
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

Maurer et al. in their manuscript titled 'Unifying machine learning and quantum chemistry - a deep 

neural network for molecular wavefunctions' develop their ML approach for learning QM 

Hamiltonian matrix elements, energies, and forces of specific small molecular systems. They also 

suggest to use trained ML models for accelerating SCF convergence. It is a good, solid work with 

some interesting, although oftentimes trivial or not very new, insights. My comments on specific 

topics are below:  

 

* The idea of using ML for learning wavefunction is not that new: Sugawara suggested using NN for 

solving the Schrodinger equation back in 2001 in Computer Physics Communications (vol. 140, p. 

366), albeit for simple model potentials. The authors also cite ref. 21, where ML was applied in a 

very similar way to the authors' manuscript, just with a different ML method. Tucker Carrington Jr. 

has used NN to solve the vibrational Schrodinger equation. This all should be mentioned clearer and 

in a more prominent place in Introduction, because now this information is either missing or hidden 

somewhere in the discussion. What seems to be new is the visualization of ML orbitals and SCF 

acceleration.  

 

* The authors' claim of "full access to the electronic structure at force-field-like efficiency" is 

exaggerated. First of all, the authors do not really explicitly mention how they obtain orbital 

coefficients and eigenvalues, but I assume they need perform ML-Fock matrix diagonalization, which 

is rather slow. In addition, ML should be slower than molecular mechanics as it need evaluate many 

more terms.  

 

* Fig. 1b is a nice concept, but is misleading in the context of the manuscript, because the authors 

actually never use this concept. They do train ML on QM reference energies and forces, i.e. these 

properties are part of the training set. In addition, they 'predict the total energy separately as a sum 

over atom-wise energy contributions, in analogy with the conventional SchNet treatment24.', i.e. 

not directly from the ML wavefunction.  

 

* All this discussion in paragraph starting with 'ML applications in chemistry have traditionally been 

one-directional, i.e. ML models are built on quantum chemistry data.' tries to convince the reader 

that the manuscript presents something very unique, not one-directional. In reality, their NN models 

are also built on QC data, and other works in the literature as learning-on-the-fly ML dynamics 



(numerous groups) or geometry optimization accelerated by ML (works by Alexander Denzel and 

Johannes Kästner; Ove Christiansen) use similar concept of "deeper integration".  

 

* The authors should provide more technical details how they integrated ML and QC for SCF: did 

they made modifications to the ORCA code?  

 

* Technical information about training/testing is too sparse. They need be clearer how exactly they 

generated train/validation/test sets.  

 

* In the loss function, they never explained what 'ro' in eq. 28 is.  

 

* Their approach seem to be extremely complex, the authors should provide more details on: the 

total number of parameters to fit for each system, how much time it took for training and on what 

computer architecture.  

 

* Code and data availability should be discussed.  

 

 

Reviewer #2 (Remarks to the Author):  

 

This is an interesting paper that is expected to play an important role in the effort aimed at 

exploiting machine learning for chemistry through quantum chemistry. The authors propose and 

demonstrate a new neural network architecture to predict the wave functions, from which 

observables can be computed. This makes the method more general than the previously proposed 

approaches. I recommend the paper for publication.  

 

The only suggestion I would have for the authors is to include - perhaps as a separate section - an in-

depth analysis of the prediction errors. Is there a limit on the accuracy that can be achieved? Can the 

authors present a broad statistic of errors by analyzing a large number of molecules? Can some 

properties be predicted more accurately than others, and if yes, again is there a fundamental 

accuracy limit? Can the present neural network be improved to increase the accuracy?  

 



Some of these questions have already been addressed, some in the supplementary material, but I 

think the paper would benefit for a clear section addressing this important issue to the general 

reader, because this will clearly illustrate to the readers the value of this effort for chemical 

discovery. Basically, I am - and the reader will be - wondering if machine learning will/can ultimately 

replace quantum chemistry for applications such as in organic synthesis and drug design.  

 

 

 

 

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

Schütt et al. present an extension of their deep tensor neural network SchNet method that can 

predict the molecular electronic wave function and, consequently, energies, molecular orbitals, and 

properties. Their approach to represent the electronic Hamiltonian in a local basis representation is 

remarkable. The authors demonstrate the applicability of the new method (SchNOrb) in three 

examples: intramolecular proton transfer of malondialdehyde, inverse optimization of HOMO-LUMO 

gaps, and speed-up of the SCF procedure. Each of these three cases has their strengths and 

weaknesses, which are discussed here:  

 

- It is very exciting to see that a ML method can predict the MOs of HF/DFT. However, all 

results have been obtained with a small basis set (def2-SVP). How would the method behave if a 

more realistic basis set (eg. def2-TZVP) is used? Does SchNOrb require more data points in order to 

achieve the same accuracy?  

 

- It seems arbitrary that errors from DFT are constantly lower than HF. I would expect that 

SchNOrb would have comparable errors for both DFT and HF; the ML model is trained on DFT in 

order to predict DFT wave functions, and, similarly, trained on HF to predict HF wave functions. Or is 

this not the case? Is the accuracy of the ML method also functional-dependent?  

 



- The authors claim that the method provides “chemical insights” but they show this by 

considering a very simple case (malondialdehyde). It is not clear from Figure 3c how such chemical 

insights can be extracted. Many orbitals experience a broadening in the DOS. For a textbook 

example such as malondialdehyde, it is clear that such information can be correlated with the 

proton transfer. Can we extract the same information from a more complex case that has hundreds 

of orbitals?  

 

- In addition, the method can offer “chemical insights” in the same manner as DFT can, 

therefore there is no novelty here. It only speeds-up the DFT calculation (that’s novel). Thus, if DFT 

fails, then SchNOrb will fail.  

 

- The predicted dipole moment of one of the five cases examined (uracil) is off by 1.2762D 

(uracil’s dipole moment is 4.428D at the B3LYP/def2-TZVPP level – from cccbdb.nist.gov). The 

explanation that uracil has a delocalized π-system does not seem convincing for a method that 

claims to predict accurately the electronic wave function.  

 

- SchNOrb offers a better starting guess for SCF than the standard extended Hückel method 

which is used in conventional SCF implementations. For uracil with Newton steps, the reduction of 

iterations is ~77%, but what about the exact computational time? Newton-Raphson steps are ~2 

times slower than DIIS. What is the time needed for training the deep network? This should also be 

added in the efficiency of using a SchNOrb-predicted wave function as initial guess for SCF. Do you 

expect similar speed-ups for a triple-zeta basis?  

 

- How many data points (structures) are needed for training a deep network, for example 

uracil? This is not clear since the authors mention that SchNOrb still suffers from the lack of 

rotational invariance and additional structures should be included in order to reflect the rotations of 

the molecules. It is also not clear if individual networks were trained per molecule or just one with 

data from all the molecules considered in this study.  

 

- Overall, the manuscript is well-written. The authors provide adequate information on the 

computational procedure that was followed, and the Supplementary material includes key results. 

However, they present the “unification” of ML with quantum chemistry (QC) as novel, which is not 

the case. Recent publications of methods that interface ML/QC are omitted in the introduction, eg.  

- Smith et al., Nat. Commun. 2903,  

- Welborn et al., J. Chem. Theory Comput., 14, 4772,  

- Townsend et al., J. Phys. Chem. Lett. 10, 4129 
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Reply to Reviewer 1: 
 
Maurer et al. in their manuscript titled 'Unifying machine learning and quantum chemistry 
- a deep neural network for molecular wavefunctions' develop their ML approach for 
learning QM Hamiltonian matrix elements, energies, and forces of specific small 
molecular systems. They also suggest to use trained ML models for accelerating SCF 
convergence. It is a good, solid work with some interesting, although oftentimes trivial or 
not very new, insights. My comments on specific topics are below: 
 
* The idea of using ML for learning wavefunction is not that new: Sugawara suggested 
using NN for solving the Schrodinger equation back in 2001 in Computer Physics 
Communications (vol. 140, p. 366), albeit for simple model potentials. The authors also 
cite ref. 21, where ML was applied in a very similar way to the authors' manuscript, just 
with a different ML method. Tucker Carrington Jr. has used NN to solve the vibrational 
Schrodinger equation. This all should be mentioned clearer and in a more prominent 
place in Introduction, because now this information is either missing or hidden 
somewhere in the discussion. What seems to be new is the visualization of ML orbitals 
and SCF acceleration. 
 
 
The referee is correct in their assessment that previous works have attempted to use ML to 
represent wave functions. Mentioned are works by Sugawara et al. and by Carrington et al., 
both of which represent attempts to use neural networks as basis set representation to span the 
discrete Hilbert space of wave functions and to solve the respective electronic and nuclear 
Schrodinger equations of simple systems. These are important works and noteworthy. We have 
therefore included them in the current manuscript version.  
 
However, in this manuscript, we do not use ML to develop a basis representation to solve 
quantum mechanical equations, as these above works have attempted, but we use it to develop 
a completely general analytical parameterization of solutions of quantum mechanical methods 
represented within the traditional atom-centred basis functions used in quantum chemistry. In 
doing so, we achieve two important aspects: (A) We report a ML-based parametrization that is 
capable of fully capturing the rotational equivariance properties of atomic orbital basis functions 
up to arbitrary angular momentum, (B) by using an established basis expansion in quantum 
chemistry, we are able to seamlessly reintroduce ML predicted wave functions (and expectation 
values thereof) into established quantum chemical software and, thereby, achieve a previously 
underexplored synergy between the two. Both (A) and (B) have, to the best of our knowledge, 
not been reported before. 
 
It is important to stress that, particularly point (A), has not been sufficiently addressed by Ref. 21 
(Ref. 27 in the updated version), as this manuscript only reports a prediction of interaction 
integrals of up to four rotationally invariant s-orbitals and p-orbitals in single-species bulk. 
Rotational equivariance of the predicted wave functions is not enforced or learned in Ref 21. In 
contrast, our approach is shown to predict Hamiltonians of molecules with up to four atom 
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species and more than 100 basis functions up to d-orbitals (results with f-orbitals have been 
added in the updated ms). Since the molecular geometries may rotate during the MD simulation, 
rotational equivariance of the model is a crucial property of our model. 
 
We understand that the previous version of the manuscript has not sufficiently stressed novelty 
with respect to previous works and we have amended the results and discussion sections 
accordingly. 
 
On page 1, we have included additional notes and references to highlight previous works in this 
field. On pages 1 and 7, we have included comments to emphasize further the generality of our 
model compared to Ref. 21 (now Ref 27). 
 
 
* The authors' claim of "full access to the electronic structure at force-field-like 
efficiency" is exaggerated. First of all, the authors do not really explicitly mention how 
they obtain orbital coefficients and eigenvalues, but I assume they need perform ML-
Fock matrix diagonalization, which is rather slow. In addition, ML should be slower than 
molecular mechanics as it need evaluate many more terms. 
 
Despite the fact that our method achieves several orders of magnitude computational speed-up 
and improved scaling properties when evaluating the wave function compared to quantum 
chemical methods, e.g. an SCF-HF calculation of the Fock matrix of the Uracil molecule on a 
single CPU takes 88 s, with SchNOrb it takes 2 s on a CPU and 50 ms on a GPU. These 
runtimes could be further reduced using model compression techniques. We agree that the real-
time performance of our deep learning model lags behind force fields based on simple few-body 
interaction potentials. We have adjusted this claim in the present version of the manuscript. 
 
We have also included a more detailed description of how wave function coefficients are 
determined, which indeed at the moment is handled via matrix diagonalisation of the highly 
compact Hamiltonian and overlap matrices, which represent the main output of our model. The 
Fock matrix diagonalisation is currently not a bottleneck of the evaluation (< 1 ms), but could 
become one with larger molecules and basis sets. This however, represents a shift away from 
the much more severe computational bottleneck of conventional quantum chemical calculations, 
namely the repeated Fock matrix construction and diagonalization in the SCF procedure, which 
is handled by our deep learning model. 
 
Adjustments to paragraph 1 on page 2 regarding the discussion of computational speed-up 
have been made. On page 4, we added above discussion of the computational cost of 
diagonalization to the ms on page and explain how orbitals and eigenvalues are evaluated. 
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* Fig. 1b is a nice concept, but is misleading in the context of the manuscript, because 
the authors actually never use this concept. They do train ML on QM reference energies 
and forces, i.e. these properties are part of the training set. In addition, they 'predict the 
total energy separately as a sum over atom-wise energy contributions, in analogy with 
the conventional SchNet treatment24.', i.e. not directly from the ML wavefunction. 
 
We disagree with this statement. Figure 1b reflects the idea of using wave functions predicted 
from ML as input to evaluate QM properties, such as energies and quadrupole moments. We do 
indeed use this concept and show the corresponding results already in the original manuscript 
version. We, however, acknowledge that this was not prominently displayed in the previous 
version of the manuscript. Tables S4 and S5 in the original manuscript report Hartree-Fock total 
energies, quadrupole moments, and MP2 energies which are directly calculated solely from the 
SchNorb wave functions by evaluation of the respective integrals. This clearly uses the concept 
reflected in Figure 1b. Yet, for the prediction of total energies, we have, in the end, chosen to 
separately predict the energy as a sum over atom-wise energies in the usual SchNet way, as 
this provides a higher level of error control and enables to seamlessly predict energies from 
wavefunction methods and Density Functional Theory (rather than only from wavefunction 
methods). 
 
On page 4 and 7, we have clarified the description of the results to better reflect our use of the 
ML/QM unifying capabilities of the SchNorb model and our rationale for predicting total energies 
independently. 
 
* All this discussion in paragraph starting with 'ML applications in chemistry have 
traditionally been one-directional, i.e. ML models are built on quantum chemistry data.' 
tries to convince the reader that the manuscript presents something very unique, not 
one-directional. In reality, their NN models are also built on QC data, and other works in 
the literature as learning-on-the-fly ML dynamics (numerous groups) or geometry 
optimization accelerated by ML (works by Alexander Denzel and Johannes Kästner; Ove 
Christiansen) use similar concept of "deeper integration". 
 
We agree with the referee that there have been many recent excellent efforts to integrate ML 
concepts into structure prediction and dynamics methods, however, these do not directly relate 
to solving the electronic structure problem. 
 
In this manuscript, we present a deep learning model that predicts wave functions built from 
quantum chemical methods to feed into other quantum chemical electronic structure methods. 
We did not state that this is a unique effort, but we believe that it adds a new dimension to 
electronic structure theory with significant implications for future method development work.  
 
The new manuscript version has been modified to make this distinction clearer and to better 
reflect recent related efforts in the field. 
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We have reformulated the mentioned paragraph on page 6 and added discussion of related 
work in the introduction on page 1 to better reflect the implications of our work in the context of 
other recent efforts to integrate concepts of ML in quantum chemistry. 
 
 
* The authors should provide more technical details how they integrated ML and QC for 
SCF: did they made modifications to the ORCA code? 
 
We use an unmodified version of ORCA. The integration of ORCA and SchNOrb was done by 
generating ORCA wavefunction restart files (*.gbw) from the predicted SchNOrb coefficients. 
These wave functions were then used to calculate observables with ORCA. It is important to 
stress that we have used ORCA only as quantum chemical integral engine to directly calculate 
all reported derived observables without solving SCF equations, with the exception of Figure 4b 
where we demonstrate the utility of ML predicted wave functions as initial guesses for SCF 
calculations.  
 
We added a corresponding statement to Section II E of the ms. 

 
* Technical information about training/testing is too sparse. They need be clearer how 
exactly they generated train/validation/test sets. 
 
All reference datasets consist of molecular configurations selected at random from the MD17 
database, which contains molecular dynamics trajectories of different organic molecules. For 
each of these structures, the desired properties were then recomputed using the target 
electronic structure reference method. We updated the method section of the ms to clarify this. 
 
We added information on the sampling of the reference data to the Methods section and 
referred to Table S1. 

 
* In the loss function, they never explained what 'ro' in eq. 28 is. 
 
Rho determines the trade-off between total energy and force error in the loss. We added this 
information to the ms. 
 
* Their approach seem to be extremely complex, the authors should provide more details 
on: the total number of parameters to fit for each system, how much time it took for 
training and on what computer architecture. 
 
We appreciate the referees suggestions and have added information about the size of the 
model as well as computational cost on page 4 as well as Supplemental Table S6. 
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* Code and data availability should be discussed. 
 
We will make the code available on Github after publication as an extension to our atomistic 
neural network package SchNetPack. The data sets will be provided on quantum-machine.org. 
 
Reply to Reviewer 2 
 
This is an interesting paper that is expected to play an important role in the effort aimed 
at exploiting machine learning for chemistry through quantum chemistry. The authors 
propose and demonstrate a new neural network architecture to predict the wave 
functions, from which observables can be computed. This makes the method more 
general than the previously proposed approaches. I recommend the paper for 
publication. 
 
* The only suggestion I would have for the authors is to include - perhaps as a separate 
section - an in-depth analysis of the prediction errors. Is there a limit on the accuracy 
that can be achieved? Can the authors present a broad statistic of errors by analyzing a 
large number of molecules? Can some properties be predicted more accurately than 
others, and if yes, again is there a fundamental accuracy limit? Can the present neural 
network be improved to increase the accuracy? Some of these questions have already 
been addressed, some in the supplementary material, but I think the paper would benefit 
for a clear section addressing this important issue to the general reader, because this 
will clearly illustrate to the readers the value of this effort for chemical discovery. 
 
With the current data, we do not believe that there is a fundamental limitation to accuracy if a 
sufficiently diverse training data set is supplied to a sufficiently large model. However, we find 
that the model error for derived properties, such as total energies and quadrupole moments 
when calculated from the predicted wave functions is higher than it would be when training 
individual models with the same data. This reveals a general tendency for errors to compound in 
derived properties, which future model optimisation will need to address. 
 
At the moment, the model is trained to correctly capture the covariant phase and amplitude 
changes of wave functions due to rotations by data augmentation. We are already working on 
an improvement to this by explicitly encoding SE(3) symmetry as, for example suggested in Ref. 
26 of the current manuscript. In response to the reviewers comments, we have added a 
discussion of the prediction accuracy and on future improvements of the architecture on pages 
7-8. 
 
* Basically, I am - and the reader will be - wondering if machine learning will/can 
ultimately replace quantum chemistry for applications such as in organic synthesis and 
drug design. 
 
We share the reviewers curiosity on this matter. It is hard to see how ML models, in their current 
form, can completely replace quantum chemical calculations. However, we believe that the 
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results presented in this manuscript strongly suggest that future quantum chemical methods will 
be significantly augmented by and intertwined with data-driven ML approaches to achieve 
predictions and simulations that are currently out of reach. 
 
Reply to Reviewer 3 
 
Schütt et al. present an extension of their deep tensor neural network SchNet method 
that can predict the molecular electronic wave function and, consequently, energies, 
molecular orbitals, and properties. Their approach to represent the electronic 
Hamiltonian in a local basis representation is remarkable. The authors demonstrate the 
applicability of the new method (SchNOrb) in three examples: intramolecular proton 
transfer of malondialdehyde, inverse optimization of HOMO-LUMO gaps, and speed-up of 
the SCF procedure. Each of these three cases has their strengths and weaknesses, 
which are discussed here: 
 
- It is very exciting to see that a ML method can predict the MOs of HF/DFT. However, all 
results have been obtained with a small basis set (def2-SVP). How would the method 
behave if a more realistic basis set (eg. def2-TZVP) is used? Does SchNOrb require more 
data points in order to achieve the same accuracy? 
 
We are happy to see that the reviewer shares our enthusiasm for these results. Their point 
regarding generality with respect to basis set is a fair one and we have addressed this in the 
revised manuscript. In the supplementary information, we now have added results for a new 
model trained on 25,000 data points for ethanol generated with a def2-TZVP basis (see page 5 
and Table S2). With the same number of training examples, the prediction errors of the 
Hamiltonian matrices are only slightly higher with a mean absolute error of 8.3meV, however the 
accuracy of the derived properties suffers due to error accumulation in the diagonalisation of the 
larger matrix. We have added discussion how to increase the accuracy by improving the neural 
network architecture and introducing a density dependent term into the loss function to control 
the error distribution in future work. 
 
- It seems arbitrary that errors from DFT are constantly lower than HF. I would expect that 
SchNOrb would have comparable errors for both DFT and HF; the ML model is trained on 
DFT in order to predict DFT wave functions, and, similarly, trained on HF to predict HF 
wave functions. Or is this not the case? Is the accuracy of the ML method also 
functional-dependent? 
 
We train on DFT data to reproduce DFT wave functions and likewise for HF. We only have 
trained one model, namely Ethanol with HF data, so we do not have sufficient evidence to 
conclude that there is a general trend or a strong method dependence of model performance. 
Overall, the errors are very close in range when compared between HF and DFT. For ethanol, 
whereas the eigenvalues are predicted more accurately with DFT, the dipole moment is 
predicted more accurately with HF (see Table S4). A more detailed analysis of a potential 
method dependence will be the focus of future work. 
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- The authors claim that the method provides “chemical insights” but they show this by 
considering a very simple case (malondialdehyde). It is not clear from Figure 3c how 
such chemical insights can be extracted. Many orbitals experience a broadening in the 
DOS. For a textbook example such as malondialdehyde, it is clear that such information 
can be correlated with the proton transfer. Can we extract the same information from a 
more complex case that has hundreds of orbitals? In addition, the method can offer 
“chemical insights” in the same manner as DFT can, therefore there is no novelty here. It 
only speeds-up the DFT calculation (that’s novel). Thus, if DFT fails, then SchNOrb will 
fail. 
 
The current layout of the SchNOrb deep learning model does not limit its application to simple 
molecules and the systems studied in this manuscript feature up to 132 orbitals, however, more 
model optimisation and factorization is planned in the future to tackle substantially larger 
systems. The main contribution here is indeed that the SchNOrb model establishes a 
parametrization of the wave functions as a function of atomic positions which allows fast 
prediction of electronic structure. The resulting speed-up allows to obtain large amounts of 
electronic structure data which can be analysed afterwards, e.g. by other machine learning and 
big data approaches, to extract chemical insights. Figures 3a-c show that electronic structure 
details can directly be extracted from the model and that the analytical parametrization of the 
wave function enables to disentangle which orbital changes are most strongly coupled with 
nuclear motion of the proton - a property which defines the orbital participation during the 
dynamics.  A second novelty is that the parameterization allows for fast analytical derivatives of 
electronic structure. This opens up the possibility to explore the structure-electronic property 
relationship for molecules, e.g. for the proof-of-principle optimization of the HOMO-LUMO gap 
which could be extended to alchemical derivatives to perform inverse design in future work. 
 
- The predicted dipole moment of one of the five cases examined (uracil) is off by 
1.2762D (uracil’s dipole moment is 4.428D at the B3LYP/def2-TZVPP level – from 
cccbdb.nist.gov). The explanation that uracil has a delocalized π-system does not seem 
convincing for a method that claims to predict accurately the electronic wave function. 
 
We have improved the analysis of the prediction error for uracil in the revised manuscript. We 
find that the deviation of the dipole moment for uracil, and in fact, the overall larger errors for 
derived electronic properties, are mainly due to the fact that the loss function has not been 
optimised for this task. Currently, our model focuses on the accurate prediction of the 
Hamiltonian and overlap matrix elements and the loss function only minimises errors directly 
related to that. It is important to stress that most of our predictions for derived properties are 
excellent, despite the fact that the learning process does not explicitly target minimization of 
these errors. Dipole moments, in particular, are highly dependent on the molecular density 
derived from the orbital coefficients, which are never learned directly. While this approach poses 
no problem for the smaller molecules, it reaches its limitations for uracil. In this case, the 
Hamiltonian errors can accumulate during diagonalisation, leading to increased errors in wave 
function coefficients. Nevertheless, the high accuracy achieved for water, ethanol and 
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malondialdehyde can be seen as a success for this proof of principle study. Moreover, it is 
expected that the inclusion of density based terms (e.g. density matrix) directly into the loss 
function will improve model performance for tasks of this nature, which will be the focus of future 
studies. We added a corresponding statement to section C of the ms. 
 
- SchNOrb offers a better starting guess for SCF than the standard extended Hückel 
method which is used in conventional SCF implementations. For uracil with Newton 
steps, the reduction of iterations is ~77%, but what about the exact computational time? 
Newton-Raphson steps are ~2 times slower than DIIS. What is the time needed for 
training the deep network? This should also be added in the efficiency of using a 
SchNOrb-predicted wave function as initial guess for SCF. Do you expect similar speed-
ups for a triple-zeta basis? 
 
We agree that the Newton Raphson procedure is costly compared to standard SCF procedures. 
The speedup of Newton Raphson based restarts compared to the full quantum chemical 
computations is minimal (8% for malondialdehyde). However, the combination of ML restarts 
and NR is expected to be advantageous in cases with pathological convergence. We have also 
conducted new experiments with the standard ORCA SOSCF algorithm, were we disabled 
several of the heuristics used to improve convergence for suboptimal wavefunction guesses 
which impeded convergence in case of the SchNOrb guesses. With this setup, SchNOrb leads 
to an overall speedup of 16% for malondialdehyde and 13% for uracil. We expect that this gain 
in computation time can be increased further with future improvements of the SchNOrb model 
(see reply to 3.4) We have updated Figures 4b and S5, as well as their captions, to include 
timings as well as the new experiments. Pertaining to the time required to train the deep 
networks, we refer to reply 1.6 . Since standard guess methods like extended Hückel theory 
also needed initial parametrization and due to the fact that SchNOrb can be used for arbitrary 
configurations of a molecule once trained, it was not clear how the training time should enter the 
analysis. Hence, we resorted to reporting only the relative difference between the individual 
computations. 
 
- How many data points (structures) are needed for training a deep network, for example 
uracil? This is not clear since the authors mention that SchNOrb still suffers from the 
lack of rotational invariance and additional structures should be included in order to 
reflect the rotations of the molecules. It is also not clear if individual networks were 
trained per molecule or just one with data from all the molecules considered in this 
study. 
 
Even though SchNorb has the ability to capture the rotational equivariance, we perform data 
augmentation to include additional rotations of molecules in the training. In every epoch, the 
molecules and corresponding Hamiltonian matrices are randomly rotated using Wigner D-
matrices (see Methods section). Therefore, no additional reference calculations are required to 
learn the rotations. On page 4 of the ms, we explain the data augmentation procedure and 
clarify that we train separate models for each MD trajectory. Training a common model for 
configurational and compositional degrees of freedom is subject to future work. 
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- Overall, the manuscript is well-written. The authors provide adequate information on the 
computational procedure that was followed, and the Supplementary material includes 
key results. However, they present the “unification” of ML with quantum chemistry (QC) 
as novel, which is not the case. Recent publications of methods that interface ML/QC are 
omitted in the introduction, eg. 
- Smith et al., Nat. Commun. 2903, 
- Welborn et al., J. Chem. Theory Comput., 14, 4772, 
- Townsend et al., J. Phys. Chem. Lett. 10, 4129 
 
We agree with the referee that there is an exciting shift towards the deeper integration of ML 
and electronic structure theory. The works of Welborn et al. and Townsend et al. are both 
closely related and predict energies/cluster amplitudes based on features derived from Hartree 
Fock and MP2 respectively. The latter application in particular is promising and has the potential 
to accelerate coupled cluster computations greatly. However, our approach aims for an 
integration at a more fundamental level, where we do not need to rely on electronic structure 
coefficients and instead directly model a central quantity in form of the Hamiltonian, which can in 
turn be interfaced with all the formalism available to QC. This also opens alternative avenues for 
future research compared to the above applications, e.g. towards effective Hamiltonians. We 
added the references Welborn et. al. and Towsend et. al. and corresponding comments to the 
introduction, page 1. 
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