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Supplementary Materials and Methods 
 
Data preprocessing 

Transcriptome data and copy number data from TIGER-LC cohort were processed as 

follows. For Affymetrix Human Transcriptome Array 2.0 data, expression level of 

individual 914,585 exons was extracted and normalized based on the Robust Multi-array 

Average (RMA) method and sketch-quantile normalization method using the 

Transcriptome Analysis Console (TAC) Software 4.0. For transcripts with more than one 

exon probe sets, the mean expression was calculated and total 64,597 transcripts were 

used further analysis. For profiling of copy number for tumors and paired non-tumor 

tissues generated based on Affymetrix Genome-Wide Human SNP Nsp/Sty 6.0, we 

applied the crlmm R package into the raw CEL files to estimate copy number based on 

the CRLMM algorithm1. Briefly, the crlmm package adapts the robust multichip average 

(RMA) to genotyping platforms based on the SNP-RMA algorithm2. For probes for 

polymorphic loci, the raw intensities for each allele are quantile normalized3 to a target 

reference distribution obtained from the HapMap phase 2 samples. The Affymetrix 6.0 

platform contains 3 or 4 identical probes for each allele. The normalized intensities for a 

set of identical probes are summarized by the median. For nonpolymorphic loci, only one 

probe per loci is available and the intensities are quantile normalized without a 

subsequent summarization step. Additional details regarding the preprocessing of 

Affymetrix CEL files are described elsewhere2. Somatic copy number variations were 

inferred by CBS (Circular binary segmentation) algorithm4. The genomic locations of 

segmented regions were converted from hg19 to hg38 by applying the UCSC liftOver R 

package. The copy number value of segmented regions was merged or separated for 

corresponding transcriptome probes, resulting in the allocation of copy number value for 

each segment corresponding 64,597 transcripts. For the validation cohort, HCC cohort of 

247 Chinese patients from LCI5 and TCGA LIHC cohort with 377 HCC patients were 

used. Transcriptome data and aCGH data for LCI cohort were processed as described 

previously6. Copy number value for each segmented region was allocated into each 

corresponding gene probe of the transcriptome data located in the segmented region 

resulting in 10,127 features. The level 3 RNA-seq v2.0 data and Affymetrix SNP 6.0 data 



 
 

were downloaded from TCGA Research Network (http://cancergenome.nih.gov/ ; release 

1.0). Gene-level annotated transcriptome data segmented data were used for further 

analysis. All processing was conducted using R packages of Bioconductor 3.5 

(https://cran.r-project.org/doc/FAQ/R-FAQ.html).  

 

Calculation of global correlation 
The global correlation coefficients and global correlation p-value based on the total 

transcriptome probes and corresponding genomic segments were calculated. For this, 

SCNA value for genomic segments corresponding to the 64,597 transcript probes was 

assigned using the GenomicRanges R packages. Hereafter, CN denotes copy number 

value and EXP denotes mRNA expression value. 
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Where cnm represents the SCNA value of nth sample corresponding mth feature. 

Matched features are expressed below. 
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Where Fk indicates kth feature and Si indicates for ith sample. Global correlation of M 

number of from n number of the tumor (T) and non-tumor (NT) of HCC and iCCA 
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sample was calculated. Permutated correlation coefficient and p-value were used to 

compare between T and NT. Significantly correlated features of transcriptome probes and 

corresponding segmented regions were selected (p-value < 0.05 & median absolute 

deviation (MAD) >20% of the overall distribution) for further analysis. 

 

Calculation of SCNA frequency and Inference of Arm-level SCNA 

To define amplified or deleted region, we applied a threshold, 0.2 or -0.2, 

respectively, to the log2 transformed copy number value for individual 64,597 features. 

The fraction of patients who showed amplification or deletion was calculated for each 

feature. We calculated the frequency of arm-level amplifications and deletions based on 

the GISTIC (Genomic Identification of Significant Targets in Cancer) algorithm7 in the 

GISTIC_2.0 module of GenePattern8. The segments with log2 ratio > 0.2 and < -0.2 were 

defined as chromosomal amplifications and deletions following the default value of the 

algorithm, respectively.  

 

LOH and allelic specific copy number 
LOH (Loss of Heterozygosity) for each sample was inferred using Genotyping 

Console 4.0 and the output CHP file was used as an input file to calculate allele-specific 

copy numbers using the Partek Genomics Suite 7.5. By merging the copy number of the 

segmented region defined by an algorithm in Partek and LOH data, the allele-specific 

copy number was estimated. For further analysis, we calculated the proportion of sample 

with allele-specific copy number change in each segmented region.  

 
The biological relevance of PCC or tFA associated genes 

To examine if PCC or tFA was associated with the biological process, we performed 

a correlation analysis between PCC and all the transcriptome features. Positively or 

negatively associated genes were selected based on the correlation estimate and p-value 

(above top 5% or below the bottom 5% of correlation estimate and p-value < 0.05). Gene 

ontology enrichment analysis was performed using R package gProfileR based on GO: 

BP. 



 
 

 
Gene Set Enrichment Analysis (GSEA) and single-sample GSEA (ssGSEA) 

GSEA was implemented in GenePattern8 based on the C5 GO gene set of biological 

process, C2 curated gene sets of KEGG pathway, and C6 Oncogenic gene sets in 

Molecular Signatures Database (MSigDB database v5.2). Expression data of individual 

samples were transformed into the gene set enrichment score P-value from the 

Kolmogorov-Smirnov (ks) test was used a single sample enrichment score. 

 

Measurement of chromosomal instability  

To infer chromosomal instability, we devised two indicators, one is based on the 

SCNA proportion of individual sample level and the other is based on the summation of 

the length of segments with SCNA. For comparison of chromosomal instability of 

individual sample level, we defined the segments with log2 ratio > 0.2 and < -0.2 as 

chromosomal amplifications and deletions by applying noise cutoff of 0.2, respectively 

and proportion of amplified (CINampl) or deleted features (CINdel) over total features were 

calculated. CINampl and CINdel for the individual patient were calculated based on the 

copy number value for 64,597 features. The summation of CINampl and CINdel was used 

as CIN score for further analysis. 

 

CINampl =
∑𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∑𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ 100 

CINdel=
∑𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∑𝑁𝑁𝑁𝑁.𝑜𝑜𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∗ 100 

 

CIN=CINampl + CINdel 

 

As another aspect of the chromosome instability indicator, we also calculated the 

total length for total amplified (GINgain) or deleted regions (GINloss) and used the 

summation of the GINgain and GINloss for total SCNA length as a genomic instability 

(GIN) score as follows.  



 
 

 

GINgain = ∑length of amplified segments 

GINloss = ∑length of deleted segments 

GIN= GINgain + GINloss 

 

 
Total functional aneuploidy (tFA) 

We calculated total functional aneuploidy (tFA) in each sample based on coordinated 

aberrations in the expression of genes localized to each chromosomal region using the 

adapted computational method from the previously published paper9. Briefly, it is a 

computational method to characterize aneuploidy in tumor samples based on coordinated 

aberrations in the expression of genes localized to each chromosomal region. For a given 

data set, all of the normalized gene expression measurements present on the microarray 

and mapping to a given chromosomal cytoband region were grouped into a set designated 

“B”(short for band). The rest of the genes, localized elsewhere in the genome, were 

grouped into a set “G” (short for genome). The functional aneuploidy measure for the 

given cytoband is the value of student’s t statistic comparing sets B and G. Sum of all 

functional aneuploidy magnitudes (the absolute t statistics) in a given tumor sample. 

Therefore, the tFA is a total summarized level of chromosomal aberration in a given 

tumor in a univariate measure. 

 

Differentially Expressed Genes (DEG) and Gene Ontology analysis 
By comparing the expression between HFGC and LFGC of each tumor type, we 

selected differentially expressed genes in each subtype based on the fold change and 

permutation p-value from the permutation t-test with 1,000 resamplings (FC >0.5 or -0.5 

& perm p-value <0.005). Gene ontology enrichment analysis was performed based on the 

DAVID 6.710. 

 
Immune score  



 
 

An estimation of the relative fractions of immune/inflammatory cell subsets from 

tissue expression profiles of Thai HCC, iCCA or TCGA HCC was conducted using 

CIBERSORT11. The gene expression data was converted by quantile normalization of the 

log2 scaled expression matrix and relative fractions of leukocytes were quantified 

according to the website (https://cibersort.stanford.edu/index.php) with implemented 

analyses using the built-in LM22 signature matrix (LM22). The immune score of 

individual tumor or non-tumor tissue was calculated as a summation of the 22 types of 

tumor-infiltrating lymphocytes (TILs) fraction based on CIBERSORT output. Since the 

output value was ranged from 0 to 1, for calculation convenience, we transformed the 

output value by multiplying by 100 and added one before the log2 transformation. The 

summation of transformed value for each TILs was used as the estimate of the immune 

score. Considering the difference of clinical outcome between LFGC and HFGC, TILs 

enriched in LFGC than HFGC were defined as favorable or adverse, vice versa. The 

summation of adverse or favorable TILs fractions was used as immune score of adverse 

or favorable TILs.  

 
Mutation Map 

MutationMapper (version 1.0) in the cBioPortal 

(http://www.cbioportal.org/tools.jsp) was used to plot the lollipop mutation diagram view 

with genomic coordinates to annotate TP53 variants12,13.   

 
Validation with melanoma dataset  

We used transcriptome data from skin cutaneous melanoma datasets derived from 

TCGA_SKCM14 study (n=472) and metastatic melanoma from Hugo15 study (n=28) to 

validate the association between FGC and immunotherapy with immune checkpoint 

blockade (ICB). We calculated tFAs in the individual sample and used them as a 

surrogate of PCC on the assumption that tFA were strongly associated with PCC based 

on our findings on liver cancer. Among TCGA_SKCM, 13 samples, which were 

pretreated with anti-CTLA-4 therapy, were included or excluded to perform KM survival 

analysis to examine whether the tFA level predicts responsiveness to ICB treatment. To 

compare high and low group, patients were stratified based on the tFA level into high 

https://cibersort.stanford.edu/index.php
http://www.cbioportal.org/tools.jsp


 
 

(above 3rd quartile) and low group (below 1st quartile) in the TCGA_SKCM. Among the 

patients with anti-CTLA-4 pretreatment, tFA levels were compared between responders 

and non-responders based on the Welch’s two-sample t-test. As another independent 

cohort, metastatic melanoma samples from Hugo study15, where 28 patients were pre-

treated with anti-PD-1 therapy, were used to validate the association between tFA and 

ICB responsiveness. To perform KM survival analysis, we divided patients into high and 

low groups based on the median level of tFA. We classified patients into “Responder” 

and “Non-Responder” as followed; “Responder” indicates those who marked as 

“Complete Response” or “Partial Response”, while “Non-Responder” indicates those 

who marked as “Clinical Progressive Disease” or “Stable Disease” according to the 

response column of the clinical data. 

 

Statistical Analyses 
Kaplan-Meier (KM) Survival Analysis was performed based on the survival R 

package and p-value from the log-rank test based on the Cox Proportional-Hazards 

Regression model was used to compare overall survival. The permutation t-test was 

calculated based on the perm R package by 1,000 resamplings. The correlation 

coefficient and p-value were calculated based on the Pearson’s product-moment 

correlation. After filtering based on the global correlation p-value (p-value<0.05) and 

MAD of copy number value (MAD > the value of 20% of MAD percentile), correlation 

coefficient was calculated in the individual subject using the corresponding correlated 

segment and transcriptome sets. All statistical tests were performed using R.  

 

To perform permutation student’s t-test, we applied R function, perm.ttest, as 

follows. 

 

perm.ttest=function(eset, g.st,  level=NULL, t.test=F, permp=T, permp.exact=NULL, 
ordered=T, mc.cores=1,...){ 
    if(inherits(eset, "ExpressionSet"))   expr=exprs(eset) else    expr=eset 
    if(ncol(expr)!=length(g.st))  cat("class labels has a different length") 
   if(!inherits(g.st, "factor")) g.st=factor(g.st) 



 
 

    if(!is.null(level)) g.st=factor(g.st, level=level) 
    res=NULL 
    if(t.test){       
      message("Calculating T test p-values") 
      if(mc.cores>1){ 
        if(Sys.info()[['sysname']]=="Windows") { 
          res=mclapply(1:nrow(expr), function(a) try(t.test(as.numeric(expr[a,])~g.st), 
silent=T),mc.cores=mc.cores,expr=expr,g.st=g.st, packageToLoad=c("stat","perm")) 
        }else{ 
          res=mclapply(1:nrow(expr), function(a) try(t.test(as.numeric(expr[a,])~g.st), 
silent=T),mc.cores=mc.cores,...=...) 
        } 
      } 
      if(mc.cores==1) res=lapply(1:nrow(expr), function(a) 
try(t.test(as.numeric(expr[a,])~g.st), silent=T))       
      tval=as.numeric(sapply(res, function(a) try(a$stat, silent=T))) 
      test.p=as.numeric(sapply(res, function(a) try(a$p.val, silent=T))) 
      res=data.frame(t.stat=(tval), ttest.p=test.p) 
      rownames(res)=rownames(expr) 
    }   
    if(permp)  {       
      message("Calculating permuted T test p-values") 
      if(mc.cores>1){ 
        if(Sys.info()[['sysname']]=="Windows") { 
          res$perm.p=as.numeric(mclapply(1:nrow(expr), function(a) 
try(permTS(as.numeric(expr[a,]) ~ g.st)$p.value, 
silent=T),mc.cores=mc.cores,cluster.export=F, expr=expr,g.st=g.st, 
packageToLoad=c("stat","perm"))) 
        }else{ 
          res$perm.p=as.numeric(parallel::mclapply(1:nrow(expr), function(a) 
try(permTS(as.numeric(expr[a,]) ~ g.st)$p.value, silent=T),mc.cores=mc.cores)) 
        } 
      } 
      if(mc.cores==1) res$perm.p=as.numeric(lapply(1:nrow(expr), function(a) 
try(permTS(as.numeric(expr[a,]) ~ g.st)$p.value, silent=T))) 
      res$FDR = p.adjust(res$perm.p, "BH") 
    } 
    class.mean=sapply(levels(g.st), function(a) rowMeans(expr[,which(g.st==a)], 
na.rm=T)) 
    colnames(class.mean) = paste(colnames(class.mean), "(mean)") 
    fc=as.matrix(class.mean[,1]-class.mean[,2]) 
    res=cbind(as.data.frame(res), class.mean, fc) 
    if(ordered)  res=res[order(-fc),] 
    return(res) 
} 

 



 
 

Arguments 
# eset : expression set 
# g.st= group  
# t.test=if set to F, permutation test will be performed   
# permp= if set to T, permutation test will be performed   
# permp.exact=NULL 
# ordered=if set to T, features will be ordered with the decreasing order of fold 

difference 
# mc.cores=the number of multi-core 

 
To perform the permutation correlation test, we applied R function, cor.perm, as 

follows. 
 

cor.perm = function (x, y, nperm = nperm){ 
  cor.r = cor (x = x, y = y) 
  cor.p = cor.test (x = x, y = y)$p.value 
  perm.r = sapply (1:nperm, FUN = function (i) cor (x = x, y = sample (y))) 
  perm.r = c(perm.r, cor.r) 
   
## one-tailed. probability 
  #perm.p = sum (perm.r>= cor.r)/(nperm + 1)  
  ## two-tailed. probability 
  perm.p = sum (abs(perm.r)>= abs(cor.r))/(nperm + 1)  
  return (list(perm.p =perm.p)) 
} 
  



 
 

Supplementary Figures 
 
 

 

 
Figure S1. Distribution of global correlation coefficient in PLC (A-B) The density 

histogram shows the distribution of global correlation coefficient based on the 

permutated Pearson’s correlation of DNA copy number (CN) and mRNA expression 

(EXP) from Tumor tissues and corresponding non-tumor tissue (A: HCC; n=64, 

HCC_NT; n=59, B: iCCA ; n=90, iCCA_NT; n=90). The distribution of correlation R is 

shown before (left panel) and after applying cut-off based on permutation p-value 

(perm.p  <0.05) (right panel).  

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure S2. Gene Ontology (GO) of PCC associated genes (A, C, and E) Positively or 

negatively PCC associated genes were selected based on the correlation coefficient and p-

value (more than 95% or less than 5% of estimate and p-value < 0.01). Heatmap shows 

the expression level of selected genes in Thai HCC, iCCA, and TCGA HCC cohorts (A, 

C, and E, respectively). Samples are represented in columns according to the PCC 

increasing order. Selected genes were represented in the row according to the decreasing 

of correlation coefficient with PCC. (B, D, and F) GO Enrichment Analysis of selected 

genes in Thai HCC, iCCA, and TCGA HCC cohorts were performed (B, D, and F, 



 
 

respectively). Top10 ranked process based on the precision rank was shown. Orange and 

green color indicates positively and negatively correlated gene sets, respectively.  

  



 
 

 
Figure S3. Association of PCC with CIN and GIN (A-C) PCC shows strong 

association with CIN in Thai HCC, Thai iCCA and TCGA HCC, respectively. (D-E) 

Genomic instability (GIN) length regarding the copy number gain or copy number loss 

(Methods) was calculated in the individual sample and the summation of the total SCNA 

length was calculated as GIN score. PCC shows strong association with GIN score of 

individual Thai HCC (D) and iCCA (E) samples 

 

 

 

 

 

 

 

 



 
 

 
Figure S4. Association of amplified or deleted CIN (CINampl or CINdel) with PCC (A-

B) Strong associations of CINampl or CINdel with PCC in Thai HCC (A) and Thai iCCA 

(B) are shown.  Red or blue dots indicate CINampl or CINdel, respectively. Red or blue 

dots indicate CINampl or CINdel, respectively. (C-D) A strong linear association between 

CINampl and CINdel was shown in Thai HCC (C) and Thai iCCA (D). Coefficient 

estimates and p-value based on Pearson’s correlation were depicted. (E-F) The frequency 

of recurrent arm-level SCNA of Thai HCC (E) and Thai iCCA (F) are shown. 

Chromosomal arms are shown with respect to the frequency of arm-level gain (x-axis) 

and loss (y-axis), respectively. As a frequency measure, Z score from GISTIC output was 

used. Vertical dotted blue lines indicate Z score of the arm-level gain frequency is 1 and 



 
 

horizontal dotted blue lines indicate Z score of the arm-level loss frequency is 1. The 

arms with many gains and many losses or with few gains or few losses were highlighted 

in red or blue colors, respectively.  

 



 
 

 
Figure S5. Gene Ontology (GO) of tFA associated genes (A-F) Functional relevance of 

PCC with tFA were examined among Thai HCC, Thai iCCA, and TCGA HCC, 

respectively. Positively or negatively tFA associated genes were selected based on the 

correlation coefficient and p-value (more than 95% or less than 5% of estimate and p-

value <0.01). Heatmap shows the expression level of selected genes in Thai HCC, iCCA, 



 
 

and TCGA HCC cohorts. Samples were represented in columns according to the FGC 

increasing order and selected genes were represented in the row according to the 

decreasing of correlation coefficient with tFA (A, C, and D, respectively). GO 

Enrichment Analysis of selected genes in Thai HCC, iCCA, and TCGA HCC cohorts 

were performed (B, D, and F, respectively). Top10 ranked process based on the precision 

rank was shown. Orange and green color indicates positively and negatively correlated 

gene sets, respectively. (G-I) PCC shows a strong association with tFA in Thai HCC, 

Thai iCCA and TCGA HCC, respectively. Coefficient estimates and p-value based on 

Pearson’s correlation were depicted. 

  



 
 

 
Figure S6. The collective association among PCC, CIN, and tFA (A-C) Collective 

association among the PCC (x-axis), CIN (y-axis), and tFA (z-axis) are shown in Thai 

HCC, iCCA, and TCGA HCC, respectively.  

 

 

 

 

 

 

 

 

 



 
 

 
Figure S7. Validation of FGC in independent cohorts (A, C, E, and G) (A) FGC 

values among the Thai HCC, Thai iCCA, TCGA HCC, and LCI HCC are plotted in rank 

order, respectively. The dotted line indicates the cut-off FGC value, 0.2, applied to 

separate into FGC high (HFGC) and FGC low (LFGC) group in each tumor type, except 

for LCI HCC. (B, D, F, and H) Kaplan-Meier survival analysis performed based on 

LFGC and HFGC among the Thai HCC, Thai iCCA, TCGA HCC, and LCI HCC shows a 



 
 

significant difference in the overall survival, respectively. The statistical P value was 

generated by the Cox-Mantel log-rank test. 

  



 
 

 
Figure S8. Comparison of tFA between HFGC and LFGC (A-C) HFGC shows the 

higher value of tFA in Thai HCC, Thai iCCA, and TCGA HCC, respectively. P-value 

based on Welch's two-sample t-test was depicted.  

  



 
 

 
 

Figure S9. Comparison of SCNA in HFGC and LFGC (A and C) Heatmap shows 

copy number value of individual samples of Thai iCCA (A) and TCGA HCC (C) 

corresponding to the correlated segments regions, respectively. Samples are represented 

in columns, grouped by the HFGC and LFGC and segment regions are represented in 

rows according to the chromosomal location. (B and D) The frequency of SCNA among 

HFGC and the LFGC subtype of Thai iCCA (B) and TCGA HCC (D) are plotted 

corresponding to the correlated segmented region, respectively. The sample frequencies 

with copy number gain and loss (log2 (copy number) >0.2 or log2 (copy number) < -0.2) 



 
 

are shown in red and blue, respectively. The upper panel is the SCNA frequency plot for 

HFGC subtype and lower panel is the SCNA frequency plot for LFGC subtype. 

Chromosome boundaries and centromere positions are indicated by vertical solid and 

dashed lines, respectively. Horizontal dashed blue lines indicate frequency of 50%. 

Horizontal dotted black lines indicate frequency of 20%. (E-F) Genomic instability (GIN) 

scores were compared between HFGC and LFGC. Boxplots for GIN length regarding the 

gain (top), loss (middle), and score (bottom) for HFGC and LFGC subtype of Thai HCC 

(E) and Thai iCCA (F) are shown. GIN length regarding the copy number gain or copy 

number loss (Methods) was calculated in the individual sample and the summation of the 

total SCNA length was calculated as score.  

  



 
 

 

 
Figure S9. Comparison of SCNA in HFGC and (G-H) Allelic imbalance frequency 

between HFGC and LFGC was compared.  (G) Frequencies of samples with amplified 

(AMP W/ LOH) or deletion region with LOH (DEL W/ LOH) among HCC_HFGC 

(upper panel) and iCCA_HFGC (lower panel) are plotted according to the chromosome 

location. AMP W/ LOH or DEL W/ LOH are shown in red or blue, respectively. 

Chromosome boundaries and centromere positions are indicated by vertical solid and 

dashed lines, respectively. Horizontal dashed blue lines indicate the frequency of 20%. 

(H) Frequencies of samples with segment region with CN LOH among HCC_HFGC 

(upper panel) and iCCA_HFGC (lower panel) are plotted according to the chromosome 

location. Chromosome boundaries and centromere positions are indicated by vertical 

solid and dashed lines, respectively. Horizontal dashed blue lines indicate the frequency 

of 10%.  

 

 



 
 

 
Figure S10. Differentially expressed genes (DEG) between HFGC and LFGC of 

TCGA (A) Heatmap shows the expression of DEG between HFGC and LFGC of TCGA 

HCC. 807 Up-regulated genes and 569 Down-regulated genes were selected based on the 

permutation t-test (p-value < 0.005 and log2 fold change >0.5 or <-0.5, respectively). 

Each gene expression value was normalized based on the mean of non-tumor tissue. 



 
 

Samples are represented in columns, grouped by the HFGC and LFGC and genes are 

represented in rows. (B) Venn diagrams show the overlapped genes between DEG of 

HCC and of TCGA HCC. Up- and down-regulated genes are analyzed separately. (C and 

D) Gene Set Enrichment Analysis was performed with mRNA expression data from 

TCGA HCC based on the gene sets derived from the KEGG pathway gene sets (C) and 

oncogenic signature (D) in Molecular Signatures Database (MSigDB database v5.2). P-

value from the Kolmogorov-Smirnov (ks) test was transformed in -log scaled and used in 

the plot. Samples were represented in columns according to the FGC increasing order and 

log-transformed p-value for each gene set was represented in rows in the rank-order. 

Shown are the gene sets selected based on the significant difference between HFGC and 

LFGC subtype. P.E. p-value and N.E. p-value denotes the p-value for positively and 

negatively enriched gene sets, respectively.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure S11. Association of PCC with immune cytolytic activity in Thai PLC (A and 
B) The association between PCC and immune cytolytic activity, defined as log-average 
of GZMA and PRF1 expression, derived from a tumor with high tumor purity. Three 
different estimates for tumor purity of Thai PLC were calculated based on the IHC, 
ESTIMATES, and ABSOLUTE methods. Samples with high tumor purity (>0.8 of tumor 
purity more than 1 method) were selected and examined the association between PCC 
and cytolytic activity in Thai_HCC (A, n=56) and Thai_CCA(B, n=43), respectively.   



 
 

 
Figure S12. Gene Set Enrichment Analysis of HFGC and LFGC of Thai PLC (A and 

B) Single sample Gene Set Enrichment Analysis (ssGSEA) was performed with mRNA 

expression data from Thai HCC and Thai iCCA, respectively, based on the gene sets 

derived from the KEGG pathway gene sets (A) and oncogenic signature (B) (MSigDB 

database v5.2). P-value from the Kolmogorov-Smirnov (ks) test was transformed in -log 

scaled and used in the plot. Samples are represented in columns according to the rank 

order of FGC value and log-transformed p-value for each gene set was represented in 

rows. Shown are the overlapped gene sets significantly enriched both Thai HCC and 



 
 

iCCA. P.E. p-value and N.E. p-value denote the p-value for positively and negatively 

enriched gene sets, respectively. 

  



 
 

 
Figure S13. Integrative analysis based on PCC showed TP53 as a Cancer functional 

genomic complexity (FGCs) driver. (A) (Top panel) Association between CIN, FGC, 

and tFA is shown in the barplot. Z-scores for FGC, CIN, and tFA in each Thai iCCA 

sample were plotted in each barplot in the FGC ranked order. (Bottom panel) Shown 

were 51 genes with mutations of more than 3 samples in Thai iCCA. The right plot shows 

the mutation frequency for each gene in the frequency order. The dotted line indicates the 

mutation frequency of 0.1. The left plot shows the occurrence of mutation regarding gene 

in each sample. Each bar plot represents each gene. Different color indicates different 

mutation type. Thai iCCA samples were represented in columns in the same order of top 

panel. NSYN, non-synonymous mutation; FS, frameshift mutation; SS, splice site 

mutation; NS, nonsense mutation.  

  



 
 

 
Figure S13. Integrative analysis based on PCC showed TP53 as a Cancer functional 

genomic complexity (FGCs) driver. (B) (Top panel) Mutation mapper indicates the site 

where the TP53 mutation occurred. Transactivation motif (TAD; 6-29), DNA binding 

motif (DBD; 95-288), and tetramerization motif (Tetramer; 318-358) were depicted in the 

different colored box; green, orange, and navy, respectively. Green or black dots indicate 

missense or truncating mutation, respectively.  (Bottom panel) The top plot indicates the 

FGC score of each sample in the rank order. The incidence of TP53 mutation in each 

sample plotted in black in the bottom plot according to the mutation sites. (C-D) The 

CIN(C) and PCC (D) between TP53 WT and TP53 mutation among Thai iCCA. P-values 

based on the Welch two-sample t-test were depicted 

 
  



 
 

 
Figure S13. Integrative analysis based on PCC showed TP53 as a Cancer functional 

genomic complexity (FGCs) driver. (E) (Top panel) Mutation mapper indicates the site 

where the TP53 mutation occurred among TCGA HCC. Transactivation motif (TAD) (6-

29), DNA binding motif (DBD) (95-288), and tetramerization motif (Tetramer) (318-358) 

were depicted in the different colored box; green, orange, and navy, respectively. Green 



 
 

or black dots indicate missense or truncating mutation, respectively. (Bottom panel) The 

top plot indicates the FGC score of each sample in the rank order. The incidence of TP53 

mutation in each sample plotted in black in the bottom plot according to the mutation 

sites. (F-G) The CIN (F) and FGC (G) level between TP53 WT and TP53 mutation 

among TCGA HCC. P-values based on the Welch two-sample t-test were depicted. NS, 

SS, and FS stand for non-sense mutation, splice site mutation, and frameshift mutation, 

respectively 
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Figure S14. Association of PCC with cancer immunity in Thai PLC (A-B) Three 

different estimates for tumor purity of Thai PLC were calculated based on the IHC, 

ESTIMATES, and ABSOLUTE methods. Samples with high tumor purity (>0.8 of tumor 

purity more than 1 method) were selected and examined the association between PCC 

and immune score in Thai_HCC (A, n=56) and Thai_CCA(B, n=43), respectively. (C-D) 

Associations between 22 types of TIL subpopulations in the LFGC (left panel of each) 

and HFGC (right panel of each) of Thai HCC (C) and iCCA (D) are shown on a scale 

from red to blue (1 to -1). The color intensity and the size of the circle are proportional to 

the correlation coefficients.  The proportion of 22 types of TILs based on the 

CIBERSORT analysis output in the LFGC and HFGC of HCC and iCCA are used.  (E) 

Comparison of TIL subpopulations between HFGC and LFGC of Thai HCC, Thai iCCA, 

and TCGA HCC. Each boxplot shows the relative abundance of the TIL subpopulation 

between HFGC and LFGC. From left to right, representative TILs, regulatory T cell 

(Treg), NK- cell, dendritic cells (DC) in LFGC and HFGC of Thai HCC (top), Thai iCCA 

(middle), and TCGA HCC (bottom) are compared. P-values by Welch two-sample t-test 

are depicted in the plot. 
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Figure S14. Association of FGC with immunomodulators (A-B) (Top panel) 

Heatmaps show the expression level of genes regarding selected inhibitors, stimulators of 

immune response, MHC class I, II, and non-class among HFGC and LFGC of Thai HCC 

(A) and iCCA (B), respectively. (Bottom panel) Associations of FGC with selected genes 

were shown in bar among Thai HCC and iCCA, respectively. Coefficient estimates and 



 
 

p-value based on Pearson’s correlation were estimated. Significantly FGC associated 

genes were marked with red star (p-value <0.01). (C-D) Comparison of selected genes 

between HFGC and LFGC of Thai HCC (C) Thai iCCA (D). P-values by Welch two-

sample t-test are depicted in the plot. (C-D) Comparison of selected genes between 

HFGC and LFGC of Thai HCC (C) Thai iCCA (D). P-values by Welch two-sample t-test 

are depicted in the plot. (E-G) Skin cutaneous melanoma data from TCGA 

(TCGA_SKCM, n=472) was used to examine the association between tFA and 

immunotherapy. KM survival analysis was performed including or excluding the patients' 

groups who received pre-treatment of anti-CTLA-4 (E and F, respectively). Patients were 

stratified into high and low groups based on the tFA level. Patients with tFA levels above 

3rd quartile or below 1st quartile were assigned into high and low groups, respectively. (G) 

In the TCGA_SKCM anti-CTLA-4 pre-treatment subset, tFA levels between responders 

(R) and non-responders (NR) were compared. (H) Metastatic melanoma patients with 

pre-treatment of anti-PD-1 therapy were used. Patients were stratified into high and low 

groups based on the median value of tFA. KM survival analysis was performed between 

high and low tFA group (H). The number of patients in each group is shown. 
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