

Listing 5: Perceptron(emb) pytorch code

loss_function = t.nn.CrossEntropylLoss(size_average=False)

HAAR##AAOPTIMIZER #AHH#AAARH

self.learning_rate = le-2

optimizer = t.optim.Adam(self.model.parameters(), lr=self.learning_rate,\
weight_decay=0)

scheduler = t.optim.lr_scheduler.ReduceLROnPlateau(optimizer, \
mode=’min’, factor=0.5, patience=5, verbose=True, \

threshold=0.0001, threshold_mode=’rel’, cooldown=0, min_lr=0, eps=1e-08)

S6 Analysis of the embeddings learned

Analysis of linearly learned embeddings

Similarity matrix for embeddings Similarity matrix for MAPP scales Abs. difference of the matrices
A A A
C C C
D D - D
E E E
F F F
G G G
H H H
I I I
K K 1 K
L LA L
M M M
N N N
P P P
Q Q- Q
R R R
S S S
T T T
\ V A v
W W 1 w
Y Y-l T T 7T LI B B B B B B R ¥ Y
ACDEFGHIKLMNPQRSTVWY

0 20 40 60 80 100 120

Figure S2: Figure showing the comparison between the embeddings learned by the Per-
ceptron on the SS task (left plot) with the MAPP scales (central plot). The right plot
shows the difference between the two previous matrices. The values represented are the
angles between the vectors, measured in degrees.

Analysis of non-linearly learned embeddings
Similarity matrix for embeddings Similarity matrix for MAPP scales Abs. difference of the matrices

T
-:l-

<2< 4 TOVZZE~A_IOTMOUOD>

<E<HVPOTVZE-A_IOTMOND>
<2< PO VZE~A_IOTMUOD>

0 20 40 60 80 100 120

Figure S3: Figure showing the comparison between the embeddings learned by the Neural
Network on the SS task (left plot) with the MAPP scales (central plot). The right plot
shows the difference between the two previous matrices. The values represented are the
angles between the vectors, measured in degrees.

S7 Randomization experiment on the homology de-
tection task

Besides the randomization experiments on the SS, RSA and OXCYS tasks, presented in
the main manuscript, we ran an additional shorter experiment showing that the same be-
havior occurs when coupling biophysical propensity scales and non-linear machine learn-
ing methods to tackle the protein homology detection task. To do so we adapted a
previously developed and recently published in-house alignment-free global homology de-
tection method, called WARP [1].

WARP [1] is an alignment-free homology detection method which:

1. takes pairs of proteins,
2. describes their sequence with a certain number of biophysical characteristics,
3. compresses these description using the inverse Discrete Cosine Transform,

4. computes the similarity between the compressed profile corresponding to each fea-
ture type with the Dynamic Time Warping algorithm and

5. uses these similarity values as input feature vectors in a Random Forest predictor
trained to distinguish between homologous (similar proteins) from non-homologous
proteins.

For more details about the mehtod, please refer to [1]. In the original publication the
biophysical characteristics used to numerically describe protein sequences in WARP were
the PSIPRED Secondary Structure [2] assignments and the protein backbone dynamics
predictions obtained with DynaMine [3], plus the 1-hot encoding representation of the
protein sequence.

For this study, we adapted WARP code to use biophysical propensity scales taken
from AAindex as biophysical description of the protein sequences. Similarly to the SS,
RSA and OXCYS experiments, we reduced the redundancy of the AAindex scales by
allowing no more than 0.6 of Pearson correlation between the selected scales, obtaining
a pool of 85 propensity scales. We ran 100 training/testing iterations on WARP over
the PFAM dataset of homologous protein pairs, which contains 5245 homologous protein
pairs and 5245 non-homologous pairs (see [1] for more details). In each iteration we
randomly selected 5 propensity scales from the 85 scales pool, and we trained and tested
WARP two times: the first while using the sampled scales (REAL scales), and the second
after a random shuffling of the same scales (SHUFFLED scales). We thus collected 100
AUC values describing the performances of WARP when describing protein sequences
with the REAL propensity scales and 100 AUC values obtained after shuffling the same
scales.

In Fig. S4 we show the distributions of the AUCs for the REAL and SHUFFLED scales
obtained in this 100 iterations experiments. From the plot we can see that even if we use
SHUFFLED (and thus devoid of biological meaning) propensity scales to describe protein
sequences within the WARP pipeline, the performances obtained are i) significantly better
than random and ii) relatively similar to the scores obtained with REAL propensity scales.

Moreover, in Table S1 we show the best AUC and AUPRC values obtained among all
the iterations, both with REAL and SHUFFLED scales, and we can see that, although
AUPRC of the REAL scales is 9% higher, the AUC scores are nearly equivalent.

9

0.90 Homology detection task (WARP)

0.85 A
0.80 A

S 0.75 4
20

0.70 A —

0.65 A

0.60 T .
REAL SHUFFLED

Figure S4: Figure showing distributions of the AUC scores obtained by WARP model [1]
in the homology detection task on the PFAM dataset (see [1] for details). The distribution
on the left (REAL) corresponds to the AUC scores obtained by randomly selecting 5 scales
from a non-redundant subset of AAindex, while the one one on the right corresponds to
the AUC scores obtained after randomly shuffling the same 5 scales. The distributions
are composed by 100 iterations of this procedure.

Scores | REAL | SHUFFLED
AUC 0.81 0.80
AUPRC | 0.87 0.8

Table S1: Table reporting the best AUC and AUPRC scores obtained in the homology
detection experiment

References

[1] Raimondi D, Orlando G, Moreau Y, Vranken WF. Ultra-fast global homology detec-
tion with Discrete Cosine Transform and Dynamic Time Warping. Bioinformatics.
2018;1:8.

[2] Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web ser-
vices for the PSIPRED Protein Analysis Workbench. Nucleic acids research.
2013;41(W1):W349-W357.

[3] Cilia E, Pancsa R, Tompa P, Lenaerts T, Vranken WF. From protein sequence to
dynamics and disorder with DynaMine. Nature communications. 2013;4.

10

