
Supplementary methods 

TMT-labelled sample analysis by LC-MS/MS 

50 µg of pooled 10plex TMT-labelled samples were analyzed by 2D-LC-MS/MS, using high 

pH RP fractionation as a first dimension and low pH RP chromatography as a second 

dimension. For high pH RP fractionation peptides were separated on an Ultimate3000 HPLC 

system (ThermoScientific) on ACQUITY CSH C18 1.7 µm column (300 µm X 100 mm) 

(Waters) with a linear 90 min gradient of acetonitrile in water at pH 9 at a flow-rate of 5 

µL/min. Buffer A was H2O, 20 mM ammonium formate, pH 9; buffer B was 80% ACN, 20% 

buffer A): 

16.1 NC_Pump.%B =  16.5 [%] 
19.1 NC_Pump.%B =  18.0 [%] 
22.1 NC_Pump.%B =  19.3 [%] 
25.1 NC_Pump.%B =  21.0 [%] 
28.1 NC_Pump.%B =  22.7 [%] 
31.1 NC_Pump.%B =  23.8 [%] 
34.1 NC_Pump.%B =  25.0 [%] 
37.1 NC_Pump.%B =  26.3 [%] 
40.1 NC_Pump.%B =  27.4 [%] 
43.1 NC_Pump.%B =  28.2 [%] 
46.1 NC_Pump.%B =  29.0 [%] 
49.1 NC_Pump.%B =  30.3 [%] 
52.1 NC_Pump.%B =  31.5 [%] 
55.1 NC_Pump.%B =  32.7 [%] 
58.1 NC_Pump.%B =  34.0 [%] 
61.1 NC_Pump.%B =  35.5 [%] 
64.1 NC_Pump.%B =  37.5 [%] 
67.1 NC_Pump.%B =  39.3 [%] 
70.1 NC_Pump.%B =  42.0 [%] 
73.1 NC_Pump.%B =  44.0 [%] 
76.1 NC_Pump.%B =  46.0 [%] 
79.1 NC_Pump.%B =  48.0 [%] 
82.1 NC_Pump.%B =  51.0 [%] 
85.1 NC_Pump.%B =  54.0 [%] 
88.1 NC_Pump.%B =  58.5 [%] 
91.1 NC_Pump.%B =  68.8 [%] 
94.1 NC_Pump.%B =  95.0 [%] 
100 NC_Pump.%B =  95.0 [%] 

101 NC_Pump.%B =  2.0 [%] 
 

Fraction collection timing was adjusted to collect different number of subfractions in different 

experiments using different second dimension LC systems and separation parameters. In all 

experiments 2 subfractions from different parts of the gradient were concatenated. 192 



	

subfractions were collected for evoSep1 analysis and concatenated into 96 fractions: 

Subfraction 1 was combined with Subfraction 97, Subfraction 2 was combined with 

Subfraction 98, etc.) 60 subfractions (30 concatenated fractions) were collected for 

nanoAcquity UPLC analysis and 30 subfractions (15 fractions) - for Ultimate 3000 analysis. 

For nanoAcquity and Ultimate 3000 UPLC systems analysis the fractions were vacuum dried 

in a speedvac and resolubilized in 12 µL of 0.1% TFA, and 8 µL was used for the LC-MS/MS 

analysis. For evoSep 1 analysis the fractions were diluted with 130 µL of 0.1% TFA in water 

and directly loaded on the evoTips. Supplementary Table 1.3 details the methods used on the 

three LC systems.  

All the data was acquired on the Orbitrap Fusion LUMOS platform using multi-notch 

selection method1, as recommended by the manufacturer (using “TMT MS3” from the library 

of ready-to-use peptide quantitation methods). The parameters are shown below:		 
Global Settings 
  
 Use Ion Source Settings from Tune = False 
 Ion Source Type = NSI 
 Spray Voltage: Positive Ion (V) = 2900 
 Spray Voltage: Negative Ion (V) = 600 
 Infusion Mode (LC)= False 
 Sweep Gas (Arb) = 0 
 Ion Transfer Tube Temp (°C) = 275 
 APPI Lamp = Not in use 
 FAIMS Mode = Not Installed 
 Application Mode = Peptide 
 Default Charge State = 2 
 Advanced Peak Determination = False 
 Xcalibur AcquireX enabled for method modifications = False 
Experiment 1 
 Cycle Time (sec) = 3 
   
 
  Scan MasterScan 
   MSn Level = 1 
   Use Wide Quad Isolation = True 
   Detector Type = Orbitrap 
   Orbitrap Resolution = 120K 
   Mass Range = Normal 
   Scan Range (m/z) = 375-1500 
   Maximum Injection Time (ms) = 50 
   AGC Target = 400000 
   Microscans = 1 
   RF Lens (%) = 30 
   Use ETD Internal Calibration = False 
   DataType = Profile 
   Polarity = Positive 
   Source Fragmentation = False 
   Scan Description =  
 
  Filter MIPS 
   MIPS Mode = Peptide 
 
  Filter ChargeState 
   Include charge state(s) = 2-7 
   Include undetermined charge states = False 
   Include charge states 25 and higher = False 



	

 
  Filter DynamicExclusion 
   Exclude after n times = 1 
   Exclusion duration (s) = 60 
   Mass Tolerance = ppm 
   Mass tolerance low = 10 
   Mass tolerance high = 10 
   Exclude isotopes = True 
   Perform dependent scan on single charge state per precursor only = False 
 
  Filter IntensityThreshold 
   Minimum Intensity = 5000 
   Relative Intensity Threshold = 0 
   Intensity Filter Type = IntensityThreshold 
   Maximum Intensity = 1E+20 
 
  Data Dependent Properties 
   Data Dependent Mode= Cycle Time 
Scan Event 1 
   
 
  Scan ddMSnScan 
   MSn Level = 2 
   Isolation Mode = Quadrupole 
   Isolation Offset = Off 
   Isolation Window = 0.7 
   Reported Mass = Original Mass 
   Multi-notch Isolation = False 
   Scan Range Mode = Auto Normal 
   FirstMass = 120 
   Scan Priority= 1 
   ActivationType = CID 
   Collision Energy Mode = Fixed 
   Collision Energy (%) = 35 
   Activation Time (ms) = 10 
   Activation Q = 0.25 
   Multistage Activation = False 
   Detector Type = IonTrap 
   Ion Trap Scan Rate = Turbo 
   Maximum Injection Time (ms) = 50 
   AGC Target = 10000 
   Inject ions for all available parallelizable time = False 
   Microscans = 1 
   Use ETD Internal Calibration = False 
   DataType = Centroid 
   Polarity = Positive 
   Source Fragmentation = False 
   Scan Description =  
 
  Filter PrecursorSelectionRangeMSn 
   Mass Range = 400-1200 
   Range relative to parent mass (%) = 0-1000 
   Mass Tolerance Unit = mz 
 
  Filter PrecursorIonExclusion 
   Mass Tolerance is mz 
   Low 18 
   High 5 
 
  Filter IsobaricTagExclusion 
   Exclusion Mass Tolerance is Unknown 
   Low 0 
   High 0 
   Reagant Tag Type = TMT 
 
  Data Dependent Properties 
   Data Dependent Mode= Scans Per Outcome 



	

 
  Scan ddMSnScan 
   MSn Level = 3 
   Isolation Mode = Quadrupole 
   Isolation Window = 2 
   Isolation Offset = Off 
   Reported Mass = Original Mass 
   Multi-notch Isolation = True 
   MS2 Isolation Window (m/z) = 2 
   Number of Notches = 10 
   Scan Range Mode = Define m/z range 
   Scan Priority= 1 
   ActivationType = HCD 
   Collision Energy Mode = Fixed 
   Collision Energy (%) = 65 
   Detector Type = Orbitrap 
   Orbitrap Resolution = 50K 
   Scan Range (m/z) = 100-500 
   Maximum Injection Time (ms) = 105 
   AGC Target = 200000 
   Inject ions for all available parallelizable time = False 
   Microscans = 1 
   Use ETD Internal Calibration = False 
   DataType = Centroid 
   Polarity = Positive 
   Source Fragmentation = False 
   Scan Description =  
 
The only difference in the MS parameters between the three hyperfractionation strategies (3 

LC systems used for the analysis) was the dynamic exclusion time necessary to account for 

different peak width: 15 sec for evoSep, 40 sec for nanoAcquity and 60 sec for Ultimate 3000.  

 

Proteomics data analysis 

Data were analyzed in Proteome Discoverer 2.3 software. All the files from all acquisitions 

(hyperfractionations and enrichment) were searched together. A database search was 

performed with Mascot 2.3.2 using Homo Sapiens UniProt database containing only reviewed 

entries and canonical isoforms (retrieved on 06/11/2017). Oxidation (M), Deamidated (NQ), 

Dimethyl (R), Methyl (R) were set as variable modifications, while Carbamidomethyl (C), 

TMT6plex (K), and TMT6plex (N-term) were specified as fixed modifications. A maximum 

of four missed cleavages were permitted (such a high number was chosen due to lower trypsin 

efficiency at methylated Arg sites). The precursor and fragment mass tolerances were 10 ppm 

and 0.6 Da, respectively. Peptides were validated by Mascot percolator with a 0.01 posterior 

error probability (PEP) threshold. ptmRS algorithm was used to validate Arg methylation 

position using standard settings for CID data (PhosphoRS Mode was disabled, fragment mass 

tolerance was 0.5 Da with no mass accuracy correction, the diagnostic ions use was enabled 

and no neutral loss ions were considered). The quantification results of peptide spectrum 

matches were combined into peptide-level quantitation, which in turn was converted into 

protein quantitation using danteR package2. Quantitation profiles of the methylated peptides 



	

were normalized on the profiles of their corresponding protein expression (example 

normalization is presented in Supplementary Table 1.5).  

 

Peptide synthesis 

Peptides were produced on	Intavis ResPep (expected yield of 5 µmole) instrument. Solutions 

used: Fmoc-aa solution (650 mM solution in DMF (Fmoc-Pro-OH and Fmoc-Phe-OH were 

dissolved in NMP)), Activator (600 mM HBTU in DMF), Base (N-Methylmorpholine in DMF 

0.81:1 v/v), Capping solution (5% acetic anhydrate in DMF), Deprotection solution (20% 

Piperidine in DMF), ethanol, DCM, Fmoc-Gly-Wang resin (Sigma 47659) 10 mg per tube. 

Program used:  

START ROUTINE: 

1) RinseNeedle (2500 / 2500 µl) 

2) WashColumns (150 µl, Reservoir->Peptides, 5x) 

3) MoveToZone (pierceSepta) 

4) Deprotection (120 µl, Piperidine->Peptides) 

5) Deprotection (120 µl, Piperidine->Peptides) 

6) WashColumns (150 µl, Reservoir->Peptides, 8x) 

SYNTHESIS CYCLES: 

7) Coupling (25.6 (activator)+7 (base)+5 (DMF)+21.7 (derivative)->Peptides – 30 min) 

8) Coupling (25.6 (activator)+7 (base)+5 (DMF)+21.7 (derivative)->Peptides – 30 min) 

9) Coupling (25.6 (activator)+7 (base)+5 (DMF)+21.7 (derivative)->Peptides – 30 min) 

10) Capping (100 µl, Capping->Peptides– 30 min) 

11) WashColumns (130 µl, Reservoir->Peptides, 8x) 

12) Deprotection (120 µl, Piperidine->Peptides) 

13) Deprotection (120 µl, Piperidine->Peptides) 

14) WashColumns (130 µl, Reservoir->Peptides, 8x) 

FINAL WASHES 

15) WashColumns (150 µl, Reservoir->Peptides) 

16) WashColumns (150 µl, DCMwash->Peptides) 

17) WashColumns (150 µl, Reservoir->Peptides) 

18) Deprotection (120 µl, Piperidine->Peptides) 

19) Deprotection (120 µl, Piperidine->Peptides) 

20) Deprotection (120 µl, Piperidine->Peptides) 



	

21) WashColumns (150 µl, Reservoir->Peptides, 3x) 

22) WashColumns (150 µl, Ethanol->Peptides, 3x) 

23) WashColumns (150 µl, DCMwash->Peptides, 3x) 

24) RinseNeedle (2500 / 2500 µl) 

The sequences of the synthesized peptides are listed in Supplementary Table 1.6.  

 

Bioinformatics analysis of the RNA-Seq data 

1. Quality assessment and pre-processing of the RNA-Seq raw data 

A comprehensive RNA-Seq data quality assessment and pre-processing of the raw data was 

performed using the R/Bioconductor library ShortRead v.1.38.03 and the standard R 

infrastructure. The main in-laboratory developed high-level R functions are available at GitHub 

repository:  

https://github.com/VGrinev/transcriptome-analysis/blob/master/TranscriptsFeatures. 

2. Alignment of the short RNA-Seq reads against the reference genome 

GRCh38/hg38 reference assembly of the human genome was downloaded as twoBit file from 

the FTP server of the UCSC Genome Browser. It was then converted to a standard FASTA 

format with twoBitToFa utility4. A hash table for the reference genome was built with the 

function buildindex from the R/Bioconductor library Rsubread v.1.22.35. At this step, 16-mers 

subreads were extracted in every 3 bases from the reference genome and the threshold 24 was 

used to exclude highly repetitive subreads from the created hash table. 

A global alignment of RNA-Seq reads against the reference genome was carried out 

with the function subjunc from the R/Bioconductor library Rsubread v.1.22.36 and the created 

hash table. This function implements a seed-and-vote mapping paradigm for a fast and accurate 

alignment6. At this step, we used the default settings of the function subjunc and collected only 

uniquely mapped reads with the maximum of 3 mismatched bases in the alignment. The 

resulting BAM files were sorted with the function sortBam and indexed with the function 

indexBam both from the R/Bioconductor library Rsamtools v.1.24.07. 

3. Development a list of non-overlapping genomic bins (fragments) 

First, the annotations of the human genes were downloaded from the Ensembl database. 

These annotations were converted into an object of a class TranscriptDb8 and saved as a local 

SQLite database. All the subsequent manipulations with genomic intervals were performed 

using the genomic ranges infrastructure8. 

Next, the genomic coordinates of the annotated retained introns were calculated as 

follows. For each gene, the genomic coordinates of exons and introns were extracted from a 



	

TranscriptDb object and intersected using the function findOverlaps from the R/Bioconductor 

library GenomicRanges v.1.32.39. The intronic intervals that completely fell into the 

coordinates of exon(-s) of the same gene were selected. These intervals were subsequently 

intersected with the remaining exons of the gene and, if necessary, disjoined and dropped out 

due to overlapping. Additionally, the intervals shorter than 75 nucleotides or duplicated 

intervals were removed from the final list. We called these intervals annotated retained introns, 

since they are already present in the Ensembl annotation database. Moreover, we further sub-

divided these introns into four sub-groups: i) annotated retained introns that completely fall 

into the alternative first exon (AnnoRI_FIRST), ii) annotated retained introns that are flanked 

by the internal exons (AnnoRI_INTERNAL), iii) annotated retained introns that completely 

fall into the alternative last exon (AnnoRI_LAST), and iv) introns that can be inferred as 

retained because of the overlap with one-exon transcripts (AnnoRI_OneExonTranscript). 

Third, the function intronicParts of the R/Bioconductor library GenomicFeatures 

v.1.32.010  was used to extract non-overlapping intronic bins from a TranscriptDb object. 

Extracted intronic bins were disjoined and dropped out against exons of one- and multi-exons 

genes (including genes of rRNAs, tRNAs, miRNAs, miscRNAs, ribozymes, vaultRNAs, 

sRNAs, snRNAs, scaRNAs, scRNAs and snoRNAs). Additionally, any intronic bins shorter 

than 75 nucleotides were removed. We called these intronic bins canonical introns. The final 

list of such introns was extended with the annotated retained introns, sorted, indexed, assigned 

with genes information and converted into an object of a class GRanges. 

Fourth, the function exonicParts of the R/Bioconductor library GenomicFeatures 

v.1.32.011 was used to extract non-overlapping exonic bins from a TranscriptDb object. 

Extracted genomic bins were disjoined and dropped out against genomic coordinates of the 

annotated retained introns, and genomic bins shorter than 10 nucleotides were removed. The 

final list of the genomic bins was sorted, indexed, annotated with genes information and 

converted into an object of a class GRanges. 

Finally, all the above-mentioned GRanges objects were joined into GRangesList and 

used in the downstream analysis. 

 

4. Development a list of exon clusters 

For each gene, the genomic coordinates of exons were retrieved from Ensembl annotations. 

These coordinates were intersected and joined into overlapping groups called exon clusters. 

The exon clusters shorter than 10 nucleotides were removed, and the final list of genomic 



	

intervals was sorted, assigned with genes information and converted into an object of a class 

GRanges. 

 

5. Read summarisation 

We used the function featureCounts from the R/Bioconductor library Rsubread v.1.22.35,12 to 

assign the mapped RNA-Seq reads to the genomic features in case of exonic and/or intronic 

bins or to the meta-features (genes) in case of exon clusters. Each read pair was counted in 

unstranded mode with the minimum 1 base overlapping an exonic bin or exon cluster and 

minimum 5 bases overlapping an intronic bin. 

 

6. In silico identification of retained introns 

First, the primary count matrix of intronic bins (see sections 3 and 5) was loaded into the R 

workspace and an effective length for each intron was calculated using the 

wgEncodeCrgMapabilityAlign75mer mapability table13 from the UCSC Genome Browser4. 

During this step, positions of the non-unique 75-mer alignments and 5 nucleotides from each 

end of the intron were summed and then subtracted from the original intron’s length to produce 

mapability-adjusted intron length. 

Second, the primary count matrix of the intronic bins was filtered against the non-

expressed genes, intron effective length less than 75 nucleotides and one-bin genes.  

Third, a variance stabilizing transformation based on the square root of the intron 

effective length adjusted by the RNA-Seq read length was used to weight individual 

introns14,15. The sum of intronic reads per gene in each RNA-Seq sample was then partitioned 

and allocated to each intron proportional to its weight. This led to an in silico null model 

sample, one corresponding to each of the original RNA-Seq samples. 

Fourth, differential analysis was carried out to determine introns enriched in the 

observed reads compared to the in silico expected reads (if all the introns within a gene are 

present at equal levels). We used standard DESeq216 and edgeR-limma17,18 pipelines at this 

step. Herewith, we discretized the null distributions for the first approach, since DESeq2 uses 

negative binomial generalized linear modelling, and we loaded the null distributions as it they 

are for the edgeR-limma pipeline. 

Finally, the results of the differential analysis were parsed and filtered. We selected 

only introns that passed a false discovery rate (FDR) adjusted p-value threshold of 0.01, fold 

change threshold of 2 and a required minimum of 20 reads per 100 nucleotides of the effective 

length of an intron averaged over all the original RNA-Seq samples. These introns were called 



	

in silico detected retained introns, or simply retained introns. The primary count matrix of 

intronic bins was then reduced to a list of retained introns and it was added to the primary count 

matrix of the exonic bins. 

 

7. Inferring of the differentially used exons (diffUEs) 

7.1. Identification of diffUEs with DEXSeq 

First, the primary count matrix of the exonic bins was loaded into the R workspace and filtered 

against non-expressed genes, one-bin genes and too low sequencing depth. The filtered count 

matrix was subsequently used to create a flattened GTF file and it was wrapped (together with 

a flattened GTF file, sample annotations and experimental design) into an object of a class 

DEXSeqDataSet19. 

Second, the size of each RNA-Seq library was normalized using the “median ratio 

method"20 and dispersion estimates were obtained using the function estimateDispersions from 

the R/Bioconductor library DESeq2 v.1.20.016,21. Third, the diffUEs were determined using the 

functions testForDEU and estimateExonFoldChanges from the R/Bioconductor library 

DESeq2 v.1.20.021 in the default mode. At last, the final results were summarized using the 

function DEXSeqResults from the R/Bioconductor library DESeq2 v.1.20.021. 

7.2. Identification of diffUEs with function diffSplice 

First, the primary count matrix of exonic bins was subjected to filtering against the non-

expressed genes, one-bin genes and too low sequencing depth and it was wrapped (together 

with the sample information) into a DGEList object22.  

Second, to calculate effective sizes of RNA-Seq libraries, the scaling factors were 

estimated using the “trimmed mean of M-values” method.  

Third, by applying the calculated scaling factors, the count data were converted into 

counts per million, or CPM, and logarithmically transformed, the mean-variance relationship 

was estimated, and the appropriate observational-level weights were calculated using the voom 

algorithm23. 

Fourth, the multiple simple linear models were fitted to the normalized count matrix by 

least squares method using the function lmFit from the R/Bioconductor library limma v.3.36.1.  

Fifth, contrast coefficients (logarithms for base two of fold changes, or log2 FC, 

between the treatment conditions) were calculated and loaded into the function diffSplice17,24. 

This function calculates the difference between the log2 FC for a given exon versus the average 

log2 FC for all the other exons for the gene of interest. In other words, this function tests for 

differential usage of exons for each gene and for each treatment condition. Finally, from 



	

moderated t-statistics, p-values were adjusted for multiple testing with the method of 

Benjamini Y. and Hochberg Y., which controls the expected FDR below the specified value. 

8. Identification of exon-exon junctions (EEJs) 

All possible variants of EEJs were identified according to Liao et al.5. The resulting BED files 

were parsed and converted into the primary count matrix of EEJs with an in-laboratory 

developed R code. This matrix included a full list of identified EEJs with the respective 

genomic coordinates and a number of reads supporting each exon-exon junction in every 

sample. 

9. Identifying the differentially used exon-exon junctions (diffEEJs) 

9.1. Identification of diffEEJs with function diffSplice 

The primary count matrix of EEJs was subjected to filtering against too low sequencing depth 

and it was wrapped (together with the sample information) into a DGEList object. All the 

subsequent steps of the analysis were carried out in accordance with subsection 7.2, but at the 

level of EEJs. 

9.2. Identification of diffEEJs using functionality of JunctionSeq library 

First, the overall quality of the BAM files was assessed with Picard v.2.9.0 

(http://broadinstitute.github.io/picard/) and low-quality reads were removed using in-

laboratory developed R code. Second, the flattened GFF file was created using toolset QoRTs. 

This file was based on the Ensemble annotations of the human genome and included all the 

exons, annotated and novel EEJs. Third, reads counts were generated by QoRTs. At this step, 

we counted all the reads mapped to exons, annotated or novel EEJs with minimum mapping 

quality of 30. Fourth, the diffEEJs were identified by the sequential application of two 

functions runJunctionSeqAnalyses and writeCompleteResults in the default mode to reads 

counts. These functions are part of the R/Bioconductor library JunctionSeq v.1.10 and they use 

DEXSeq statistical infrastructure to detect diffEEJs. Finally, output results were parsed and 

adjusted to the format of diffSplice output by in-laboratory developed R code. 

10. Classification of EEJs according to the modes of alternative splicing 

Our classifier of EEJs is based on the idea of hypothetical "non-alternative" precursor of RNA, 

or hnapRNA. hnapRNA is an RNA molecule that would have turned out if the gene had only 

one transcription start site, if there were no alternative splice sites, if there was no alternative 

splicing and if there was only one transcription termination site. In other words, hnapRNA is a 

generalization of all the RNA isoforms produced by the gene. 

For each gene, the structure of the hnapRNA was calculated using Ensembl models of human 

genes. We clustered exons of the gene of interest into overlapping groups with the exception 



	

of retained introns, alternative 5’ and/or 3’ terminal exons. The outer boundaries of the 

resulting exon clusters were recorded as genomic coordinates of exons of the hnapRNA. The 

list of these coordinates was extended with coordinates of retained introns, alternative 

5’ and/or 3’ terminal exons and it was converted into an object of a class GRanges. 

Next, the genomic coordinates of EEJs were intersected with the coordinates of the features of 

the hnapRNA, and the mode of each EEJ was determined. According to our approach, all the 

EEJs were classified into eight modes of alternative splicing: 

i) canonical event, if the coordinates of the empirical event exactly match the model event, 

ii) alternative 5' splice site, if only the 3’ splice site of the empirical event exactly matches the 

respective model site, 

iii) alternative 3' splice site, if only the 5’ splice site of the empirical event exactly matches 

respective model site, 

iv) alternative both splice sites (intron isoform), if both splice sites of the empirical event do 

not match splice sites of respective model event, 

v) skipped cassette exon(-s), if the empirical event includes skipping one or more exons of the 

model, 

vi) alternative first exon, if the 5’ splice site of the empirical event exactly matches the 3’ end 

of alternative first exon in model, 

vii) alternative last exon, if the 3’ splice site of the empirical event exactly matches the 5’ end 

of alternative last exon in model. 

11. Reference-based transcriptome assembly 

First, for each sample of RNA, we used Cufflinks25 and the respective subjunc-generated BAM 

file to assemble the alignments into a parsimonious set of transcripts. Herewith, Cufflinks was 

supplied with i) Ensembl annotation of the human genome to guide RABT assembly, ii) a GTF 

file containing annotated human rRNA and mitochondrial genes to mask these genomic 

features during estimation of transcripts abundance, iii) complete sequence of the human 

genome in multiFASTA format to bias correction during the estimation of transcripts 

abundance, and iv) a minimal isoform fraction threshold assigned to 0.05. 

Second, individual Cufflinks assembled transcriptomes were merged into one consolidated set 

of transcripts with Cuffmerge26. This set of transcripts was filtered against i) unstranded 

transcripts, ii) too short transcripts (<300 nucleotides), iii) transcripts with too short exon(-s) 

(<25 nucleotides), iv) transcripts with too short intron(-s) (<50 nucleotides), and vi) transcripts 

with low abundance (fragments per kilobase of transcript per million mapped reads, or FPKM, 

below 1). Filtration was controlled by in-laboratory developed R code. 



	

Third, the consolidated and filtered set of transcripts was submitted to Cuffdiff for the 

simultaneous calculation of the transcript abundance and differential expression. Cuffdiff was 

provided with a GTF file containing annotated human rRNA and mitochondrial genes and a 

multiFASTA file with complete sequence of the human genome, and it was run in default mode 

except for the minimal isoform fraction threshold that was assigned to 0.05. Finally, for the 

fast retrieving of the data and easy subsequent manipulations, the main outcomes of Cuffdiff 

were parsed, converted into an object of a class TranscriptDb8 and saved as a local SQLite 

database. 

12. Analysis of differential gene expression 

12.1. Identification of differentially expressed genes with Cuffdiff 

We used Cuffdiff differential expression tests data (see section 11 above) to identify 

differential expression at transcript or gene levels between experimental conditions. Herewith, 

only transcripts or genes with at least 2-fold changes in expression and q-value below 0.05 

were annotated as differentially expressed. 

12.2. Identification of differentially expressed genes with DESeq2 

First, the mapped RNA-Seq reads were assigned to the genomic meta-features (genes) as 

described in section 5. Second, the resulting count matrix was subjected to filtering against too 

low sequencing depth and it was wrapped (together with the sample information) into a 

DESeqDataSet object. Third, differentially expressed genes were identified using the functions 

DESeq and results from the R/Bioconductor library DESeq2 v.1.16.1. These functions were 

run in default mode and according to the standard DESeq2 pipeline. Finally, results were parsed 

and genes with at least 2-fold changes in expression and q-value below 0.05 were annotated as 

differentially expressed. 

12.3. Identification of differentially expressed genes with edgeR-limma 

First, the mapped RNA-Seq reads were assigned to the genomic meta-features as described in 

section 5. Second, the resulting count matrix was subjected to filtering against too low 

sequencing depth and it was wrapped (together with the sample information) into a DGEList 

object22. Third, to calculate an effective size of each RNA-Seq library, the scaling factors were 

estimated using the “trimmed mean of M-values” method. Fourth, by applying the calculated 

scaling factors, the count data were converted into CPM and logarithmically transformed, the 

mean-variance relationship was estimated, and the appropriate observational-level weights 

were calculated using the voom algorithm. 

Fifth, the multiple simple linear models were fitted to the normalized count matrix by least 

squares method using the function lmFit from the R/Bioconductor library limma v.3.36.117,24. 



	

Sixth, log2 FC coefficients and empirical Bayes statistics were calculated using respective 

functions from R/Bioconductor libraries edgeR v.3.22.318,27 and limma v.3.34.917,24. Finally, 

results were parsed and genes with at least 2-fold changes in expression and the q-value below 

0.05 were annotated as differentially expressed. 

13. Enrichment test 

We used up-to-date ODO and GAF files from the Gene Ontology Consortium28,29 to develop a 

comprehensive list of the reference functional gene sets. From this list, we selected the gene 

sets containing ten or more members for downstream analysis. Next, two-sided Fisher's exact 

test was used to find out the under- and/or over-represented query gene set(-s) among the 

reference gene sets. Query results were parsed and under- or over-represented gene sets that 

passed FDR adjusted p-value threshold of 0.05 were collected. Finally, Cytoscape plug-in 

EnrichmentMap30 was used to handle gene-set redundancy and hierarchical visualization of the 

enrichment results. 

14. Motif enrichment analysis 

We collected sequences of experimentally verified binding sites that were recognized by 

SRSF131-33, SRSF231-33 and SRSF334-36 splicing-related proteins. For each protein and the 

respective set of sequences, we performed a motif search by the discriminative motif discovery 

algorithm motifRG37 against the background set of randomly extracted human intronic and 

exonic sequences. The primary motif was refined by the function refinePWMMotif from the 

R/Bioconductor library motifRG v.1.18.037 with the default settings and was converted into the 

log2 position weight matrix with the correction against the background nucleotides frequency. 

Occurrence of a motif in the sequence of interest was determined by the function matchPWM 

from the R/Bioconductor library Biostrings v.2.42.038 using either dynamic or fixed 

thresholding, as indicated in Figure legends. For dynamic thresholding, the threshold was 

adjusted to maximize the difference between the normalized motif frequencies in the compared 

data sets and the motif occurrence was normalized relative to the length of the analysed 

sequence. For fixed thresholding, we	used the 99th quantile of the motif weight distribution as 

a threshold in the identification of the true motif occurrence. 

Additionally, we collected oligomeric sequences that were bound by splicing proteins 

SFPQ39-42 and SRSF734,43,44. We were not able to calculate position weight matric of the motifs 

for these proteins due to a limited number of sequences of the experimentally verified binding 

sites. For this reason, we used an alternative approach in the assessment of the strength of 

binding sites for the mentioned above splicing proteins, as proposed by Murray et al.45: 



	

𝐵𝑆𝑆 = 	
𝑙𝑛	(4)𝑓+,)

./01)23

./4

𝐿 − 𝑘 + 1
, 

where BSS is the strength of binding sites, L is the length of the sequence of interest, k is the 

length of an oligomer found in the sequence of interest, fn represents the frequency (within the 

set of sequences of the experimentally verified binding sites for a given splicing protein) of the 

oligomer found at the position i in the sequence of interest, and 𝑙𝑛 4)𝑓+,  is a log-odds 

representation of the degree to which the particular oligomer was enriched within the set of 

sequences of the experimentally verified binding sites for a given splicing protein. As 

proposed, we counted only the frequency of all the possible pentamers in the sequence of 

interest and used the frequency of pentamers from the set of sequences of the experimentally 

verified binding sites for a given splicing protein as the reference46. 

15. RIP-Seq data analysis 

Quality assessment and pre-processing of the RIP-Seq raw data was carried out as described in 

section 1. The mapping of RIP-Seq reads to the reference genome and summarization of reads 

were performed as described in section 2 and section 5, respectively. Using the resulting count 

matrix, the differential abundance of the SRSF1-bound RNA molecules was determined using 

the functionality of the R/Bioconductor libraries edgeR v.3.22.327,47 and limma v.3.34.917,24, as 

described in section 12.3 for differential gene expression. 

 

 

 

 

 

 

 

 

 

 

 

 



	

Example flow cytometry gating strategy for competition assays 
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